物理学报 Acta Physica Sinica

高次谐波的Guo-Aberg-Crasemann理论及其截断定律

余朝 孙真荣 郭东升

Guo-Åberg-Crasemann theory for high harmonic generation and its cutoff law

Yu Chao Sun Zhen-Rong Guo Dong-Sheng

引用信息 Citation: Acta Physica Sinica, 64, 124207 (2015) DOI: 10.7498/aps.64.124207 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.124207 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I12

您可能感兴趣的其他文章 Articles you may be interested in

KTP倍频器件温度适应性扩展研究

Study on temperature adaptability extension of KTP frequency-doubling device 物理学报.2015, 64(9): 094205 http://dx.doi.org/10.7498/aps.64.094205

空气中等离子光栅诱导探测光丝三次谐波辐射放大的实验研究

Efficient generation of third harmonic radiation of air filament induced by plasma grating 物理学报.2014, 63(18): 184206 http://dx.doi.org/10.7498/aps.63.184206

利用椭圆高斯光束产生266nm紫外连续激光

Generation of 266 nm continuous-wave with elliptical Gaussian beams 物理学报.2014, 63(5): 054204 http://dx.doi.org/10.7498/aps.63.054204

高非线性光纤中四波混频的磁控机理研究

Research on magnetic control mechanism of four-wave mixing in highly nonlinear fiber 物理学报.2013, 62(2): 024213 http://dx.doi.org/10.7498/aps.62.024213

飞秒强激光脉冲驱动 Ne 高次谐波蓝移产生相干可调谐极紫外光实验研究 Investigation of tunable coherent XUV light source by high harmonics generation using intense femtosecond laser pulses in Ne 物理学报.2013, 62(2): 024212 http://dx.doi.org/10.7498/aps.62.024212

高次谐波的Guo-Åberg-Crasemann理论 及其截断定律^{*}

余朝^{1)†} 孙真荣¹⁾ 郭东升^{1)2)‡}

(华东师范大学物理系, 精密光谱科学与技术国家重点实验室, 上海 200062)
 2)(北京大学物理学院, 北京 100871)

(2014年11月13日收到;2014年12月21日收到修改稿)

将 Guo-Åberg-Crasemann 形式散射理论推广到高次谐波产生过程,获得了高次谐波产生概率公式.利用这一公式,计算了不同惰性气体原子的高次谐波谱.理论分析和数值计算显示高次谐波有新的截断定律 $q_c \hbar \omega = (9 - 4\sqrt{2}) U_p + (2\sqrt{2} - 1) I_p \approx 3.34 U_p + 1.83 I_p$,其中, U_p 为电子的有质动能, I_p 为原子电离能, $\hbar \omega$ 为激光光子能量, q_c 为高次谐波的截断阶数.这一截断定律与近期 Popmintchev 等 (Popmintchev et al. 2012 *Science* **336** 1287) 的实验观测符合得很好.

关键词: 高次谐波, 截断定律, 贝塞尔函数, 光电定律 **PACS:** 42.65.Ky, 32.80.Rm, 03.65.Nk

DOI: 10.7498/aps.64.124207

1引言

激光诱导的高次谐波产生(HHG)是强激光物 理领域中最重要的现象之一.由于在制备X光激光 和阿秒脉冲中有巨大的应用前景,已对HHG进行 了大量的实验和理论研究.高次谐波光谱呈现了一 些共同的特点,如包络呈平台状和高能端急剧的截 断.截断处的光子能量则提供了可利用的最大光 子能量.对高次谐波的研究常见的理论方法有对 含时薛定谔方程的数值积分方法、基于强场近似的 Lewenstein模型^[1],以及Corkum^[2]提出的三步模 型.但这些方法用的都是经典或半经典的物理,将 光场看作经典光场即电磁波来处理,而不是量子化 的光场.

研究强场激光与原子相互作用的一种全量子 理论方法是用基于Guo-Åberg-Crasemann (GAC) 提出的非微扰形式散射理论.过去的二十年间该理 论在处理多光子电离^[3]、Kapitza-Dirac效应^[4-6]、 域上电离^[7-11]以及原子多能级系统精确解等^[12] 方面取得了一系列的成果.

文献[13, 14] 最先参照GAC理论研究了高次 谐波,在研究过程中,为简化讨论引入了一些假 设.为更加精确地描述谐波辐射过程,本文直接从 GAC理论^[15,16]出发推导谐波辐射公式^[17],并且 用此公式计算了不同的惰性气体与不同强度、不同 波长的激光产生的高次谐波谱.研究获得了高次谐 波谱和新的高次谐波截断定律^[18].

我们的研究结果表明,电子在高强度光子场 内的跃迁振幅由普通贝塞尔函数给定,贝塞尔函 数的阶数代表了放出光子数(负阶数代表吸收). 我们注意到在Keldysh-Faisal-Reiss理论中,贝塞 尔函数也有重要意义.例如在研究光电子角分 布时我们认为其由贝塞尔函数惟一决定^[9],但其 他理论仍试图用勒让德函数确定.本文从贝塞尔 函数的截断性质出发,利用爱因斯坦光电定律在 强光场中决定的动力学条件研究得出了新的高 次谐波截断定律.实验上发现高次谐波后,为了

© 2015 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 11004060, 11027403, 51132004) 资助的课题.

[†]通信作者. E-mail: hua_lianxin@163.com

[‡]通信作者. E-mail: dsguophd@163.com

描述平台的长度和截断能量,截断定律作为一条 经验规律 $q_c\hbar\omega = 3U_p + I_p$ 首先由Krause等^[19]提 出,其中, U_p 为电子的有质动能, I_p 为原子电离 能, $\hbar\omega$ 为激光光子能量, q_c 为高次谐波的截断阶 数.而后,Corkum^[2]和Levestein等^[1]从半经典的 理论将截断定律分别修正为 $q_c\hbar\omega = 3.17U_p + I_p$ 和 $q_c\hbar\omega = 3.17U_p + 1.32I_p$.

我们发现:作为纯粹数学现象,当自变量固定 于一正数时普通贝塞尔函数系列的值也呈平台并 有截断现象,非常类似高次谐波谱呈现的特性.既 然非微扰量子电动力学^[16]中,电子在光场中的跃 迁振幅可表为一个普通的贝塞尔函数,而高次谐波 的产生仅为电子与光子相互作用,其截断定律应从 贝塞尔函数的性质推出.近期的实验观测数据^[20] 显然与我们的公式符合得很好.

本文先介绍GAC理论推广到高次谐波时获得 的高次谐波公式,并由此计算了激光与He,Ne,Ar 以及Kr 原子相互作用产生的高次谐波谱.重点分 析不同强度的激光驱动Ar原子产生的高次谐波谱, 研究了高次谐波谱截断值的性质.从贝塞尔函数的 截断性质与高次谐波的关系出发,数学得出了新的 截断定律,用几何图解法进行了不同的证明,并与 GAC理论推出的谐波谱公式的计算做了对比.本 文的三种方法数学演绎法、图解法和能谱的产生率 计算法都支持同一结论.

2 高次谐波的GAC理论

基于 GAC 形式散射理论,我们推导出了高次 谐波跃迁概率公式^[17].这个高次谐波是单原子与 单模激光相互作用产生的.下面的公式中我们选取 $\hbar = 1, c = 1, 以及 e = -|e|.这些公式能够计算不$ 同原子与任意波长、任意强度的激光相互作用产生的高次谐波.高次谐波的总跃迁概率公式是

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega_{\mathbf{k'}}} \left|_{\mathbf{k'}//\mathbf{k}} = \frac{q\omega^4 e^2 m_{\,\mathrm{e}}}{(2\pi)^8 c^2} \left| \frac{T_1 + T_2 + T_3}{D} \right|^2, \quad (1)$$

$$\mathbb{H}\oplus, D = \frac{eg'}{m_{\,\mathrm{e}} (2\pi)^3} \left(2m_{\,\mathrm{e}}^3 \omega^3 \right)^{1/2},$$

$$T_1 = D \times \sum_{j \ge [e'_{\mathrm{b}}]+1+q} (j - e'_{\mathrm{b}} - q)$$

$$\times \int \mathrm{d}\Omega_{\mathbf{P}} \Phi_f \left(\mathbf{P} \right)^* \Phi_i \left(\mathbf{P} \right) \chi_{q-j}(z_{\mathrm{c}}, z_{\mathrm{s}})$$

$$\times [\varepsilon'^* \cdot \mathbf{P} \chi_{-j}(z_{\mathrm{c}}, z_{\mathrm{s}})^*$$

$$+ |e| \Lambda(\varepsilon'^* \cdot \varepsilon \chi_{-j-1}(z_{\mathrm{c}}, z_{\mathrm{s}})^*$$

$$+ \epsilon^{\prime *} \cdot \epsilon^{*} \chi_{-j+1}(z_{c}, z_{s})^{*})], \qquad (2)$$

$$T_{2} = D \times \sum_{j' \ge [e'_{b}]+1} (j' - e'_{b})$$

$$\times \int d\Omega_{P} \Phi_{f}(P)^{*} \Phi_{i}(P) \chi_{-j'}(z_{c}, z_{s})^{*}$$

$$\times \left\{ \epsilon^{\prime *} \cdot P \frac{u_{p} - j' - q}{Bq} \chi_{-j' - q}(z_{c}, z_{s})^{*} + |e| \Lambda \left[\epsilon^{\prime *} \cdot \epsilon \frac{u_{p} - j - q + 1}{B(q - 1)} \right] \right\}$$

$$\times \chi_{-j' - q - 1}(z_{c}, z_{s})^{*}$$

$$+ \epsilon^{\prime *} \cdot \epsilon^{*} \frac{u_{p} - j - q - 1}{B(q + 1)}$$

$$\times \chi_{-j' - q + 1}(z_{c}, z_{s})^{*} \right], \qquad (3)$$

$$T_{3} = D \times \sum_{j \ge [e'_{b}]+1+q} (j - e_{b} - q)$$

$$\sum_{j \ge [e'_{\rm b}]+1+q} (j - e_{\rm b} - q)$$

$$\times \int d\Omega_{\mathbf{P}} \Phi_{f} (\mathbf{P})^{*} \Phi_{i} (\mathbf{P}) \chi_{-j}(z_{\rm c}, z_{\rm s})^{*}$$

$$\times \left\{ \varepsilon'^{*} \cdot \mathbf{P} \frac{u_{\rm p} - j}{-Bq} \chi_{-j+q}(z_{\rm c}, z_{\rm s}) + |e| \Lambda \left[\varepsilon'^{*} \cdot \varepsilon \frac{u_{\rm p} - j}{-B(q-1)} \chi_{-j+q-1}(z_{\rm c}, z_{\rm s}) + \varepsilon'^{*} \cdot \varepsilon^{*} \frac{u_{\rm p} - j}{-B(q+1)} \chi_{-j+q+1}(z_{\rm c}, z_{\rm s}) \right] \right\} (4)$$

以及

$$\begin{split} e_{\rm b}' &= e_{\rm b} + u_{\rm p} = \left(I_{\rm p} + U_{\rm p}\right)/\omega, \\ P &= \sqrt{2m_{\rm e}\omega(j - e_{\rm b}')}, \\ z_{\rm c} &= \frac{2 \left|e\right| \Lambda}{m_{\rm e}\omega} \boldsymbol{P} \cdot \boldsymbol{\varepsilon}, \quad z_{\rm s} = \frac{1}{2} u_{\rm p} \cos \xi e^{\mathrm{i}\Theta}, \\ &\sum_{j \geqslant [e_{\rm b}']+1} \int \mathrm{d}^{3} \boldsymbol{P} \\ &= \sum_{j=[e_{\rm b}']+1}^{\infty} m_{\rm e}\omega \sqrt{2m_{\rm e}\omega(j - [e_{\rm b}'])} \int \mathrm{d}\Omega_{\rm p}, \\ B &\equiv 1 - \boldsymbol{P} \cdot \boldsymbol{k}/\left(m_{\rm e}\omega\right). \end{split}$$

利用上面的公式,我们计算了He, Ne, Ar以及Kr与波长为800 nm、强度为 1.0×10^{15} W/cm²的线偏振激光相互作用产生的高次谐波谱,结果显示在图1.这些谐波谱都具有相同的特点:明显的平台区以及锋利的截断结构.观察上述高次谐波谱的截断位置,我们发现传统的截断定律 $q_c\hbar\omega = 3.17U_p + 1.32I_p$ 所确定的截断值都小于我们的计算结果,而我们的计算结果与一个新的截断定律 $q_c\hbar\omega = (9 - 4\sqrt{2})U_p + (2\sqrt{2} - 1)I_p \approx 3.34U_p + 1.83I_p$ 符合得更好.

图 1 (a) He, (b) Ne, (c) Ar, (d) Kr 原子与波长为 800 nm、强度为 1.0×10^{15} W/cm² 的激光相互作用产生的 高次谐波谱. 每个子图中左边虚线对应的是公式 $q_c \hbar \omega = 3.17 U_p + 1.32 I_p$ 所得的截断点, 右边虚线对应的是公式 $q_c \hbar \omega = \left(9 - 4\sqrt{2}\right) U_p + \left(2\sqrt{2} - 1\right) I_p \approx 3.34 U_p + 1.83 I_p$ 所得的截断点 Fig. 1. High harmonic generation spectra generated from (a) He, (b) Ne, (c) Ar, and (d) Kr atom driven by the laser pulses of wavelength 800 nm and intensities 1.0×10^{15} W/cm². The left dashed line and right

by the laser pulses of wavelength 800 nm and intensities 1.0×10^{15} W/cm². The left dashed line and right dashed line in each subgraph refer to the cutoff orders from the cutoff law $q_c \hbar \omega = 3.17 U_p + 1.32 I_p$ and $q_c \hbar \omega = \left(9 - 4\sqrt{2}\right) U_p + \left(2\sqrt{2} - 1\right) I_p \approx 3.34 U_p + 1.83 I_p$, respectively.

图 2 是 Ar 原子与 800 nm 线偏振、强度 3 × 10¹⁴—20 × 10¹⁴ W/cm² 的激光相互作用产生的 高次谐波谱中观测得到的截断值. 从图 2 可 以看出,本文的计算结果与高次谐波截断公式 $q_c\hbar\omega = (9-4\sqrt{2}) U_p + (2\sqrt{2}-1) I_p$ 符合得很好.

图 2 从高次谐波谱的计算中获得的截断点.高次谐波谱 由 Ar 原子与强度为 3 × 10¹⁴—20 × 10¹⁴ W/cm² 的激光 相互作用产生

Fig. 2. The cutoff orders obtained from the high harmonic generation spectra, which are generated from Ar atom driven by the laser pulses of wavelength 800 nm and intensities 3×10^{14} – 20×10^{14} W/cm².

为什么本文计算结果与推导的高次谐波截断公式 符合得很好,且都比 Corkum^[2] 推导的"3.17"截断 定律更长呢?要回答这个问题,必须深入分析本文 公式的细节.一般情况下,一个好的量子力学理论, 所有类型的守恒都应该自动满足.如果一个跃迁过 程在数学上是允许的,那么它应该是符合所有的守 恒定律.因此,在计算时必须把所有的子过程、子通 道都考虑进去.在本文的公式中,参与产生高次谐 波的光子不仅有电离的光子,而且有未参与电离,但 参与了光电子上转换的光子.光子未参与电离,但 参与光电子上转换从而产生高次谐波,这些光子的 过程可以称之为伴随拉曼效应.正是由于伴随拉曼 效应,导致本文计算得出的谐波比 Corkum^[2] 用半 经典理论计算得到的截断位置更长.

3 从贝塞尔函数性质出发推出高次 谐波截断定律

为了研究贝塞尔函数的截断性质, 需要用到第 一类贝塞尔函数的递推关系:

$$J_{n-1}(x) - J_{n+1}(x) = 2J'_n(x),$$
 (5)

$$J_{n-1}(x) - \frac{n}{-}J_n(x) = J'_n(x),$$
(6)

$$J_n(x) - J_{n+1}(x) = J'_n(x).$$
 (7)

基于上述递推关系证明下面的引理.

引理1 对于自变量大于零的正整数阶贝 塞尔函数 $J_n(x)$,当且仅当在它的极值点 $x_i(i = 1, 2, 3, \dots)$,贝塞尔函数 $J_{n-1}(x)$ 和 $J_{n+1}(x)$ 相交.

证明 贝塞尔函数有极值点,但没有驻点.这 个引理的成立由上述的递推关系可以明显推出. 证毕.

注意到 $x_i(i = 1, 2, 3, \dots)$ 是n的函数,例如 $x_1(n)$ 是 $J_n(x)$ 的第一个极值点,且 $x_1(n)$ 是极大值.

引理2 当且仅当在贝塞尔函数 $J_n(x)$ 的极 大值点 $x_i(i = 1, 3, 5, \cdots)$,不等关系 $J_{n-1}(x) > J_{n+1}(x)$ 变成 $J_{n-1}(x) < J_{n+1}(x)$;当且仅当在贝塞 尔函数 $J_n(x)$ 的极小值点 $x_i(i = 2, 4, 6, \cdots)$,不等 关系 $J_{n-1}(x) < J_{n+1}(x)$ 变成 $J_{n-1}(x) > J_{n+1}(x)$.

证明 当 $x = x_i$ ($i = 1, 3, 5, \cdots$), 贝塞尔函数 J_n(x)的值为极大值, 且J'_n(x) = 0. 当 $x < x_i$, 由于 J'_n(x) < 0, 根据方程(7), 可得J_{n-1}(x) > J_{n+1}(x). 同理可证, 当 $x > x_i$, 由于J'_n(x) < 0, 可得 J_{n-1}(x) < J_{n+1}(x). 因此, 不等关系J_{n-1}(x) > J_{n+1}(x)变成J_{n-1}(x) < J_{n+1}(x). 同理可得引理中 关于 x_i ($i = 2, 4, 6, \cdots$)的证明. 证毕.

根据引理2,我们可以做如下定义。

定义 当x为某个固定正值时,贝塞尔函数集 $J_j(x)(j = 1, 2, \dots, n_c, \dots)$ 的截断值 n_c 定义如下:

$$x_1(n_c) \leq x, \quad x_1(n_c+1) > x.$$
 (8)

换句话说, $n_c = \max\{n|x_1(n_c) \leq x\}; n_c + 1 = \min\{n|x_1(n_c) > x\}.$

定理1 当x为一个固定的正数时, x为贝塞 尔函数集 $J_j(x)(j = 1, 2, \dots, n_c, \dots)$ 截断值 n_c 的 一个上限, 即

$$n_{\rm c} < x. \tag{9}$$

证明 我们取 $x_1 \equiv x_1(n_c)$,由贝塞尔函数截 断值的定义易知 $x_1 \leq x$.将 $x = x_1$ 代入方程(5)和(6)可得

$$\begin{split} & x_1 \mathbf{J}_{n_c-1}(x_1) = n_c \mathbf{J}_{n_c}(x_1), \\ & \mathbf{J}_{n_c-1}(x_1) = \mathbf{J}_{n_c+1}(x_1) < \mathbf{J}_{n_c}(x_1). \end{split}$$

注意贝塞尔函数的第一个极值为最大值,且前述3 个贝塞尔函数在 x1 处均为正数,可得

$$n_{\rm c} < x_1 \leqslant x.$$

证毕.

图3是一个关于贝塞尔函数截断值的例子.从 图3可以明显地看出,当贝塞尔函数的阶数达到自 变量的值时,函数值迅速减小,其包络呈现明显的 截止.

图 3 自变量 x 固定时, 贝塞尔函数 $J_n(x)$ 的绝对值随阶数 n 的变化. 其中自变量 x = 1500, 约等于文献 [20] 中 u_p 的值; 虚线与 $J_n(x)$ 的绝对值交点是其截断值的位置 Fig. 3. Variation of Bessel functions $J_n(x)$ with integer n. The argument x is set as 1500, which is approximately equal to the u_p in Ref. [20]. The cross point between the dash line and the absolute value of $J_n(x)$ is the cutoff position.

光电离中电子和多光子满足的惟一的动力学 条件就是强光场条件下的爱因斯坦光电定律:

$$\frac{P^2}{2m_{\rm e}} = \hbar\omega(j - u_{\rm p} - e_{\rm b}), \qquad (10)$$

其中, $u_p = U_p/(\hbar\omega)$, $e_b = I_p/(\hbar\omega)$, U_p 为电子的 有质动能, I_p 为电子电离能. 电子放出 (包括吸 收) j 个光子的跃迁振幅, 可以用一个贝塞尔函数 $J_j(x)$ 来描述, 其中 $x = 2\sqrt{u_p/(m_e\hbar\omega)}P$, 则根据 方程 (10) 有

$$x = \sqrt{8u_{\rm p}(j - u_{\rm p} - e_{\rm b})}.$$
 (11)

贝塞尔函数 $J_j(x)$ 的自变量x满足方程(10),我们称之为满足动力学条件.

定理2 满足动力学条件且 $u_p \ge e_b$ 的贝塞尔 函数集 $J_j(x)(j = 1, 2, \dots, n_c, \dots)$,有两个截断值:

$$j_{c1} = 4u_{p} - 2\sqrt{2u_{p}^{2} - 2u_{p}e_{b}},$$

$$j_{c2} = 4u_{p} + 2\sqrt{2u_{p}^{2} - 2u_{p}e_{b}}.$$
(12)

证明 根据方程 (9) 和 (11), 可得下述不等式:

$$|j_{\rm c}| \leqslant \sqrt{8u_{\rm p}(j-u_{\rm p}-e_{\rm b})}$$

由此可得

$$j_{\rm c}^2 - 8u_{\rm p}j_{\rm c} + 8u_{\rm p}^2 + 8u_{\rm p}e_{\rm b} = 0.$$

求解上述方程,可得指标 j 的两个截断值
 $j_{\rm c1} = 4u_{\rm p} - 2\sqrt{2u_{\rm p}^2 - 2u_{\rm p}e_{\rm b}},$

$$j_{\rm c2} = 4u_{\rm p} + 2\sqrt{2u_{\rm p}^2 - 2u_{\rm p}e_{\rm b}}.$$

证毕.

推论 满足动力学条件且 $u_p \ge e_b$ 的贝塞尔函数集 $J_{-j}(x)(j = 1, 2, \dots, n_c, \dots)$,有两个截断值 $-j_{c1} 和 - j_{c2}$.

考虑贝塞尔函数 $J_{-j-s}(x)$,其中x由方程(11) 给出,j为多光子电离过程中吸收的光子数, $s = 1, 2, 3, \cdots$ 为光子模上转换过程中吸收的非 电离的额外光子数.

定理3 有额外光子吸收的负阶数的贝塞尔函数集 $J_{-j-s}(x)$,其中自变量x满足动力学条件即满足方程(8),且 $u_p \ge e_b$,额外吸收的光子数s有一个上限 $s \le u_p - e_b$ 且贝塞尔函数集的截断值是

$$j_{\rm c} = 3u_{\rm p} + e_{\rm b}.$$
 (13)

证明 考虑到定理1和方程(11),很容易得到 下述关于截断值 *j*c 的方程:

$$(j_{\rm c}+s)^2 \leqslant 8u_{\rm p}(j-u_{\rm p}-e_{\rm b}).$$

考虑边界条件,得到下述关于 $j_c + s$ 的方程: $(j_c + s)^2 - 8u_p(j_c + s) + 8u_p^2 + 8u_p(e_b + s) = 0.$ 这个方程的实数解条件是

$$s \leqslant u_{\rm p} - e_{\rm b}.$$
 (14)

取 $s_{c} = u_{p} - e_{b}$, 并且把 s_{c} 代入方程(14), 得到截断 值的公式,

$$j_{\rm c} = 3u_{\rm p} + e_{\rm b}.$$

证毕.

定理4 $u_{\rm p} \ge e_{\rm b}$ 时的高次谐波的截断值有一个上限:

$$2\left(4u_{\rm p} - 2\sqrt{2u_{\rm p}^2 - 2u_{\rm p}e_{\rm b}}\right) + u_{\rm p} - e_{\rm b}.$$
 (15)

证明 考虑贝塞尔函数J_{-j-s+q}(x), 其中q定 义了谐波的阶数. 根据定理1, 可以得到下述不 等式:

$$-j_{\rm c} - (u_{\rm p} - e_{\rm b}) \leqslant \sqrt{8u_{\rm p}(j - u_{\rm p} - e_{\rm b})}$$

求解上述不等式的等号部分,且取 $j_c = j_{c1}$,根据定理2可以得到截断值的上限

 $q_{\rm c} \leqslant 2 \left(4u_{\rm p} - 2\sqrt{2u_{\rm p}^2 - 2u_{\rm p}e_{\rm b}} \right) + u_{\rm p} - e_{\rm b}.$ 证毕.

当 光 场 强 度 较 强 $u_{\rm p} \ge e_{\rm b}$ 时 (例 如 Xe 与 800 nm 的线偏振激光反应产生高次谐波, 光场 强度大于 2.1×10^{14} W/cm²), 上述截断值可以取下 面的近似值:

$$q_{\rm c} = \left(9 - 4\sqrt{2}\right)u_{\rm p} + \left(2\sqrt{2} - 1\right)e_{\rm b}$$

$\approx 3.3431457 u_{\rm p} + 1.8284271 e_{\rm b}.$ (16)

我们给出一个图解法的例证,详细描述见图4, 其中 $u_{\rm p} = 1500$ 以及 $e_{\rm b} = 80$,约等于文献[20]的实验结果.

图4 图解法获得的高次谐波的截断值. 横坐标定义了贝 塞尔函数的阶数, 纵坐标显示了贝塞尔函数的自变量为正 或负时的函数值; 图中 $u_{\rm p} = 1500$ 以及 $e_{\rm b} = 80$, 约等于 文献 [20] 的实验结果

Fig. 4. The cutoff orders of harmonics obtained by the geometric method. The horizontal axis denotes the orders of Bessel functions. The positive vertical axis shows the value of the argument of Bessel functions with positive and negative even indices. The negative vertical axis shows the negative value of the argument of Bessel functions with negative odd indices. To illustrate the recent experimental results ^[20], $u_{\rm p} = 1500$ and $e_{\rm b} = 80$ are selected.

4 结 论

基于GAC形式散射理论,本文完整地推导出 了高次谐波跃迁概率公式.根据推导出的公式,我 们计算了He, Ne, Ar和Kr原子与激光产生的高次 谐波谱,这些光谱可以作为高次谐波的进一步研究 的参考.研究上述高次谐波谱,我们分析了高次谐 波的截断位置.发现这些计算结果与一个新的高次 谐波截断定律符合得很好,这意味着我们从理论上 延长了高次谐波谱的平坦区.这些计算结果可以与 已知的高次谐波截断定律^[8]互相参考.

基于强光条件下的爱因斯坦光电定律,我们 用纯数学的方法从普通贝塞尔函数的性质,导 出了激光诱导的高次谐波的截断定律 $q_c\hbar\omega$ = $(9-4\sqrt{2})U_p+(2\sqrt{2}-1)I_p\approx 3.34U_p+1.83I_p, 对已$ $存在 20年的通用截断定律<math>q_c\hbar\omega$ = 3.17 U_p + 1.32 I_p 做出了修正.新截断定律的两个系数与基本物理 常数无关,为代数常数.而截断定律本身对基本物 理常数的依赖已经包含在两个相互作用能 U_p 和 I_p 里. 最新的实验数据^[20] 和光谱的理论计算数据^[17] 都支持本文的结果. 较高的截断值, 是由于伴随的 拉曼效应导致.

参考文献

- Lewenstein M, Balcou Ph, Yu M, Ivannov, L'Huillier A, Corkum P B 1994 *Phys. Rev. A* 49 2117
- [2] Corkum P B 1993 Phys. Rev. Lett. **71** 1994
- [3] Guo D S, Drake G W 1992 Phys. Rev. A 45 6622
- [4] Guo D S 1996 Phys. Rev. A 53 4311
- [5] Li X F, Zhang J T, Xu Z Z, Fu P M, Guo D S, Freeman R R 2004 *Phys. Rev. Lett.* **92** 233603
- [6] Guo D S, Freeman R R, Wu Y S 1998 Phys. Rev. A 58 521
- [7] Guo D S 1990 Phys. Rev. A 42 4302
- [8] Zhang J T, Zhang W, Xu Z Z, Li X F, Fu P M, Guo D
 S, Freeman R R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4809
- [9] Bai L H, Zhang J T, Xu Z Z, Guo D S 2006 Phys. Rev. Lett. 97 193002

- [10] Guo D S, Zhang J T, Xu Z Z, Li X F, Fu P M, Freeman R R 2003 Phys. Rev. A 68 043404
- [11] Zhang J T, Bai L H, Gong S Q, Xu Z Z, Guo D S 2007 Opt. Express 15 7261
- [12] Guo D S 2013 Front. Phys. 8 39
- [13] Gao L H, Li X F, Fu P M, Freeman R R, Guo D S 2000 Phys. Rev. A 61 063407
- [14] Gao J, Shen F, Eden J G 2000 Phys. Rev. A 61 043812
- [15] Guo D S, Åberg T 1988 J. Phys. A: Math. Gen. 21 4577
- [16] Guo D S, Åberg T, Crasemann B 1989 Phys. Rev. A 40 4997
- [17] Yu C, Zhang J T, Sun Z W, Sun Z R, Guo D S 2014 Front. Phys. DOI: 10.1007/s11467-014-0429-x
- [18] Guo D S, Yu C, Zhang J T, Gao J, Sun Z W, Sun Z R 2015 Front. Phys. 10 215
- [19] Krause L J, Schafer K J, Kulander K C 1993 Phys. Rev. Lett. 68 3535
- [20] Popmintchev T, Chen M C, Popminchev D, Arpin P, Brown S, Alisauskas S, Andriukaitis G, Balciunas T, Mucke O D, Pugzlys A, Baltuska A, Shim B, Schrauth S E, Gaeta A, Hernandez-Garcia C, Plaja L, Becker A, Jaron-Becker A, Murnane M M, Kapteyn H C 2012 Science 336 1287

Guo-Åberg-Crasemann theory for high harmonic generation and its cutoff law^{*}

Yu Chao^{1)†} Sun Zhen-Rong¹⁾ Guo Dong-Sheng^{1)2)‡}

1) (State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China)

2) (School of Physics, Peking University, Beijing 100871, China)

(Received 13 November 2014; revised manuscript received 21 December 2014)

Abstract

Based on the scattering theory of Guo-Åberg-Crasemann (GAC), which has no artificial assumptions, high harmonic generation (HHG) is studied by using first-principles. The HHG spectra of different rare atoms are also calculated. Using the properties of ordinary Bessel functions and the Einstein photoelectric law in the strong-field case, we reveal a new cutoff law $q_c \hbar \omega = (9 - 4\sqrt{2}) U_p + (2\sqrt{2} - 1) I_p \approx 3.34U_p + 1.83I_p$ of HHG based on a mathematical deduction method and a graphical method, which accords well with the Popmintchev's experimental result published on Science in 2012. This cutoff law also agrees well with our own calculation using the HHG transition rate formula derived from the GAC scattering theory. Thus, we have four pieces of independent evidence for the same cutoff law of HHG. The cutoff orders predicted by this theory are higher due to the absorption of the extra photons. These photons only participate in the photon-mode up-conversion and do nothing in the photoionization process.

Keywords: high harmonic generation, cutoff law, Bessel function, law of photoelectricityPACS: 42.65.Ky, 32.80.Rm, 03.65.NkDOI: 10.7498/aps.64.124207

^{*} Project supported by the National Natural Science Foundation of China (Grants Nos. 11004060, 11027403, 51132004).

[†] Corresponding author. E-mail: hua_lianxin@163.com

[‡] Corresponding author. E-mail: dsguophd@163.com