物理学报 Acta Physica Sinica

一维扩展离子 Hubbard 模型的相图研究 赵红霞 赵晖 陈宇光 鄢永红

Phase diagram of the one-dimensional extended ionic Hubbard model

Zhao Hong-Xia Zhao Hui Chen Yu-Guang Yan Yong-Hong

引用信息 Citation: Acta Physica Sinica, 64, 107101 (2015) DOI: 10.7498/aps.64.107101 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.107101 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I10

您可能感兴趣的其他文章 Articles you may be interested in

硅基二氧化钒相变薄膜电学特性研究

Researches on the electrical properties of vanadium oxide thin films on Si substrates 物理学报.2015, 64(1): 017102 http://dx.doi.org/10.7498/aps.64.017102

在半导体-金属相变温度附近氧化钒□∧ す度□ 灾实囊斐1 涠

Abnormal variation of optical properties of vanadium oxide thin film at semiconductor-metal transition 物理学报.2014, 63(10): 107104 http://dx.doi.org/10.7498/aps.63.107104

多轨道 Hubbard 模型的隶玻色子数值算法研究

Numerical algorithm for slave-boson mean field approach to the multi-band Hubbard model 物理学报.2012, 61(1): 017106 http://dx.doi.org/10.7498/aps.61.017106

两种扩展 Harper 模型的波包动力学 Wave packet dynamics of two extended Harper models 物理学报.2011, 60(9): 097104 http://dx.doi.org/10.7498/aps.60.097104

一维扩展离子Hubbard模型的相图研究^{*}

赵红霞1) 赵晖1)† 陈宇光1) 鄢永红2)

(同济大学物理科学与工程学院,上海 200092)
 2)(绍兴文理学院,绍兴 312000)

(2014年12月17日收到;2015年2月14日收到修改稿)

应用密度矩阵重整化群方法,研究了存在交错离子势 Δ 时一维半满扩展 Hubbard 模型的相图.通过计算 关联函数、结构因子、位置算符等方法,描绘了从 Mott 绝缘体-键有序绝缘体-Band 绝缘体的特性并给出了精 确的相边界.研究发现:中间的键有序绝缘体相在相图中占据了很小的一部分区域,当存在离子势 Δ 的情况 下,这个区域将会有所增大;而当相互作用足够强时,这个中间相消失.给出了离子 Hubbard 模型 (最近邻电 子-电子相互作用V = 0)的相图.

关键词:密度矩阵重整化群, Hubbard 模型, 量子相变, 相图
 PACS: 71.30.+h, 71.10.Fd, 71.27.+a
 DOI: 10.7498/aps.64.107101

1引言

不同类型的绝缘态有着不同的起源.比如一类 典型的绝缘体称之为Mott绝缘体,其绝缘性来自 于电子之间的库仑排斥.强库仑相互作用可以使电 子局域化,从而产生一个具有能隙的电子态.这个 能隙是与电子间库仑排斥势U有关的函数,并且在 强耦合极限下趋向于U.而另一种典型绝缘体—— Band绝缘体,其是无相互作用的电子在一个周期 势场中运动的可能解,可以用固体理论中的能带 论来解释.这两种绝缘态有着完全不同的性质,例 如Band绝缘体是顺磁性的而Mott绝缘体一般是 反铁磁性的.各种绝缘态之间的本质区别、不同性 质绝缘态之间的转变一直是凝聚态物理研究的热 点^[1-6].随着近年来超冷原子技术的发展^[7],使得 实验上研究不同态之间的演化成为可能.

上述两种绝缘态可以在同一个理论模型——一维半满的离子Hubbard模型(ionic Hubbard model, IHM),通过调节库仑相互作用的大小来实现.这个模型由通常的Hubbard模型加上

同一格点上的电子库仑排斥势U和一个强度为△ 的交错单粒子离子势组成.对IHM 已有长期的研 究, 它被用来研究有机电荷转移盐中从中性到离子 性的转变过程^[8,9],也被用来了解钙钛矿材料中的 铁电转化过程^[10,11]等. 离子势 Δ 和库仑势U之间 的竞争将决定系统是Band绝缘体(BI)还是Mott 绝缘体(MI). 人们已经在一维^[1,12-17]和无限维^[3] 系统中, 对离子 Hubbard 模型中 BI 到 MI 的量子相 变过程进行了大量详细的解析和数值研究. 在原 子极限 $(t \to 0)$ 下, 当 $U < \Delta$ 时 (具有离子势 $-\frac{1}{2}\Delta$ 的格点是双占据的,其他格点是空占)基态是一个 Band 绝缘体, 而当 $U > \Delta$ 时 (所有格点都是单占 据)基态是一个Mott绝缘体.而当跃迁能 $t \neq 0$ 时, Fabrizio等^[12,13]指出存在着一个自发的二聚化绝 缘相——键有序绝缘相(BOI),这个相把BI和MI 分开. 随着U的增加, 首先在 $U = U_c$ 时电荷能隙消 失,发生一个从BI到BOI的相变.进一步增大U, 当 $U = U_s > U_c$ 时,伴随着自旋能隙的消失出现一 个从BOI到MI的Kosterlitz-Thouless (KT)相变.

另一个普遍研究的模型是扩展Hubbard模型

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金(批准号: 11474218)资助的课题.

[†]通信作者. E-mail: zhaoh@fudan.edu.cn

^{© 2015} 中国物理学会 Chinese Physical Society

(extended Hubbard model, EHM). 作为研究紧束 缚系统中关联效应的典型模型, EHM 被广泛用 来探究不同有序相之间的竞争:如电荷密度波 (charge density wave, CDW)、自旋密度波(spin density wave, SDW)、反铁磁性、超导电性(当具 有吸引相互作用时的情况)等. 通过弱耦合重整化 群 (renormalization group, RG) 方法, Emery^[18] 和 Solyom^[19]首先计算了一维EHM的基态相图.当 同一格点上的库仑排斥U相较最近邻格点间排斥 作用V足够大时,即当U > 2V时,基态是一个伴 随自旋关联函数指数衰减的自旋密度波Mott绝缘 相. 而当U < 2V时, 基态是一个具有电荷密度波 的Band绝缘体. 近来的研究表明上述的相图还需 要做一些修正: 在弱耦合情况下, 存在一个呈现 键序波 (bond ordered wave, BOW) 关联的窄小区 域,这个区域可把SDW和CDW两个区域分隔开 来^[20-24]

本 文 用 密 度 矩 阵 重 整 化 群 (DMRG) 方 法^[25-27],研究存在交错离子势 Δ 的情况下一维 半满扩展 Hubbard 模型基态的相图. 与之前的 DMRG 研究相比,我们主要通过计算电荷和自旋 的位置算符^[28,29]来确定不同绝缘态的相边界,从 而得到系统完整的相图.本文采用周期性边界条 件 (PBC)下的有限尺寸 DMRG 算法,在计算中最 多每个块保留 m = 1024 个状态,依据参数的不同, DMRG 中的截断误差控制在 10^{-5} — 10^{-8} 的范围. 另外,计算中选取系统最大的尺寸为L = 128 个格 点,并通过有限尺寸分析外推到热力学极限.

2 模型与方法

这里考虑一个扩展版本的Hubbard模型,其 中包含一个额外的最近邻库仑相互作用V和一个 交错离子势能 Δ ,即所谓扩展离子Hubbard模型 (extended ionic Hubbard model, EIHM)的Hamiltonian为

$$H = -t \sum_{i,\sigma} \left(c_{i,\sigma}^{\dagger} c_{i+1,\sigma} + \text{h.c.} \right) + \Delta \sum_{i} (-1)^{i} n_{i}$$
$$+ U \sum_{i} n_{i\uparrow} n_{i\downarrow} + V \sum_{i} n_{i} n_{i+1}, \qquad (1)$$

其中 $c_{i,\sigma}^{\dagger}(c_{i,\sigma})$ 是格点i上自旋为 σ 的电子产生 (湮灭)算符; $n_{i,\sigma} = c_{i,\sigma}^{\dagger}c_{i,\sigma}$ 是电子占据数算符; $n_i = n_{i,\uparrow} + n_{i,\downarrow}; \Delta$ 是单粒子离子势, t是最近邻格 点间电子的跃迁常量, 在计算中我们把它设为能量 单位; U表示同一格点上的库仑排斥, V是最近邻 格点间的电子相互作用.

首先,我们利用电荷指数 κ_{ρ} 和自旋指数 κ_{σ} 来 得到 MI-BOI 和 BOI-BI 的相边界. 根据 Luttinger 液体 (Luttinger liquid, LL) 理论^[30],如果存在一个 电荷或者自旋能隙,则相应的 κ_{ρ} 或 κ_{σ} 变为零. 在 周期链上, κ_{ρ} 和 κ_{σ} 可以由静态结构因子 $S_{\rho,\sigma}(q)$ 计 算得到:

$$S_{\rho,\sigma} = \frac{1}{L} \sum_{j,k} e^{iq(j-k)} \langle (n_{j\uparrow} \pm n_{j\downarrow}) (n_{k\uparrow} \pm n_{k\downarrow}) \rangle.$$
(2)

$$\kappa_{\rho,\sigma} = \pi S_{\rho,\sigma}(q_1)/q_1, \quad q_1 = 2\pi/L, \quad L \to \infty.$$
 (3)

这个函数的长程行为由LL自旋指数 $\kappa_o(\kappa_\sigma)$ 决 定. 在热力学极限下, 如果系统存在自旋能隙则 $\kappa_{\sigma} = 0$, 否则 $\kappa_{\sigma} = 1$. 另一方面, κ_{o} 只有在连续 Gaussian 相变的临界点处为有限值,其他地方则 处处为零.因此,我们可以利用 κ_{0} 和 κ_{σ} 的这些特 性来判定 MI-BOI 和 BOI-BI 的相变点. 由于在固 定U而逐渐增加V的情况下存在MI-BOI-BI三个 连续的相,可以预期当系统处于MI时自旋指数 $\kappa_{\sigma} = 1$, 而在其他相时 $\kappa_{\sigma} = 0$ (MI 相中自旋能隙为 零而 BOI, BI 中自旋能隙非零);除了恰好在连续的 BOI-BI的量子相变点外,电荷指数在其他地方都 κ_{ρ} 也等于零). 图1显示了当 $U = 4, \Delta = 0.5$ 时, 电 荷和自旋指数随V的变化情况,内置图显示了随着 链长倒数1/L变化的两个相变点的线性外推. 就像 上面分析的一样,我们发现对于比较小的V,随着 系统尺寸的增加 κ_{σ} 趋于1.在一个临界值 V_{s} 处, κ_{σ} 变得小于1,并随着V的增加很快下降到0,这表明 有一个自旋能隙被打开;而电荷指数 κ_{ρ} 在BOI-BI 的相变点 $V = V_c$ 处由于基态性质的改变(这时电 荷能隙等于0)形成一个峰值,而在相变点的两侧都 趋向于等于0.

在密度矩阵重整化群算法中,为了计算关联函数和结构因子,相应的算符都需要被重整化,也就是在每一个DMRG步骤进行矩阵乘运算(其复杂度为O(m³)).这个过程需要耗费大量的CPU计算时间,所以下面不再通过计算电荷和自旋结构因子来确定模型的相图.取而代之的是通过计算电荷

和自旋的位置算符^[28,29]来得到系统精确的相图. 位置算符作为表征关联系统的局域度由Resta和 Sorella率先提出,通过计算周期性边界条件下L个 格点的精确基态从而得到预期值:

$$\begin{aligned} z_L^{\rho} &= \langle g | \hat{U}_L^{\rho} | g \rangle, \\ \hat{U}^{\rho} &= \exp\left[i \frac{2\pi}{L} \sum_j j(n_{j\uparrow} + n_{j\downarrow}) \right], \\ z_L^{\sigma} &= \langle g | \hat{U}_L^{\sigma} | g \rangle, \\ \hat{U}^{\sigma} &= \exp i \left[\frac{2\pi}{L} \sum_j j(n_{j\uparrow} - n_{j\downarrow}) \right]. \end{aligned}$$
(4)

在热力学极限下, $z_{L\to\infty}$ 的正负对应于重整化群分 析中两个不同的确定点, 而 $z_{L\to\infty} = 0$ 对应 Gaussian 和 Wess-Zumino-Novikov-Witten 类型的相变 点^[29].这个方法已广泛应用于研究一维晶格模型 中金属-绝缘体、金属-超导体等^[31-33]量子相变.

图 1 (网刊彩色) $\Delta = 0.5$, U = 4 时 κ_{ρ} 和 κ_{σ} 随 V 的变化 (內置图显示了 V_{c} 和 V_{s} 随着链长倒数 1/L 变化的线性 外推)

Fig. 1. (color online) Long-wavelength charge (κ_{ρ}) and spin (κ_{σ}) structure factors vs V for $\Delta = 0.5$, U = 4. The inset shows a linear extrapolation of the critical values $V_{\rm c}$ and $V_{\rm s}$ with the inverse of chain length 1/L.

上述算子的预期值在基于 Lancozos 算法的严格对角化 (exact diagonalization, ED) 方法中可以 很容易地计算得到. 虽然 ED 方法可以得到非常精确的基态信息, 但是由于计算机内存的限制, 一般 只能计算非常有限大小的团簇尺寸, 从而出现非 常明显的尺寸效应. 现在, 需要简单介绍一下在 DMRG 框架下处理算符 $\hat{U}_L^{\rho(\sigma)}$ 的方法. 我们可以发 现时间演化算符 $\hat{U} = \exp(-i\Delta t \hat{H}/\hbar)$ 也具有指数 的形式. 因此, 处理位置算符的过程就类似于应用 含时密度矩阵重整群 (t-DMRG) 方法^[34,35] 处理时 间演化算符的过程. (4) 式中的位置算符可以写成

$$\hat{U}_{L}^{\rho} = \prod_{j} \exp\left(i\frac{2\pi}{L}\hat{U}_{j}^{\rho}\right),$$

$$\hat{U}_{j}^{\rho} = j(n_{j\uparrow} + n_{j\downarrow}),$$

$$\hat{U}_{L}^{\sigma} = \prod_{j} \exp\left(i\frac{2\pi}{L}\hat{U}_{j}^{\sigma}\right),$$

$$\hat{U}_{j}^{\sigma} = j(n_{j\uparrow} - n_{j\downarrow}).$$
(5)

算符 $\hat{U}_{L}^{\rho(\sigma)}$ 经上式分解之后, $\hat{U}_{j}^{\rho(\sigma)}$ 是一个只作用在 格点*j*上的算符.因此,格点*j*上的位置算符 $\hat{U}_{j}^{\rho(\sigma)}$ 可以直接精确地作用到DMRG波函数的第*j*步上. 然后通过密度矩阵选取最优化的基将波函数变换 到DMRG的第*j*+1步上,从而可以将(5)式中的 $\hat{U}_{j+1}^{\rho(\sigma)}$ 作用到波函数上.重复上面的过程直到*j*遍 历整个链*L*,则可将完整的算符 $\hat{U}_{L}^{\rho(\sigma)}$ 作用到基态 波函数上.和静态的DMRG算法一样,在做波函数 变换时由于基的不完备性在每一步都会引入一个 截断误差.通过增加每个块保留的状态数,这个误 差可以得到很好的控制.

图 2 (网刊彩色) $\Delta = 0.5$, U = 4, 链长分别为 L = 64, 80, 96 和 128 时 z_L^{ρ} 和 z_L^{σ} 随 V 的变化 在热力学极限 $L \to \infty \overline{\Gamma}$, $(z_L^{\rho}, z_L^{\sigma})$ 在区域 MI, BOI, 和 BI 中分别收 敛到 (-1,0), (-1,1) 和 (1,1); 内置图 (a) 显示了相变点 $V_{c(s)}$ (对应于 $z_L^{\rho(\sigma)} = 0$ 的点)的有限尺寸分析, 热力学极 限下的外推值如图中箭头所示; 内置图 (b) 显示了 U = 10时 z_L^{ρ} 和 z_L^{σ} 随 V 的变化

Fig. 2. (color online) Behavior of z_L^{ρ} , and z_L^{σ} at $\Delta = 0.5$, U = 4 for L = 64, 80, 96, and 128 systems. In the $L \to \infty$ limit, $(z_L^{\rho}, z_L^{\sigma})$ converge as (-1, 0), (-1, 1), and (1, 1) for the MI, BOI, and BI regions. The inset (a) shows finite-size scaling of the critical coupling $V_{\rm c(s)}$ (indicated by arrow) where $z_L^{\rho(\sigma)} = 0$; (b) shows the same quantities but for U = 10.

在 $L \to \infty$ 的极限下, $(z_L^{\rho}, z_L^{\sigma})$ 对于MI, BOI, BI三个区域的预期值分别为(-1, 0), (-1, 1)和

 $(1, 1)^{[29]}$. $z_L^{\rho(\sigma)}$ 的值可以直接通过上面介绍的 t-DMRG方法来计算得到. 图 2 显示了 $\Delta = 0.5$, U = 4时的数值计算结果. 我们发现对于电荷和 自旋部分, zf 和 zf 都是连续变化, 但是分别在 MI-BOI相变点和BOI-BI相变点符号发生改变.对于 一个比较小的V, z? 随着系统尺寸的增大而趋于 等于-1,而zf_则趋于等于0,与系统处在MI相一 致. 随着V的增加, 在一个临界耦合值Vs处, z? 改 变它的符号并且很快地趋向于1,而zf 基本保持不 变, 这表明一个存在自旋能隙的BOI相出现. 继续 增加V的大小, 当V = V_c时, z_L^{ρ} 改变符号并向1 靠近. 这表明金属态(电荷能隙为零)只出现在这 个临界点,在具有更强V的相互作用的区域波函数 仍然是局域化的. 很显然, 电子的最近邻排斥相互 作用V在较大时破坏了BOI相而有利于BI相的形 成.图2的内置图(a)显示了由条件 $z_L^{\rho,\sigma} = 0$ 得到 的MI-BOI和BOI-BI的相变点随系统尺寸变化的 情况. 通过有限尺寸分析, 我们得到两个相变点分 别为 $V_{\rm s} \simeq 0.86 \, \pi V_{\rm c} \simeq 1.15$. 图 2 的内置图 (b) 显示 了 z_I^{ρ}, z_L^{σ} 在U = 10时随V变化的情况. 我们可以 发现,中间的BOI相与U 比较小的情况下相比要 窄很多. 另外,在MI-BOI相边界 $V \simeq 4.494$ 附近, 所有变量的行为和U = 4时类似,都是连续变化; 而在BOI-BI相边界V ~ 4.535处的物理性质是不 连续的, 这表明这时的相变是一阶相变. 由于链 长和方法的限制,我们并没有计算 BOI-BI 从连续 相变到一阶相变转化过程中的三重临界点(对应于 Luttiger 电荷指数 κ_o 在达到 1/4 后不连续地下降 到0的临界点^[23,24]).

改变各种相互作用能的大小,我们在图3(a) 中显示了 $\Delta = 0.5 \pi \Delta = 1.0$ 时,用上面所描述 的方法计算得到的EIHM的相图.其中的黄色 区域表示BI和MI之间的BOI中间相,BOI区域 上沿和下沿的包络曲线分别由BOI-BI和MI-BOI 的相边界构成.可以发现BOI的区域随着离子 势能的增加而有所增大.此外,离子势 Δ 有利 于CDW态(也就是Band绝缘体)的形成,这使得 一个较小的V就能驱使系统从MI相转变到BI 相.随着U和V的增加,MI-BOI和BOI-BI的相 变线逐渐靠拢而形成MI-BI的相变线.相应地, BOI相区域先是有所扩大,然后慢慢缩小到一个 双临界点.超过这个双临界点以后BOI相消失, 而MI-BI的相变线逐渐地靠近强耦合极限下的 $U = 2\Delta + 2V.$ 计算给出了 $\Delta = 0.5 \pi \Delta = 1.0$ 时的双临界点分别为 $(U_t, V_t) \simeq (10.73, 4.90)$ 和 $(U_t, V_t) \simeq (12.03, 5.01).$ 通过改变 Δ 的值并做线性外推(见图**3**(a)的内置图),我们得到 $\Delta = 0$ 时的双临界点为 $(U_t, V_t) \simeq (9.44, 4.75),$ 这与Ejima的结论^[36] $(U_t, V_t) \simeq (9.25, 4.76)$ 符合得非常好.

图 3 (网刊彩色) (a) 一维半满 EIHM 的相图,其中 黄色区域表示 MI 和 BI 之间的 BOI 相,虚线表示强 耦合极限下 $U = 2\Delta + 2V$ 的渐近线, $\Delta = 0.5$ 和 $\Delta = 1.0$ 时的双临界点分别为 (U_t, V_t) \simeq (10.73, 4.90) 和 (U_t, V_t) \simeq (12.03, 5.01),内置图显示了不同交错离子 势 Δ 下双临界点的线性外推; (b) 一维半满 IHM(V = 0) 的相图

Fig. 3. (color online) (a) phase diagram of the 1 D half filled EIHM, the BOI phase existing between the MI and BI phases is colored by yellow, dashed lines indicates $U = 2\Delta + 2V$, the bicritical point is at $(U_t, V_t) \simeq$ (10.74, 4.90) for $\Delta = 0.5$ and $(U_t, V_t) \simeq (12.03, 5.01)$ for $\Delta = 1.0$, respectively; the inset shows a linear extrapolation of the critical values (U_t, V_t) with the staggered ionic potential Δ ; (b) phase diagram of the 1 D half filled IHM (V = 0).

从以上的相图中我们可以发现, 在较大的U和 V时, 与EHM的相图类似, 而在较小V值区域却 有着本质的不同. 当V = 0时, (1) 式中的Hamiltonian退化为已经大量研究的IHM, 在这个模型中同 样有一个中间相BOI存在于BI和MI之间. 对于任 一个确定的 Δ 值, 随着U的增加从BI相到MI相的 转变都是经历两步: 首先, 电荷能隙 Δ_c 和自旋能 隙 Δ_s 都是逐渐减小, 在BI-BOI的相边界处(仅在 这一点) $\Delta_c = 0$;继续增大U, Δ_c 逐渐变大, 而当 $U = U_s > U_c$ 时, 自旋能隙消失并保持 $\Delta_s = 0$ 不 变. 在图 **3** (b) 中, 我们给出了定量上与 MCEL ^[37] 的结论一致但是更为精确的相图. 至此, 有了 BOI 相消失的双临界点 (U_t, V_t) 、强耦合下 MI-BI 的 相变线 $(U = 2\Delta + 2V), V = 0$ 极限下的相变点 (IHM 的相图), 我们立即可以给出整个 EIHM 的大 致相图.

3 总 结

本文应用 DMRG 方法研究了一维半满扩展离 子 Hubbard 模型的相图.这个系统随着相互作用 的增强经历了一个从 Mott 绝缘体到一个自发的二 聚化绝缘体、再从自发二聚化绝缘体到 Band 绝缘 体的相变.在相互作用足够强的时候,中间相 BOI 消失.我们通过计算电荷和自旋位置算符的方法得 到了精确相边界和双临界点.另外,也给出了一维 半满离子 Hubbard 模型的相图.

参考文献

- Manmana S R, Meden V, Noack R M, Schönhammer K 2004 Phys. Rev. B 70 155115
- [2] Batista C D, Aligia A A 2004 Phys. Rev. Lett. ${\bf 92}$ 246405
- [3] Garg A, Krishnamurthy H R, Randeria M 2006 Phys. Rev. Lett. 97 046403
- [4] Fuhrmann A, Heilmann D, Monien H 2006 Phys. Rev. B 73 245118
- [5] Paris N, Bouadim K, Hebert F, Batrouni G G, Scalettar R T 2007 Phys. Rev. Lett. 98 046403
- [6] Kancharla S S, Dagotto E 2007 Phys. Rev. Lett. 98 016402
- [7] Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39
- [8] Hubbard J, Torrance J B 1981 Phys. Rev. Lett. 47 1750
- [9] Nagaosa N, Takimoto J 1986 J. Phys. Soc. Jpn. 55 2735

- [10] Egami T, Ishihara S, Tachiki M 1993 Science **261** 1307
- [11] Ishihara S, Egami T, Tachiki M 1994 Phys. Rev. B 49 8944
- [12] Fabrizio M, Gogolin A O, Nersesyan A A 1999 Phys. Rev. Lett. 83 2014
- [13] Fabrizio M, Gogolin A O, Nersesyan A A 2000 Nucl. Phys. B 580 647
- [14] Zhang Y Z, Wu C Q, Lin H Q 2003 Phys. Rev. B 67 205109
- [15] Kampf A P, Sekania M, Japaridze G I, Brune P 2003 J. Phys.: Condens. Matter 15 5895
- [16] Otsuka H, Nakamura M 2005 Phys. Rev. B 71 155105
- [17] Torio M E, Aligia A A, Japaridze G I, Normand B 2006 *Phys. Rev. B* 73 115109
- [18] Emery V J 1997 in: Highly Conducting One Dimensional Solids (New York: Plenum) p247
- [19] Sölyom J 1979 Adv. Phys. 28 201
- [20] Nakamura M 2000 Phys. Rev. B **61** 16377
- [21] Sengupta P, Sandvik A W, Campbell D K 2002 Phys. Rev. B 65 155113
- [22] Zhang Y Z 2004 Phys. Rev. Lett. 92 246404
- [23] Sandvik A W, Balents L, Campbell D K 2004 Phys. Rev. Lett. 92 236401
- [24] Glocke S, Klumper A, Sirker J 2007 Phys. Rev. B 76 155121
- [25] White S R 1992 Phys. Rev. Lett. 69 2863
- [26] White S R 1993 Phys. Rev. B 48 10345
- [27] Schollwöck U 2005 Rev. Mod. Phys. 77 259
- [28] Resta R, Sorella S 1999 Phys. Rev. Lett. 82 370
- [29] Nakamura M, Voit J 2002 Phys. Rev. B 65 153110
- [30] Voit J 1995 Rep. Prog. Phys. 58 977
- [31] Aligia A A, Ortiz G 1999 Phys. Rev. Lett. 82 2560
- [32] Aligia A A, Hallberg K, Batista C D, Ortiz G 2000 Phys. Rev. B 61 7883
- [33] Ortiz G, Aligia A A 2000 Phys. Status Solidi B 220 737
- [34] Vidal G 2004 Phys. Rev. Lett. 93 040502
- [35] White S R, Feiguin A E 2004 Phys. Rev. Lett. 93 076401
- [36] Ejima S, Nishimoto S 2007 Phys. Rev. Lett. 99 216403
- [37] Torio M E, Aligia A A, Ceccatto H A 2001 Phys. Rev. B 64 121105R

Phase diagram of the one-dimensional extended ionic Hubbard model^{*}

Zhao Hong-Xia¹⁾ Zhao Hui^{1)†} Chen Yu-Guang¹⁾ Yan Yong-Hong²⁾

 (Key Laboratory for Advanced Microstructure Materials of the Ministry of Education and Department of Physics, Tongji University, Shanghai 200092, China)

2) (Department of Physics, Shaoxing University, Shaoxing 312000, China)

(Received 17 December 2014; revised manuscript received 14 February 2015)

Abstract

We use a density-matrix renormalization group method to study quantitatively the phase diagram of the half-filled one-dimensional (1D) extended Hubbard model in the presence of a staggered ionic potential Δ . An extensive finite-size scaling analysis is carried out on the relevant structure factors and localization operator to characterize the Mott-insulator (MI)-bond-ordered insulator (BOI)-band-insulator (BI) transitions. The intermediate BOI phase occupies a small region of the phase diagram, and this region is enlarged in the presence of Δ . In addition, the phase diagram of ionic Hubbard (the nearest-neighbor electron-electron interaction V = 0) is also given.

Keywords: density-matrix renormalization group, Hubbard model, quantum phase transition, phase diagram

PACS: 71.30.+h, 71.10.Fd, 71.27.+a

DOI: 10.7498/aps.64.107101

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11474218).

 $[\]dagger$ Corresponding author. E-mail:
 <code>zhaoh@fudan.edu.cn</code>