物理学报 Acta Physica Sinica

雷云电场作用下长地线表面正极性辉光电晕放电的仿真研究 司马文霞 范硕超 杨庆 王琦 Numerical simulation of positive glow corona discharge initiated from long ground wire under thundercloud field Sima Wen-Xia Fan Shuo-Chao Yang Qing Wang Qi

引用信息 Citation: Acta Physica Sinica, 64, 105205 (2015) DOI: 10.7498/aps.64.105205 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.105205 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I10

您可能感兴趣的其他文章 Articles you may be interested in

线铝箔电极电晕放电激励器的推力理论与实验研究

Theoretical and experimental study of thrust produced by corona discharge exciter in wire-aluminum foil electrode configration

物理学报.2015, 64(10): 105204 http://dx.doi.org/10.7498/aps.64.105204

棒-板电极下缩比气隙辉光放电相似性的仿真研究

Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration 物理学报.2014, 63(9): 095206 http://dx.doi.org/10.7498/aps.63.095206

缩比间隙中辉光放电相似性的初步研究

Preliminary study on similarity of glow discharges in scale-down gaps 物理学报.2013, 62(20): 205209 http://dx.doi.org/10.7498/aps.62.205209

多针-网电极离子风激励器推□*τ* 胪乒 P 鹊氖笛檠芯

Experimental study on the thrust and the ratio of thrust to power of multi-points/grid ionic wind exciter 物理学报.2013, 62(7): 075205 http://dx.doi.org/10.7498/aps.62.075205

大气压Ar/NH₃介质阻挡辉光放电的仿真研究

Modelling study of dielectric barrier glow discharge in Ar/NH₃ mixture at atmospheric pressure 物理学报.2012, 61(24): 245205 http://dx.doi.org/10.7498/aps.61.245205

雷云电场作用下长地线表面正极性辉光电晕 放电的仿真研究^{*}

司马文霞 范硕超 杨庆 王琦

(重庆大学,输配电装备及系统安全与新技术国家重点实验室,重庆市 400044)

(2014年10月9日收到;2014年12月15日收到修改稿)

在雷云电场的缓慢作用下,一种无流注的正极性辉光电晕在接地物体表面起始,向周围空间注入大量正极性空间电荷,从而改变雷电先导对雷击目的物的选择.本文对雷云电场作用下起始于长地线表面的正极性辉光电晕放电进行了仿真研究;考虑了正极性离子与其他离子的附着与碰撞作用,建立了一种精确的二维正极性辉光电晕模型;并通过在实验室内开展高压电晕放电试验,测量了不同背景电场下的电晕电流;与本文所建模型的仿真结果进行对比,对模型的正确性进行了验证.基于上述模型,对正极性辉光电晕在雷云感应作用下的起始发展过程与电晕特性进行了仿真模拟,得到了该电晕的电晕电流、正离子密度分布规律以及正离子迁移规律.发现在雷云电场作用下,电晕放电产生的正离子在迁移初期于垂直于地线的平面内基本呈圆对称状均匀分布,但随着离子逐渐远离地线其分布不再均匀,呈拉长的椭圆形分布,多数离子最终分布于地线上方区域并逐渐向雷云方向迁移;由于正离子在地线上方迁移区聚集形成的正空间电荷背景对行进电子束具有衰减和消耗作用,抑制了电子崩的形成,并降低了电子崩转化为流注的概率,阻止了新的电子崩对流注的不断注入,同时正空间电荷背景使气体的碰撞面增大,增加了与电子的复合概率,引起大量电子的消耗,最终抑制了电子崩的形成与流注的发展,地线表面的上行先导得到抑制.

关键词:正极性辉光电晕,二维模型,电晕特性 PACS: 52.80.Hc, 92.60.Pw, 52.80.Mg

DOI: 10.7498/aps.64.105205

1引言

雷云对地放电是自然界中的一种长间隙放电现象,随着雷云中负极性电荷的不断累积,其在大地产生的感应背景电场缓慢增加,由天气晴朗时的100 V·m⁻¹增至数千千伏每米^[1].在地面背景电场不断增强的过程中,地面物体的表面逐渐发生电晕放电现象.随着电晕放电的加剧,电晕转化为流注并最终从地面物体表面产生上行先导从而吸引由雷云产生的下行先导,最终影响下行先导对雷击目的物的选择.因此,雷云电场作用下地面物体表面的电晕放电现象对雷击地面物体的机理研究具有十分重要的意义^[2-4].

对于一个半径为 r_0 ,离地高度为 $h(h \gg r_0)$ 的 接地电极,当电极表面的电场达到电晕起始临界值 E_i 时,就会发生电晕放电现象.在雷雨天气时,由 于雷云电场在数十秒的时间里缓慢变化,其在电极 表面感应并产生的电晕是一种无流注的正极性辉 光电晕^[5],电晕表面有电离区域形成的辉光薄层, 是一种明亮的等离子体,且电晕电流连续.由于该 电晕在缓慢变化电场的作用下产生,电晕放电持续 时间较长,其注入的大量正极性空间电荷足以改变 电极附近其他物体原有的电场分布与电位分布,削 弱负极性雷云电荷在这些物体表面的感应作用,从 而延缓了这些物体表面的流注放电甚至上行先导 的起始.因此,许多专家和学者普遍认为这种产生 于距离地面一定高度的接地物的正极性辉光电晕

^{*} 国家自然科学基金(批准号: 51177182)和国家创新研究群体基金(批准号: 51321063)资助的课题.

[†]通信作者. E-mail: fanshuochao@cqu.edu.cn.

^{© 2015} 中国物理学会 Chinese Physical Society

可以有效阻碍上行先导的发展,改变雷电下行先导 对地面雷击目的物的选择,从而防止周围物体遭受 雷击,减小雷电吸引半径.

Uhlig^[6]在1956年首先发现了这种正极性辉 光电晕, 通过采用细线-板电极进行的直流击穿实 验,发现辉光电晕的产生改变了电极表面的电场 分布和电位分布,抑制了流注的产生,使流注不容 易贯穿整个空气间隙通道,从而提高了击穿电压, 并将此种电晕命名为"超电晕".此后,多位专家 和学者开始着眼于将辉光电晕与雷电防护相结合 的理论与模型研究. Aleksandrov 和 Bazelyan^[7-12] 多年来对辉光电晕在建筑物防雷方面进行了详细 的分析与研究,对于起始于尖端为球形或半球形避 雷针的辉光电晕, 通过建立准一维模型进行数值仿 真研究,分析了其电晕特性以及辉光电晕对流注和 迎面上行先导起始过程产生的影响. 但是由于该模 型较为简单, 仅用一维空间描述电晕的发展具有很 大局限性,因此该模型的准确性有所欠缺,但是辉 光电晕在雷电防护方面的实际作用与效果得到了 充分的肯定. 此后著名防雷专家 Rizk^[13] 提出通过 在接地物体表面缠绕不锈钢纤维细线的方式促进 辉光电晕的产生与稳定发展,并设计了一种基于辉 光电晕的防雷装置,成功应用于120m跨江铁塔的 实际防雷中.

从辉光电晕的实际应用角度看,其在建筑物防 雷中的防护范围有限,且近年来雷击建筑物引起的 事故不多, 而架空输电线路区域跨度较大, 绵延数 千公里,在实际运行中极易遭受雷击导致跳闸故障 频发,严重威胁电网的安全运行.如能将辉光电晕 特性成功应用于输电线路的雷电防护中,即可大范 围降低雷击输电线路的概率,从而提高雷电防护性 能,减少雷击事故造成的损失,保证电网的安全运 行.因此,逐渐有学者尝试将辉光电晕应用于输电 线路的雷电防护中. 输电线路的地线(避雷线)作 为一种接地电极,符合辉光电晕在雷云电场作用下 的起始条件. Rizk^[14] 根据辉光电晕对周围空间电 场分布和电位分布的影响机理,提出利用起始于地 线表面的正极性辉光电晕,抑制地线周围输电导线 表面上行先导的起始和发展,降低雷击输电线路导 线的概率,实现对输电线路的雷电防护.由于地线 与避雷针在结构参数上存在较大差异, Rizk参考 Aleksandrov等^[7-12]针对避雷针建立的准一维模 型,对起始于地线的辉光电晕建立了相应的一维模

型,从机理上分析了辉光电晕对导线上行先导的抑 制效果, 该模型虽然在一定程度上可以反映辉光 电晕从地线表面起始后的发展规律与电晕特性,但 由于该模型进行了大量的近似处理,具有较大局限 性. 对于起始于地线表面的辉光电晕, 由于地线为 圆柱形电极,离子通量从地线表面的迁移呈辐射对 称状,地线表面的电场分布也相似,在此情况下一 维模型是适用的. 但是随着离子逐渐远离地线, 并 且雷云电场产生的背景电场方向为垂直地面向上. 此时,正极性离子将全部朝雷云方向运动,而离子 分布也将不再是辐射对称分布,一维模型不再适 用. 只有通过建立更为精确的二维模型才能对离子 迁移这一物理过程进行详细的仿真和分析. 而现阶 段国内外通过二维模型模拟雷云场下正极性辉光 电晕放电的研究极少,较为成熟的就是Becerra^[15] 针对避雷针建立的二维辉光电晕模型,他利用该模 型模拟并分析了起始于避雷针表面的辉光电晕发 展过程及其对流注和迎面先导的影响^[16,17].但由 于输电线路地线与避雷针结构迥异, 电晕放电产生 的电场分布与电荷迁移规律存在较大差异,导致该 研究结果无法在输电线路直接应用.因此,亟需建 立精确的起始于输电线路地线的二维正极性辉光 电晕模型.

鉴于辉光电晕在输电线路雷电防护方面具有 良好的应用前景,对此电晕现象的深入研究和分析 显得极为重要.近年来随着计算机仿真技术和数值 算法的日益成熟,先前研究中受到的一些约束和瓶 颈问题已经可以实现和解决.因此,本文在现有研 究成果的基础上,对雷云电场作用下、起始于长地 线表面的正极性辉光电晕展开研究,提出一种精确 的二维模型,通过COMSOL Multiphysics进行建 模和仿真研究,详细分析辉光电晕起始后的发展规 律与电晕特性,根据仿真结果分析并解释了辉光电 晕对地线表面流注和上行先导的抑制机理.

2 正极性辉光电晕的二维仿真模型

2.1 模型基本参数设置

在雷云电场 E_0 的作用下,假定正极性辉光电 晕起始于水平架设的长地线,地线离地高度为h, 半径为 r_0 ,雷云电场 E_0 为均匀电场,电场方向垂直 地面向上.在一次雷云活动中, E_0 通常在一定的 持续时间 τ 内(数十秒^[18])均匀上升,增至最大值 $E_{0 \text{ max}}$,随后发生雷击闪络并急剧下降.通常认为 雷云电场 E_0 的表达式在电场上升阶段近似为线性 函数.根据对雷云电场的观测和测量结果^[19], E_0 的增长表现为阶梯式,即在时间 τ 内均匀增大,随 后短时间内保持稳定,直到雷击闪络发生.因此, 本模型最终确定雷云电场 E_0 的表达式为

$$E_0(t) = \begin{cases} (t/\tau) E_{0 \max} & t < \tau, \\ E_{0 \max} & t \ge \tau. \end{cases}$$
(1)

随着雷云电场逐渐增强,地线表面电场 $E(r_0)$ 在雷云电场感应作用下相应增大,一旦在某一时刻 t_i 增至电晕起始临界场强 E_i ,辉光电晕开始起晕并 发展.根据著名的Peek公式^[20],空气中电晕起始 的临界值为

$$E_{\rm i}(r_0) = 3.1 \left(1 + 0.0308 r_0^{-1/2} \right).$$
 (2)

随着雷云电场的不断变化, 辉光电晕达到起始 条件并起晕后, 正极性空间电荷从地线表面的离子 薄层开始向雷云-大地间隙中注入, 其形成的离子 云向雷云处迁移. 若以地线为z轴, 垂直地线建立 平面, 水平和竖直方向分别为x, y轴, 由于雷云电 场的方向为垂直地面向上, 则离子的迁移方向和产 生的感应电场则均只存在x分量和y分量, 而无z 分量, 因此二维模型已能够准确描述辉光电晕发展 的物理过程, 而无须扩展为三维模型.

2.2 控制方程与几何模型

气体放电的本质是带电粒子与中性气体分子、 分子团簇等基本粒子之间相互碰撞作用的结果.在 现有的长地线辉光电晕模型中^[14],近似认为辉光 电晕的放电只存在一种类型的粒子,即正极性离 子,未考虑正极性离子对其他离子的附着与碰撞作 用.为准确模拟辉光电晕起始后的放电过程,本模 型充分考虑了正极性离子 n_+ 、气溶胶离子(aerosol ions) N_+ 和中性粒子(aerosol neutrals) N_a 相互间 的反应,采用多组分扩散输运方程^[21] 描述带电粒 子的碰撞电离等物理过程,且各方程之间相互耦 合,如(3)—(5)式所示:

$$\frac{\partial n_{+}}{\partial t} = D\nabla^{2}n_{+} - \nabla \cdot (n_{+}\mu_{n_{+}}\boldsymbol{E}) - k_{nN}n_{+}N_{a}, \qquad (3)$$

$$\frac{\partial N_{+}}{\partial t} = D\nabla^{2}N_{+} - \nabla \cdot \left(N_{+}\mu_{N_{+}}\boldsymbol{E}\right) + k_{nN}n_{+}N_{a}, \qquad (4)$$

$$\frac{\partial N_{\rm a}}{\partial t} = D\nabla^2 N_{\rm a} - k_{nN} n_+ N_{\rm a},\tag{5}$$

式中, μ_{n+} 和 μ_{N+} 分别为 n_+ 和 N_+ 的离子迁移速 率, k_{nN} 为 n_+ 对 N_+ 的附着系数, D为扩撒系数. 同时, 根据局域场近似原理^[22], 描述电离区内的电 场分布的电场泊松方程为

$$\nabla \cdot \boldsymbol{E} = -\nabla^2 \phi = \frac{e\left(n_+ + N_+\right)}{\varepsilon_0},\qquad(6)$$

式中,e为元电荷, ε_0 为真空介电常数.

实际上,电晕放电产生的空间电荷迁移是一个 三维物理过程.但如2.1小节中所述,在雷云电场 的作用下可用二维模型准确描述这一过程,因此根 据 COMSOL Multiphysics中对流/扩散方程的常 规形态,将(3)—(5)式进行归一化处理,以离散的 数值差分形式求解,转化为如下形式:

$$\frac{\partial n_{+}}{\partial t} + \nabla (-D\nabla n_{+}) \\
= \left[-n_{+}\mu_{n_{+}} \frac{e(n_{+} + N_{+})}{\varepsilon_{0}} - k_{nN}n_{+}N_{a} \right] \\
- (\mu_{n_{+}} \boldsymbol{E}) \cdot \nabla n_{+}, \quad (7) \\
\frac{\partial N_{+}}{\partial t} + \nabla (-D\nabla N_{+}) \\
= \left[-N_{+}\mu_{N_{+}} \frac{e(n_{+} + N_{+})}{\varepsilon_{0}} + k_{nN}n_{+}N_{a} \right] \\
- (\mu_{N_{+}} \boldsymbol{E}) \cdot \nabla N_{+}, \quad (8)$$

$$\frac{\partial N_{\rm a}}{\partial t} + \nabla \left(-D\nabla N_{\rm a} \right) = \left(-k_{nN}n_{+}N_{\rm a} \right). \tag{9}$$

式中各种离子的迁移速率以及附着系数的取值 参考了应用于人工引雷试验的PICASSO (production of corona ions at the ground beneath thundercloud) 模型中雷云背景场下电晕放电的仿真与 试验结果^[23], 分别取为: $\mu_{n+} = 1.5 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$, $\mu_{N+} = 1.5 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$, $k_{nN} = 2.9 \times 10^{-12} \text{ m}^3 \text{ s}^{-1}$, $D = 1 \text{ m}^2 \text{ s}^{-1}$.

为模拟雷云电场作用下起始于地线表面的正极性辉光电晕的发展过程,本文在垂直地线的平面内建立了如图1所示的二维轴对称几何模型.在进行仿真时,将仿真区域分为两部分分别进行网格划分.由于电晕放电产生的离子迁移主要发生在地线附近区域,为保证计算的精度,需要在靠近地线的A区域进行极其精细的网格划分,而在远离地线的B区域则进行较粗糙的网格划分,从而节约计算时间和计算资源.其中A区域中最大单元尺寸为0.05 m,最小单元尺寸为10⁻⁵ m.

Fig. 1. Geometric model and mesh figure.

2.3 边界条件与仿真参数设置

由于本模型涉及 COMSOL Multiphysics 中的 静电模块 (electrostatic module) 和对流/扩散模块 (convection/diffusion module), 需要分别对两个模 块中的边界条件进行设置.

在静电模块中,由于整个仿真区域均浸没在时 变的雷云背景电场 E_0 中,则对上边界施加电势值 为 $V_0 = -E_0H$,其中H为上边界离地高度.左边 界设置为对称轴,右边界设置为绝缘,其余边界(包 括下边界和地线表面)均设置为接地.

在对流/扩散模块中,上边界设置为对流边 界,其余边界(除了地线表面)设置为无通量.当 地线表面电场达到临界起晕场强*E*_i时电晕开始 起晕,则需要对地线表面添加浓度边界(concentration). 此处正离子 n_+ 在这一边界上的浓度需 要设置为能够使地线表面场强等于 E_i 并保持不 变的浓度值^[5,7-12,24]. 同时,在电晕起始时,正离 子 n_+ 和中性粒子 N_a 的初始浓度分别设置为0和 10^{11} m⁻³ [8].

其余仿真参数的设置分别为: 雷云背景电场设置为 $E_0 = 40 \text{ kV·m}^{-1}$; 仿真时间 $\tau = 20 \text{ s}$; 地线高度h = 15 m, 地线半径 $r_0 = 0.01 \text{ m}$.

3 模型的试验验证

本文提出了一种精确的二维辉光电晕放电模型,为了验证该模型的正确性,本节在实验室中进行了高压电晕放电试验,并根据上一节的方法建立 仿真模型,对实测结果和仿真结果进行对比分析.

3.1 试验装置布置与试验方法

本文采用的试验回路接线如图2所示.试验变 压器的额定容量为300 kVA,额定电流为0.5 A,输 入电压为0—400 V,输出电压为0—600 kV,额定 输出时电压纹波系数小于3%.为避免试验中电流 过大,施加保护电阻*R*₁和*R*₂,其中*R*₂为电导率小 于2 µS·cm⁻¹的纯净水阻,其余设备参数参考文献 [25—28].试品中,高压电极采用直径为60 cm 的 圆盘形电极,并对其施加负极性直流电压用于模拟 雷云放电所产生的背景电场;接地电极为半径1 cm 的圆柱形导体,用于模拟雷云电场作用下的地线, 经一采样电流传感器接地.雷云背景电场强度的取 值定义为施加的电压值与高压、接地电极间距离的 比值,试验中通过电流传感器获取不同雷云电场作 用下的电晕电流值.

图 2 试验回路接线图 Fig. 2. Sketch of test circuit.

3.2 验证结果

为了降低各种干扰并保证试验数据的准确性, 本试验在重庆大学电磁屏蔽实验室内进行,试验时 环境温度为300 K,背景压强1 atm. 同时,作为对 比验证,参照上一节所述仿真模拟方法建立相应的 仿真模型,求取不同雷云电场作用下的电晕电流 值.图3所示为实测结果与仿真结果的对比.

图3 试验结果与仿真结果对比

Fig. 3. Comparison of experiment result with simulation result.

图3所示为不同雷云电场作用下得到的仿真 和试验电晕电流值.通过对比可以看出,整体上两 条曲线有较高的符合度,相关系数为0.9992,从而 验证了本文所建模型的正确性,尤其在背景电场值 较低时,二者基本完全符合;而当雷云电场逐渐增 大时,试验获取的电晕电流值略高于仿真值,这是 由于实验室中直流电压下产生的辉光电晕与实际 雷云电场作用下产生的辉光电晕略有不同^[29].在 实验室中,电晕放电产生的离子可以轻易贯穿高、 低压电极间的空气间隙从而达到较为稳定的状态; 而在实际雷云作用下,电晕放电产生的离子只能在 雷云与地线间迁移一段距离而无法贯穿整个间隙, 因此无法达到实验室中的稳定状态,因而电晕电流 值略低.

4 仿真结果与分析

4.1 电晕电流变化规律

根据本文建立的二维模型,对雷云电场作用下 起始于地线表面的正极性辉光电晕放电进行仿真 模拟,本文根据雷云电场变化的统计规律确定了如 (1)式的雷云电场表达式,从而得到了图4所示的 地线表面处的单位长度电晕电流值随时间的变化 曲线.其中单位长度电晕电流计算式为

$$I(t) = 2\pi r_0 e n_+ (r_0, t) \,\mu_{n+} E_{\rm i}, \qquad (10)$$

式中, $n_+(r_0, t)$ 为仿真中得到的地线表面正离子 密度.

$$U = E(r_0) r_0 \ln(2h/r_0).$$
(11)

(11) 式所示为地线表面电压与场强关系.根据(1), (2),(11) 式以及地线半径和高度等参数,可计算出 电晕起始临界场强为 $E_i = 4.05 \times 10^3 \text{ kV·m}^{-1}$,此 时可知雷云背景场 $E_0 = 21.6 \text{ kV·m}^{-1}$,对应的电晕 起晕时间为t = 10.8 s,因此图4中的曲线起始于 10.8 s.从图中可以看出,在不考虑雷云背景电场的 随机性的情况下,根据本文(1)式对雷云背景电场的 的设定,当t < 20 s时,由于雷云背景电场逐渐上 升,电晕电流随时间变化呈均匀上升趋势.当时间t变化至20 s、雷云背景电场 E_0 停止增加时,单位长 度的电晕电流达到最大值 $I = 3.41 \mu\text{A·m}^{-1}$.随后 在t > 20 s时,雷云背景电场不再增大并保持不变, 此时电晕电流曲线出现拐点,随后急剧下降.

图 4 单位长度电晕电流随时间的变化 Fig. 4. Corona current per unit length as a function of time.

4.2 正离子密度分布规律

图 5 所示分别为t = 14, 16, 18, 20 s时, 起始 于地线的辉光电晕产生的正离子密度等值线在周 围空间的分布.在雷云背景电场的作用下, 自由离 子大多沿雷云场的方向垂直地面向上朝雷云处迁 移.而同样在雷云电场的作用下, 由于与雷云场方 向相反, 离子在向地面方向的迁移距离极短.因此, 离子密度在垂直地线的平面内呈拉长的椭圆形分 布 (如图 5 所示).

图5 不同时刻正离子密度的等值线空间分布

Fig. 5. Spatial distribution of contour lines of the positive ion density at different times.

从图5中还可看出,在电晕由地线表面起始后 的发展初期,地线周围的离子在垂直地线的平面内 近似呈圆对称状均匀分布,沿y轴垂直地面向上迁 移和垂直地面向下迁移的离子通量值基本相等.这 是由于在靠近地线的区域,由地线表面电荷和电晕 产生的空间电荷数量较多,对雷云背景电场有一定 的抵消作用,因此离子在地线周围区域分布较为均 匀.但是随着电晕进一步发展,离子逐渐向远离地 线区域迁移,地线表面电荷和电晕产生的空间电荷 已经不足以抵消雷云背景场的作用,此时雷云背景 场占据主导地位,因此多数离子沿雷云场方向垂直 地面向上运动,成为图5中所示拉长的椭圆形非均 匀分布,而非一维模型^[11]中描述的离子云的形状 在任何时刻均为上下对称的圆形.

4.3 正离子迁移规律

为进一步分析正离子的迁移规律,首先在 图 6 中绘制了t = 20 s时刻地线表面的电力线分 布图,用来反映离子的运动轨迹.从图中可以发现, 从位于地线底部的离子自产生时刻起,先以类似圆 形辐射状向外迁移,随着其逐渐迁移至远离地线的 区域,雷云电场抵消了地线表面电荷和电晕产生的

图 6 地线表面电力线分布图

Fig. 6. Lines of force of the electric field near the ground wire.

空间电荷,并占据主导地位,此时离子迁移方向发 生改变,在雷云电场的作用下沿电力线最终垂直地 面向上运动.

图 7 所示为不同时刻正离子密度在 y 轴 (垂直 地面方向)的分布情况,从图中可以看出在距离地 线 (y = 15 m) 很近的迁移区内,地线上方 (y > 15 m)的离子密度与地线下方 (y < 15 m)的离子密度 近似相等,其形状与图5 中一样呈均匀分布状.随 着离子逐渐远离地线并向雷云方向迁移,离子密度 逐渐减小,且地线上、下方的离子分布明显不均匀.

Fig. 7. Distributions of the ion density along the y-axis at different times.

表1 不同时刻地线周围单位长度总电荷量以及上、下方 区域单位长度电荷量的计算结果

Table 1. Calculation result of total charge per unit length around the ground wire and the charge per unit length above and below the ground wire.

t/s	$\mathit{Q}_t/\mu\mathrm{C}{\cdot}\mathrm{m}^{-1}$	$Q_{\rm u}/\mu{\rm C}{\cdot}{\rm m}^{-1}$	$Q_{\rm d}/\mu {\rm C}{\cdot}{\rm m}^{-1}$	$Q_{\rm d}/Q_{\rm t}$
14	3.47	3.13	0.34	9.80%
15	5.59	5.19	0.40	7.16%
16	7.72	7.26	0.46	5.96%
17	9.84	9.32	0.52	5.28
18	11.97	11.38	0.59	4.93%
19	14.09	13.45	0.64	4.54%
20	16.49	15.78	0.71	4.31%

为深入分析雷云背景电场 E_0 对离子迁移的影响,本文计算了地线周围区域内单位长度的电晕电荷量.由图5所示的不同时刻正离子密度的等值线空间分布发现,在电晕发展过程中正离子的迁移主要集中于地线周围x < 5 m, 5 m < y < 20 m的区域内,因此将该区域作为计算区域得到地线周围单位长度的总电晕电荷量 Q_t ,并在计算区域内以地

线所在水平面 (y = 15 m) 为分界, 分别计算该边 界上、下方区域内单位长度的电荷量 $Q_u 和 Q_d$, 且 $Q_t = Q_u + Q_d$, 计算结果如表 1 所列. 从表 1 中可 以看出, 地线下方区域的电荷量远远小于上方区域 的电荷量, 其在总电荷量中所占比例也随时间的 增加而递减, 尤其当t = 20 s时, Q_d 所占比例仅为 4.31%, 说明在雷云背景场的作用下, 正离子大多 沿电力线方向迁移至地线上方区域且向雷云方向 运动.

4.4 讨 论

本文通过建立二维正极性辉光电晕模型,对雷 云背景场作用下起始于地线表面的正极性辉光电 晕进行了仿真研究,得到了空间电荷在雷云背景场 作用下的迁移规律. 通过仿真结果发现, 当地线表 面的电场强度达到临界起晕场强时发生电晕放电, 正离子从电离区向迁移区缓慢扩散. 在电晕放电初 始阶段, 地线上、下方迁移区内的离子分布比较均 匀,沿y轴垂直地面向上迁移和垂直地面向下迁移 的离子通量值基本相等. 但随着离子逐渐远离地 线,受雷云背景场的作用正离子逐渐向地线上方迁 移区运动,由于正离子在电场中的迁移速度比电子 小两到三个数量级,造成正离子在地线上方附近迁 移区的聚集从而形成正空间电荷背景. 地线迎面上 行先导的产生经历了由电子崩发展成为流注继而 发展成上行先导这一过程. 在电子崩不断发展的过 程中,由于正空间电荷背景对行进电子束的衰减作 用, 使得电子崩中电子数量减少, 降低电子崩转化 为流注的概率;同时,由于正空间电荷背景对电子 束的消耗,抑制了电子崩的形成,阻止了新的电子 崩对流注的不断注入,从而抑制了流注的发展.此 外,正空间电荷背景使气体的碰撞面增大,增加了 与电子的复合概率,引起大量电子的消耗,从而抑 制了电子崩的形成与流注的发展.因此,正极性辉 光电晕能够实现对迎面上行先导的抑制效果,从而 影响雷电先导对雷击目的物的选择.

5 结 论

本文建立了一种精确的二维正极性辉光电晕 模型,对其在雷云感应作用下从长地线表面的起始 发展过程与电晕特性进行了仿真模拟,并通过试验 方法验证了该模型的正确性.所得结论如下: 1)本文所建二维正极性辉光电晕模型充分考虑了电晕放电产生的正极性离子与其他离子间的碰撞,能够准确反映正极性辉光电晕放电过程中空间电荷在雷云背景场作用下的迁移与分布规律,并为后续流注和迎面上行先导的发展研究奠定了基础;

2)本文通过仿真模拟,得到了地线表面处电晕 电流随时间的变化规律、不同时刻正离子密度分布 规律以及正离子迁移规律,结果表明在地线表面发 生辉光电晕放电的初始阶段,正离子在地线周围空 间分布比较均匀,但在垂直地面向上的雷云背景场 作用下,多数正离子逐渐沿电力线向雷云处迁移, 导致正离子在地线上、下方区域的分布不再均匀, 尤其当*t* = 20 s时,下方区域的电荷量所占比例仅 为总电荷量的4.31%;

3) 在雷云背景场作用下, 正极性辉光电晕产生 的正离子呈现非均匀分布, 导致地线上方附近迁移 区内的正离子聚集并形成正空间电荷背景, 对行进 电子束产生衰减作用, 降低了电子崩转化为流注的 概率, 阻止了新的电子崩对流注的不断注入, 抑制 了流注的发展, 增大了气体的碰撞面, 增加了与电 子的复合概率, 因此正极性辉光电晕实现了对电子 崩形成与流注发展甚至迎面上行先导的抑制;

4)本文的研究工作作为正极性辉光电晕在输 电线路防雷应用的基础研究,为其提供了一定的参 考价值与推动作用.

参考文献

- [1] Chauzy S, Raizonville P 1982 J. Geophys. Res. 87 3143
- [2] Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201
- [3] Li X C, Bao W T, Jia P Y, Zhao H H, Di C, Chen J Y 2014 Chin. Phys. B 23 095202
- [4] Rakov V, Uman M A 2007 Lightning: Physics and Effects (1st Ed.) (Cambridge: Cambridge University Press) pp1-20
- [5] Waters R T, Stark W B 1975 J. Phys. D: Appl. Phys. 8 416
- [6] Uhlig C A E 1956 Proceedings of High Voltage Symposium on National Research Council of Canada Ottawa, Canada, 1956 pp15.1–15.13

- [7] Bazelyan E M, Raizer Y P 2000 Phys.-Usp. 43 701
- [8] Aleksandrov N L, Bazelyan E M, Carpenter R B J, Drabkin M M, Raizer Y P 2001 J. Phys. D: Appl. Phys. 34 3256
- [9] Aleksandrov N L, Bazelyan E M, Drabkin M M, Carpenter R B, Raizer Y P 2002 Plasma Phys. Rep. 28 953
- [10] Aleksandrov N L, Bazelyan E M, D'Alessandro F, Raizer Y P 2005 J. Phys. D: Appl. Phys. 38 1225
- [11] Bazelyan E M, Raizer Y P, Aleksandrov N L 2008 Plasma Sources Sci. Technol. 17 024015
- [12] Bazelyan E M, Raizer Y P, Aleksandrov N L, D'Alessandro F 2009 Atmos. Res. 94 436
- [13] Rizk F A M 2008 US Patent 7 468 879
- [14] Rizk F A M 2011 IEEE Trans. Power Deliv. 26 1156
- [15] Becerra M 2013 J. Phys. D: Appl. Phys. 46 135205
- [16] Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 3708
- [17] Becerra M, Cooray V 2006 J. Phys. D: Appl. Phys. 39 4695
- [18] Gopalakrishnan V, Pawar S D, Murugavel P, Johare K P 2011 J. Atmos. Sol.-Terr. Phys. 73 1876
- [19] Soula S, Chauzy S 1991 J. Geophys. Res. 96 22327
- [20] Peek F W 1929 Dielectric Phenomena in High-Voltage Engineering (3rd Ed.) (New York: McGraw-Hill) pp48–108
- [21] Wesselingh J A, Krishna R 2000 Mass Transfer in Multicomponent Mixtures (1st Ed.) (The Netherlands: Delft University Press) pp95–103
- [22] Guo S H 2008 *Electrodynamics* (Beijing: Higher Education Press) (3rd Ed.) pp37-63 (in Chinese) [郭硕鸿 2008
 电动力学 (第三版) (北京:高等教育出版社) 第 37-63 页]
- [23] Qie X, Soula S, Chauzy S 1994 Ann. Geopysicae 12 1218
- [24] Cobine J D 1970 Gaseous Conductors: Theory and Engineering Applications (2nd Ed.) (New York: McGraw-Hill) pp259–280
- [25] Liao R J, Wu F F, Liu X H, Yang F, Yang L J, Zhou Z, Zhai L 2012 Acta Phys. Sin. 61 245201 (in Chinese) [廖 瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾 2012 物理 学报 61 245201]
- [26] Liu X X, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Jpn. J. Appl. Phys. 51 026001
- [27] Wu F F 2014 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese) [伍飞飞 2014 博士 学位论文 (重庆: 重庆大学)]
- [28] He W, Liu X X, Xian R C, Chen S H, Liao R J, Yang F, Xiao H G 2013 *Plasma Sci. Technol.* 15 335
- [29] Aleksandrov N L, Bazelyan E M, Raizer Y P 2005 Plasma Phys. Rep. 31 75

Numerical simulation of positive glow corona discharge initiated from long ground wire under thundercloud field^{*}

Sima Wen-Xia Fan Shuo-Chao[†] Yang Qing Wang Qi

(State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044, China)

(Received 9 October 2014; revised manuscript received 15 December 2014)

Abstract

With the slow effect of electric field of thundercloud, a kind of positive glow corona without streamers is initiated from the surface of object near the ground, and a large number of positive space charges are injected into the surrounding space, consequently, lighting targets selected by the lighting leader can be changed. In this paper, a numerical simulation of positive glow corona discharge initiated from the long ground wire with the effect of the electric field of thundercloud is presented. In consideration of the attachment and collision effects between positive ions and other ions, an accurate two-dimensional positive glow corona model is established. Meanwhile, a high-voltage corona discharge experiment is done in the laboratory to measure the corona current in different background electric fields, and the results are compared with the simulation results in order to verify the correctness of the model established in this paper. According to the established model, the initiation and development progress of glow corona with the effect of thundercloud are simulated and the corona current, laws of positive ion density distribution and migration are revealed. Results show that positive ions generated from the glow corona discharge present a circular symmetric distribution in the plane perpendicular to the ground wire at their early stage of migration, but the distribution is shaped as an elongated oval later when the ions move farther from the ground wire for the effect of electric field of thundercloud, that is to say, the overwhelming majority of the ions will be finally distributed in the upper area of the ground wire and gradually migrate towards the thundercloud. Due to the accumulation effects of positive ions in the upper migration area near the ground wire, the positive space charge background is formed, which has a damping effect on the electron beam. Thus the formation of electron avalanche is suppressed and the probability for electron avalanche to be converted into streamer is reduced. Meanwhile, the positive space charge background improves the collision surface of the gas and increases the compound probability between positive ions and electrons. Therefore, the conversion processes from electron avalanche and streamer to upward leader are impeded and the initiation of upward leader is suppressed.

Keywords: positive glow corona, two-dimensional model, corona characteristicPACS: 52.80.Hc, 92.60.Pw, 52.80.MgDOI: 10.7498/aps.64.105205

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51177182) and the Innovative Research Groups of China (Grant No. 51321063).

 $[\]dagger\,$ Corresponding author. E-mail: <code>fanshuochao@cqu.edu.cn.</code>