物理学报 Acta Physica Sinica

不同织构 CVD 金刚石膜的 Hall 效应特性 苏青峰 刘长柱 王林军 夏义本

Hall effect of different textured CVD diamond films

Su Qing-Feng Liu Chang-Zhu Wang Lin-Jun Xia Yi-Ben

引用信息 Citation: Acta Physica Sinica, 64, 117301 (2015) DOI: 10.7498/aps.64.117301 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.117301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I11

您可能感兴趣的其他文章 Articles you may be interested in

添加Fe(C5H5)2合成氢掺杂金刚石大单晶及其表征

Crystal growth and characterization of hydrogen-doped single diamond with Fe(C₅H₅)₂ additive 物理学报.2015, 64(12): 128101 http://dx.doi.org/10.7498/aps.64.128101

高质量高取向(100)面金刚石膜的可控性生长

Preparation of the high-quality highly (100) oriented diamond films with controllable growth 物理学报.2015, 64(2): 028101 http://dx.doi.org/10.7498/aps.64.028101

Fe₃O₄薄膜的电输运及光诱导特性研究

Electrical transport and photo-induced properties in Fe₃O₄ film 物理学报.2011, 60(2): 027306 http://dx.doi.org/10.7498/aps.60.027306

H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响

Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering 物理学报.2011, 60(6): 067304 http://dx.doi.org/10.7498/aps.60.067304

氧化锌锡薄膜晶体管的研究 Study of zinc tin oxide thin-film transistor 物理学报.2011, 60(3): 037305 http://dx.doi.org/10.7498/aps.60.037305

不同织构CVD金刚石膜的Hall效应特性*

苏青峰1)† 刘长柱1) 王林军2) 夏义本2)

(上海联孚新能源科技集团有限公司,新能源研究院,上海 201201)
 2)(上海大学材料科学与工程学院,上海 200444)

(2014年11月12日收到;2015年1月7日收到修改稿)

采用热丝化学气相沉积法在 p 型硅衬底上制备了不同织构的多晶金刚石膜,使用 XRD 表征了 CVD 金刚石膜的结构特征,研究了退火后不同织构金刚石膜的电流特性,使用 Hall 效应检测仪研究了金刚石膜的霍尔 效应特性及随温度变化的规律,结果表明所制备的金刚石膜是 p 型材料,载流子浓度随着温度的降低而增加,迁移率随着温度的降低而减小.室温下 [100] 织构金刚石薄膜的载流子浓度和迁移率分别为 4.3 × 10⁴ cm⁻³ 和 76.5 cm²/V·s.

关键词: 金刚石膜, 载流子浓度, 迁移率, 霍尔效应 PACS: 73.50.-h, 73.61.Ga, 81.05.ug, 81.15.GH

1引言

众所周知, 金刚石是一种具有优异物理、化学、 电学和电化学性能的新型宽禁带半导体材料[1-9], 相对于[111]织构或任意织构金刚石膜, [100]织构 金刚石膜具有最低的晶界和缺陷密度和最好的晶 体质量^[10],因此,[100]织构金刚石膜具有制备光 电子器件所需的最平整的表面[11,12]. 2005年由于 Kato等实现了[100]织构金刚石膜的n型掺杂,使 金刚石膜在微电子学和光电子学领域中的应用得 到进一步拓展^[13].由于半导体材料的霍尔效应 特性参数是科研工作者非常关心的重要半导体参 数^[14-16],因此,对非掺杂CVD金刚石膜载流子浓 度和载流子迁移率进行了大量的研究[17-20], 2004 年Williams等^[17]研究表明氮掺杂纳米晶金刚石 膜呈现n型特性. 2005年Ri等^[18]研究表明[111] 织构氢化金刚石膜的迁移率为5-130 cm²/V·s. 2012年 Isberg 等^[19] 研究表明在外加电场 300—600 V/cm作用下当温度低于140 K时[100] 织构单晶

DOI: 10.7498/aps.64.117301

金刚石膜呈现出负微分迁移率特性. 2013年 Majdi 等^[20]研究了低温下10—80 K 单晶金刚石膜的空 穴输运特性. 因此,为了实现金刚石膜在电子学和 微电子学领域的实际应用,对[100]织构和[111]织 构金刚石膜的霍耳效应特性进行了研究.

2 实验过程

[100] 织构和 [111] 织构金刚石膜采用热丝化学 气相沉积法制备而成,以 20 mm×20 mm p型[100] 单晶硅为衬底,高纯氢气和乙醇为原料,典型工艺 参数参见表1.样品厚度约为200 μm. 金刚石膜沉 积后,在500°C氩气保护气氛中退火45 min,,以改 善薄膜质量.

采用日本理学株式会社D/Max-2000型微区 转靶X射线衍射仪(XRD)、美国Keithley 4200 SCS 半导体表征系统和英国Accent HL5500 PC Hall效 应测试系统对金刚石膜的微结构、电学性能与霍尔 效应特性进行了表征和分析.

^{*} 国家自然科学基金(批准号: 61176072)和上海市人才发展基金(批准号: 201425)资助的课题.

[†]通信作者. E-mail: qfsu@163.com

^{© 2015} 中国物理学会 Chinese Physical Society

表 1 CVD 金刚石膜典型生长工艺参数 Table 1. Typical deposition parameters of CVD diamond films.

样品	乙醇流量/sccm	$H_2 \hat{m} \equiv /sccm$	衬底温度/°C	丝极温度/°C	压力/kPa	偏压/V
L1	15	800	750	2200	4.0	-150
L2	20	800	850	2400	4.2	0

3 结果与讨论

3.1 结构表征

图 1 是 多 晶 金 刚 石 膜 样 品 L1 的 XRD 图 谱, 图 1 中在 $2\theta \approx 120^{\circ}$ 处呈现很强的 (400) 衍 射 峰, (400) 衍 射 特 征 峰 半 高 宽 (FWHM) 非 常 窄;在 $2\theta \approx 44^{\circ}$ 处 (111) 衍 射 特 征 峰 不 明 显.根据美国 材料 与 试验协会的 金 相检验标准,多晶 金 刚 石 (400) 衍 射 特 征 峰 与 (111) 衍 射 特 征 峰 强 度 之 比 为 100 : 8^[21], [100] 织构 金 刚 石 膜 的 织构 度 可 由 参数 *R* 计 算 得 到

$$R = \frac{I_{(400)}/I_{(111)} - 8\%}{I_{(400)}/I_{(111)}},$$
(1)

式中 *I*(*hkl*)为衍射峰的积分强度,计算得到[100]织构所占相对权重大于99%,说明金刚石膜的[100]织构度和薄膜质量都很高.

图 1 (网刊彩色) (100) 取向金刚石膜 XRD 图谱 Fig. 1. (color online) XRD pattern of (100)-oriented diamond film.

图 2 是金刚石膜样品 L2 的 XRD 图谱,图 2 中 在 $2\theta \approx 44^{\circ}$ 处的(111)衍射特征峰很强,在 $2\theta \approx$ 120° 处(400)衍射特征峰却较弱,说明金刚石膜样 品 L2 是高质量的[111]织构膜.

3.2 电学特性

图 3 是金刚石膜样品 L1 和 L2 退火后的 *I-V* 曲 线. 经过退火,金刚石膜样品的质量和欧姆接

触特性都有提高, 暗电流也明显减小, 在100 V 的偏压下, L1和L2的暗电流分别是19.96 pA和 62.83 pA, 由于金刚石膜样品L2的暗电流相对较 高, 为了在同一图中进行对比, 图3中样品L2 的 值是电流值除以3之后的数值. 根据电阻率计算 公式 $\rho = RS/L = VS/(IL) = V\pi r^2/(IL)$, 其中 $r \pi L 分别是电极半径 (直径1 mm) 和两电极间距$ 离 (2 mm), 计算可得两个样品的电阻率分别为1.97 × 10¹¹ Ω·cm 和 6.25 × 10¹¹ Ω· cm.

图 2 (网刊彩色) (111) 取向金刚石膜 XRD 图谱 Fig. 2. (color online) XRD pattern of (111)-oriented diamond film.

图 3 (网刊彩色) 金刚石膜退火后的 *I-V* 特性曲线 Fig. 3. (color online) *I-V* characteristics of diamond films after annealing.

3.3 霍尔效应特性

本实验霍尔效应测试采用范德堡法模型,霍尔效应范德堡法测试电阻原理如图4所示,1,2两 点之间连接电流源(I₁₂),测量4,3两点之间的电 压(V₄₃); 然后1,4两点通电流(*I*₁₄), 测量2,3两点 之间的电压(V₂₃),本实验采用HL5500 PC 霍尔效 应测试系统,为了消除热电及其他测量干扰,该系 统使用相同的电流*I*进行电阻率测量,在相同电 流方向上的电压*V_{xy}*进行测量并取平均值,于是电 阻率为

$$\rho = 2.2662 \cdot \frac{(V_{43} + V_{23})}{I} \cdot F \cdot (Q), \qquad (2)$$

式中F和Q分别为修正因数和对称因数.

图4 (网刊彩色)霍尔电阻率测量示意图

Fig. 4. (color online) Schematic of Hall resistivity test.

图 5 (网刊彩色)霍尔系数测量示意图

Fig. 5. (color online) Schematic of Hall coefficient test.

如果已知薄膜样品厚度*d*,则材料的表面电 阻率为

$$\rho_{\rm s} = \rho/d. \tag{3}$$

范德堡法测量霍尔效应特性的原理如图5所 示,在2,4间通电流*I*,同时在1,3间加载磁场 测量霍尔电压 V_a ,磁场反向时测量霍尔电压 V_b ,2,4点之间电流反向测量霍尔电压 V_c ,磁 场反向时测量霍尔电压 V_d ,平均霍尔电压为 $V_H = (|V_a| + |V_b| + |V_c| + |V_d|)/4$,则杂质电离 饱和区的霍尔系数可得

$$R_{\rm Hs} = \frac{V_{\rm H}}{B \cdot I},\tag{4}$$

其中*B*为所施加的磁场强度,样品厚度*d*已知,则体载流子浓度为

$$N = \frac{1}{q \cdot R_{\rm Hs} \cdot d}.$$
 (5)

由于材料的霍尔迁移率不仅依赖于样品的对称度, 还与所测量的表面电阻率和表面霍尔系数有重要 的关系,迁移率 µ_H 由下式得出:

图 6 (网刊彩色) CVD 金刚石膜载流子浓度随温度的变 化曲线

Fig. 6. (color online) Carrier concentration versus reciprocal temperature for CVD diamond films.

图 7 (网刊彩色) CVD 金刚石膜载流子迁移率随温度的 变化曲线

Fig. 7. (color online) Mobility versus reciprocal temperature for CVD diamond films.

图6和图7分别给出了退火后[100]织构和 [111]织构金刚石膜样品载流子浓度和迁移率随 测量温度变化的曲线,温度变化范围为100—500 K.本实验所测试获得的霍尔效应特性参数的数 值是正值,表明两组金刚石膜样品都是p型材料. 从图6中可以看出,金刚石膜样品都是p型材料. 从图6中可以看出,金刚石膜样品L1的载流子浓 度数值低于样品L2的载流子浓度数值,L1的载流 子浓度在3.0×10⁴—1.1×10⁵ cm⁻³之间,L2的值 5.9×10⁴—2.2×10⁵ cm⁻³之间.两个样品的载流 子浓度随着温度的降低而增加,与Williams等^[22] 所报道的载流子浓度随温度的变化趋势基本一致. 根据经典半导体理论,载流子浓度不随温度变化而 变化,只有当有效能量达不到激活能时,半导体材 料的载流子浓度才随温度降低而下降.这两个样品的载流子浓度数值都是随温度的升高而下降的,这是由于杂质带电导的存在或者吸附诱导效应所引起的^[23].

金刚石膜表面的氢化促进了其表面偶极子的 形成,表面偶极子的形成促使这个区域内材料内 能带发生弯曲,这将限制材料表面区域内的载流 子^[24],这种限制也会影响霍尔效应特性的测试,进 而进一步影响所测载流子浓度的数值.低温时这种 限制的影响比较强,载流子浓度会随着温度的降低 而增加.高温度时,大量具有足够能量的载流子进 入到材料内部.霍尔效应特性的测量依赖于磁场作 用下样品表面载流子所产生的电压,可以断定低温 时霍尔效应所测量的载流子浓度会出现最大值,这 样就可以解释在两个金刚石膜样品中所测量到的 趋势,在Ge^[25]和GaN^[26]的霍尔效应特性测量中, 载流子浓度随温度的变化趋势也与本实验相类似.

表 2 室温下 CVD 金刚石膜的霍尔效应参数 Table 2. Hall effect parameters of CVD diamond films at room temperature.

样品	载流子浓度/cm-3	迁移率/cm ² ·V ⁻¹ ·s ⁻¹
L1	4.3×10^{4}	76.5
L2	$8.9{ imes}10^4$	51.5

从图7可以看出,样品L1迁移率的值高于样 品L2的值,L1的迁移率在60.3—90.5 cm²/V·s之 间, L2的迁移率在35.9—72.1 cm²/V·s之间. 这两 个金刚石膜样品的迁移率随着温度的降低而降低, 这与Williams等^[22]报道的载流子迁移率随温度的 变化趋势也是相一致的. 低温时, 由于有较强的散 射,载流子穿越杂质附近区域需要的时间较长,从 而导致迁移率随温度降低而减小.由于杂质态浓 度的增加增强了载流子的散射,使得在任一温度载 流子迁移率随载流子浓度的增加而减小,因此较高 的载流子浓度数值对应于较低的迁移率数值^[27]. 室温时金刚石膜的载流子浓度和迁移率在表2中 给出. 室温下, 金刚石膜样品L1的载流子浓度和 迁移率分别为4.3×10⁴ cm⁻³ 和76.5 cm²/V·s, 样品 L2的载流子浓度和迁移率分别为8.9×104 cm⁻³和 51.5 cm²/V·s. 样品L1的迁移率数值高于L2的数 值, 而载流子浓度低于L2的数值. 表2所给出的样 品L1与L2的迁移率数值,其结果与Jiang和Ito等 所报道的多晶金刚石膜载流子迁移率的结果相类

似^[28,29], 这表明多晶金刚石膜的薄膜织构影响其载流子迁移率.

4 结 论

使用 XRD 对热丝化学气相沉积法所制备的 不同织构高质量多晶金刚石膜的微结构进行了表 征,研究了退火后不同织构金刚石膜的暗电流特 性及 5.5 keV X 射线辐照下 [100] 织构金刚石膜的 电学特性,与 [111] 织构膜相比, [100] 织构金刚石膜的 具有更好的电学特性.采用霍尔效应测试系统在 100—500 K温度范围内对金刚石膜的霍尔效应特 性进行了测量并分析了影响因素,结果表明所制备 的金刚石膜是高质量的 p 型材料,载流子浓度随着 温度的降低而增加,迁移率随着温度的降低而减 小,并且薄膜织构影响载流子迁移率.获得了室温 下 [100] 织构金刚石膜的载流子浓度和迁移率分别 为4.3 × 10⁴ cm⁻³ 和76.5 cm²/(V·s).

参考文献

- Zieliński A, Bogdanowicz R, Ryl J, Burczyk L, Darowicki K 2014 Appl. Phys. Lett. 105 131908
- [2] Chatterjee V, Harniman R, May P W, Barhai P K 2014 Appl. Phys. Lett. 104 171907
- [3] Zhuang C Q, Liu L 2015 Chin. Phys. B 24 018101
- [4] Zheng Y J, Huang G F, Li Z C, Zuo G H 2014 Chin. Phys. B 23 118102
- [5] Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101
- [6] Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107
- [7] Wang R, Hu X J 2014 Acta Phys. Sin. 63 148102 (in Chinese) [王锐, 胡晓君 2014 物理学报 63 148102]
- [8] Zhou Z X Jia X P, Li Y Yan B M, Wang F B Fang C Chen N Li Y D Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese) [周振翔, 贾晓鹏, 李勇, 颜丙敏, 王方标, 房超, 陈宁, 李亚东, 马红安 2014 物理学报 63 248104]
- [9] Su Q F, Liu J M, Wang L J, Shi W M, Xia Y B 2006
 Acta Phys. Sin. 55 5145 (in Chinese) [苏青峰, 刘健敏,
 王林军, 史伟民, 夏义本 2006 物理学报 55 5145]
- [10] Xia Y B, Sekiguchi T, Zhang W J, Jiang X, Wu W H, Yao T 2000 J. Cryst. Growth 213 328
- [11] Tang C J, Fernandes A J S, Jiang X F, Pinto J L 2012 Diamond Relat. Mater. 24 93
- Thanry M A P, Berini B, Stenger I, Chikoiolze E, Lusson A, Jomard F, Chevallier J, Barjon J 2012 Appl. Phys. Lett. 100 192109
- [13] Kato H, Yamasaki S, Okushi H 2005 Appl. Phys. Lett. 86 222111
- [14] Zhu L L 2015 Chin. Phys. B 24 016201

- [15] Zhang H, Yang S Y, Liu G P, Wang J X, Jin D D, Li H J, Liu X L, Zhu Q S, Wang Z G 2014 Chin. Phys. B 23 017305
- [16] Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chin. Phys. Lett. **31** 027301
- [17] Williams O A, Curat S, Gerb J E, Gruen D M, Jackman R B 2004 Appl. Phys. Lett. 85 1680
- [18] Ri S G, Takeuchi D, Kato H, Ogura M, Makino T, Yamasaki S, Okushi H, Rezek B, Nebel C E 2005 Appl. Phys. Lett. 87 262107
- [19] Isberg J, Gabrysch M, Majdi S, Twitchen D J 2012 Appl. Phys. Lett. 100 172103
- [20] Majdi S, Kovi K K, Hammersberg J, Issberg J 2013 Appl. Phys. Lett. 102 152113

- [21] Zhang X X, Shi T S, Wang J X, Zhang X K 1995 J. Cryst. Growth 155 66
- [22] Williams O A, Jackman R B, Nebel C, Foord J S 2003 Semicond. Sci. Technol. 18 S77
- [23] Sauerer C, Ertl F, Nebel C E, Stutzmann M, Bergonzo P, Willianms O A, Jackman R A 2001 *Phys. Stat. Sol.* A 186 241
- [24] Ristein J 2000 Diamond Relat. Mater. 9 1129
- [25] Mott N F, Twose T D 1961 Adv. Phys. 10 107
- [26] Look D C, Molnar R J 1997 Appl. Phys. Lett. 70 3377
- [27] Williams O A, Jackman R B, Nebel C, Foord J S 2002 Diamond Relat. Mater. 11 396
- [28] Jiang N, Ito T 1999 J. Appl. Phys. 85 8267
- [29] Looi H J, Jackman R B, Foord J S 1998 Appl. Phys. Lett. 72 353

Hall effect of different textured CVD diamond films^{*}

Su Qing-Feng^{1)†} Liu Chang-Zhu¹⁾ Wang Lin-Jun²⁾ Xia Yi-Ben²⁾

1) (Institute of New Energy, Shanghai Lianfu New Energy S&T Group Co., Ltd, Shanghai 201201, China)

2) (School of Materials Science and Engineering Shanghai University, Shanghai 200444, China)

(Received 12 November 2014; revised manuscript received 7 January 2015)

Abstract

Due to its smoothest surface, fewer defects, and better crystal quality, [100] textured diamond film is well suited for the application of optoelectronic and microelectronic devices. Carrier concentration and mobility are very important parameters of semiconductor materials. In order to further broadening the application of diamond films in optoelectronics and microelectronics, it is necessary to made a research on Hall effect characteristics of [100] textured and [111] textured films. In this paper, different textured polycrystalline diamond films are deposited on silicon substrates by hot filament chemical vapor deposition (HFCVD) method under different conditions. Microstructures of diamond films are characterized by X-ray diffraction (XRD). High quality [100] textured and [111] textured diamond films are obtained. Dark current-voltage (I-V) characteristics of different-oriented films after annealing are investigated at room temperature. The carrier concentration and mobility of diamond films are measured by Hall effect test system as the temperature changing from 100 to 500 K. Results indicate that the textures of diamond films affect the value of carrier mobility: carrier concentration increases and mobility decreases with the decrease of temperature; and the deposited films are of p-type materials. The carrier concentration and mobility of polycrystalline [100]-textured diamond films at room temperature are 4.3×10^4 cm⁻³ and 76.5 cm²/V·s, respectively.

Keywords: diamond films, carrier concentration, mobility, Hall effect

PACS: 73.50.–h, 73.61.Ga, 81.05.ug, 81.15.GH

DOI: 10.7498/aps.64.117301

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61176072), and the Shanghai Talent Development Fund, China (Grant No. 201425).

[†] Corresponding author. E-mail: qfsu@163.com