物理学报 Acta Physica Sinica

匀强磁场对水中气泡运动的影响

莫润阳 吴临燕 詹思楠 张引红

Effect of magnetic field on single-bubble in water

Mo Run-Yang Wu Lin-Yan Zhan Si-Nan Zhang Yin-Hong

引用信息 Citation: Acta Physica Sinica, 64, 124301 (2015) DOI: 10.7498/aps.64.124301 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.124301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I12

您可能感兴趣的其他文章 Articles you may be interested in

声单向操控研究进展

Recent advances in acoustic one-way manipulation 物理学报.2015, 64(9): 094305 http://dx.doi.org/10.7498/aps.64.094305

脉冲微波辐射场空间分布的热声成像研究

Pulsed microwave energy spatial distribution imaging by means of thermoacoustic tomography 物理学报.2015, 64(1): 014301 http://dx.doi.org/10.7498/aps.64.014301

纵向带状裂隙形貌的逆时偏移超声成像

Ultrasonic imaging for appearance of vertical slot by reverse time migration 物理学报.2014, 63(15): 154302 http://dx.doi.org/10.7498/aps.63.154302

水下高斯界面背向散射超声散斑场的相位奇异

Phase singularities of an ultrasonic speckle field back-scattered from an underwater Gaussian interface 物理学报.2014, 63(5): 054301 http://dx.doi.org/10.7498/aps.63.054301

声波在含气泡液体中的线性传播

Linear wave propagation in the bubbly liquid 物理学报.2013, 62(6): 064304 http://dx.doi.org/10.7498/aps.62.064304

匀强磁场对水中气泡运动的影响^{*}

莫润阳† 吴临燕 詹思楠 张引红

(陕西师范大学物理学与信息技术学院,陕西省超声学重点实验室,西安 710119)

(2014年10月22日收到;2014年12月17日收到修改稿)

基于 Rayleigh-Plesset 方程,考虑极性水分子在均匀磁场运动受到磁场力作用,根据能量守恒建立了外磁 场作用下单气泡运动的控制方程,并对附加压强的大小、性质及对气泡运动的影响进行了计算和分析.结果表 明:随磁场强度的增强,附加压强线性增大,气泡膨胀率降低,最大半径减小,气泡坍缩速度下降;外加磁场引 起的气泡振动变化规律与增大静态压具有相似的效果.

关键词: 匀强磁场, 水介质, 空化单泡, 静态压强 PACS: 43.35.+d, 72.50.+b, 47.55.dd

DOI: 10.7498/aps.64.124301

1引言

研究空化泡在电场、磁场环境下的振荡特性对 所有基于空化应用的领域都极具现实意义. 2001 年, Oh等^[1]对电场作用下弱黏性电解质中气泡的 动力特性进行了理论研究; 2004年, 董伟等^[2]研究 认为, 如果对有气泡的液体中施加电场, 则电场的 存在使气泡的运动行为发生变化, 同时气泡的存在 也使周围的电场分布发生变化, 尤其是当大气泡 (半径为1 µm)存在时这种变化更为明显. 2012年, 沈壮志和吴胜举^[3]研究了电场和声场联合作用时 空化泡的动力特性, 结果表明: 电场和声场联合作 用时, 空化泡运动处于混沌区域范围远高于两者单 独作用下空化泡的混沌区域范围.

磁场对空化泡运动的影响早在20世纪70年代 初就引起了苏联科学家的研究兴趣并做了大量实 验^[4,5].1974年,密歇根大学机械工程学院空化和 多相流实验室Hammitt^[6]针对苏联科学家的一系 列研究进行了分析评估,指出:1—10 kg范围的磁 场对普通自来水空化损伤率及流体系统分布产生 可测量的效应,但损伤率的高低取决于实验细节, 其中包括磁场方向和强度;1—10 kg磁场可影响单

© 2015 中国物理学会 Chinese Physical Society

个气泡的生长和崩溃率. 1996年, Young等^[7]关于 磁场对单气泡声致发光强度影响的实验指出,单气 泡声致发光强度所需的声压阈值随着磁场流量密 度的增加而升高,发光强度随着磁场流量密度的增 加而降低; 1999年,日本学者 Yasui^[8]理论研究了 磁场对水中单气泡声致发光的影响.上述研究都证 实磁场对水中气泡运动是有影响的.

声致发光是气泡动态急剧变化的结果, 若磁场 影响气泡声致发光, 则表明磁场对气泡运动产生了 影响.通过探索气泡声致发光机理及其对磁场的 响应, 可进一步研究磁场与气泡作用的机理. 2004 年, 丁春峰和邢达^[9]通过对不同气体成分气泡声致 发光阈值的研究来揭示声致发光机制; 2009年, Li 和 An^[10]通过对单气泡声致发光均匀模型进行改 进, 建立了包含热扩散、水蒸气扩散和化学反应的 描述气泡动力学的新模型, 并对气泡声致发光进行 了计算, 这些研究有助于揭示磁场对气泡动态影响 的机理.

为深入了解磁场效应,从理论上研究磁场与水 中气泡的作用机制,本文从空化泡控制方程入手, 利用能量守恒法则建立了恒定外磁场存在时气泡 的动力学方程,并对磁场效应及其对气泡运动的影

^{*} 国家自然科学基金(批准号: 11274216)资助的课题.

[†]通信作者. E-mail: mmrryycn@snnu.edu.cn

响进行了分析.

2 理论模型的建立

为探讨外部磁场如何影响水中气泡的运动,设 当t < 0时,初始半径为 R_0 的气泡静止在液体中, 液体静压力为 P_0 ,是一常数.设当t > 0时,随时间 变化的压力P(t)附加于 P_0 上,这时无限远处液体 压力为 $P_{\infty} = P_0 + P(t)$,泡半径随之变为R(t).气 泡做球对称径向膨胀/收缩过程中,周围液体将获 得动能.把气泡当作一个以液体为负载的振子,在 密度为 ρ 的液体中,液体移向气泡收缩/膨胀空间 所获得的平动动能 E_k 为

$$E_{\mathbf{k}} = \frac{1}{2}mv^2 = \int_R^\infty \frac{1}{2}\rho 4\pi r^2 \mathrm{d}r \left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2.$$
(1)

由于假设液体不可压缩,则气泡收缩的体积就 等于液体填充的体积,即 $4\pi R^2 dR = 4\pi r^2 dr$,则有 $R^2 dR = r^2 dr$,两边除以dt并整理得

$$\frac{\mathrm{d}r}{\mathrm{d}t} = \left(\frac{R}{r}\right)^2 \left(\frac{\mathrm{d}R}{\mathrm{d}t}\right) = \left(\frac{R}{r}\right)^2 \dot{R},$$

代入(1)式得

$$E_{\mathbf{k}} = \frac{1}{2}mv^{2} = \int_{R}^{\infty} \frac{1}{2}\rho 4\pi r^{2} dr \left(\frac{R}{r}\right)^{4} \left(\dot{R}\right)^{2}$$
$$= 2\pi\rho R^{4} \left(\dot{R}\right)^{2} \int_{R}^{\infty} \frac{1}{r^{2}} dr$$
$$= 2\pi\rho R^{3} \left(\dot{R}\right)^{2}.$$
(2)

该平动动能对时间的变化率为

$$\frac{\mathrm{d}E_{\mathbf{k}}}{\mathrm{d}t} = 2\pi\rho R^2 \dot{R} \left(3\dot{R}^2 + 2R\ddot{R} \right). \tag{3}$$

另外,当液体水移向气泡收缩/膨胀空间时,运动的 水分子在磁场中受到洛伦兹力的作用形成电偶极 矩,引起水分子的转动,意味着每个水分子的部分 平动动能转化为转动动能,这部分能量最终因分子 间的摩擦转换成热.每个水分子受到的力矩 N 为

$$\boldsymbol{N} = \boldsymbol{P}_{\mathrm{H}_{2}\mathrm{O}} \times \left(\boldsymbol{V} \times \boldsymbol{B} \right), \qquad (4)$$

式中, **V** 为液体水的宏观运动速度, **B** 为外加磁场 强度, **P**_{H2O} 为水分子的电偶极矩. 每个水分子由平 动动能转化为转动动能的能量 *U* 为

$$U = \int \boldsymbol{N} \cdot d\phi = -\boldsymbol{P}_{H_{2}O} \cdot (\boldsymbol{V} \times \boldsymbol{B}), \quad (5)$$

式中, d ϕ 为旋转矢量元, 趋于 $V \times B$ 的方向.于是, 所有水分子在 Δt 时间内, 由平动动能转化为转动

动能的能量之和 ΔE_B 为

$$\Delta E_B = C_0 v_{\rm l} \Delta t \int_R^L |\mathbf{P}_{\rm H_2O}| |\mathbf{V}| |\mathbf{B}| \\ \times \frac{\rho N_{\rm A}}{M_{\rm H_2O}} 4\pi r^2 dr, \qquad (6)$$

式中, C_0 为常数 (0 < $C_0 \le 1$), ρ 为水的密度, L为 气泡到液体容器壁的距离 ($L \gg R$), $M_{\text{H}_2\text{O}}$ 为水的 摩尔质量, N_A 为阿伏伽德罗常数, v_1 为水分子的热 振动频率.考虑到液体被认为不可压缩, 水分子运 动速度 V 的大小可表示为 $|V| = R^2 \dot{R}/r^2$ [11], 代入 (6) 式并积分可得

$$\Delta E_B = 4\pi C_0 v_1 \left| \boldsymbol{P}_{\mathrm{H}_2\mathrm{O}} \right| \left| \boldsymbol{B} \right| \frac{\rho N_{\mathrm{A}}}{M_{\mathrm{H}_2\mathrm{O}}} R^2 \dot{R} L \Delta t, \quad (7)$$

单位时间的能量为

$$\frac{\mathrm{d}E_B}{\mathrm{d}t} = 4\pi C_0 v_1 \left| \boldsymbol{P}_{\mathrm{H_2O}} \right| \left| \boldsymbol{B} \right| \frac{\rho N_{\mathrm{A}}}{M_{\mathrm{H_2O}}} R^2 \dot{R}L, \quad (8)$$

这部分能量即为因运动水分子与磁场相互作用引起的水分子转动而产生的能量,与水的平动动能一起,构成液体水分子运动的总能量.根据能量守恒,水分子运动的总能量来源于气泡收缩/膨胀过程压力所做的功W,即

$$\Delta E_B + \Delta E_k = W. \tag{9}$$

气泡在合外力 P 的作用下,从初始半径 R₀ 变化到 R,此过程中合外力对气泡做功为

$$W = \int_{R_0}^{R} P \cdot 4\pi r^2 \mathrm{d}r. \tag{10}$$

气泡壁所受合力 $P = P_L - P_{\infty}, P_L$ 为泡壁外液体 压力, P_{∞} 为距离微泡无限远处一点的压力.于是

$$W = \int_{R_0}^{R} (P_L - P_\infty) \cdot 4\pi r^2 dr, \qquad (11)$$

合外力对气泡做功的功率为

$$\frac{\mathrm{d}W}{\mathrm{d}t} = 4\pi \left(P_L - P_\infty\right) R^2 \dot{R}.$$
 (12)

考虑到

$$\frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\mathrm{d}E_{\mathrm{k}}}{\mathrm{d}t} + \frac{\mathrm{d}E_{B}}{\mathrm{d}t},\tag{13}$$

$$R\ddot{R} + \frac{3}{2}\dot{R}^{2} = \frac{1}{\rho} \left[P_{L} - \left(P_{\infty} + C_{0}v_{1} | \mathbf{P}_{H_{2}O} | |\mathbf{B}| \frac{\rho N_{A}}{M_{H_{2}O}} L \right) \right].$$
(14)

(14) 式右侧项 $C_{0}v_{1}|P_{H_{2}O}||B|\frac{\rho N_{A}}{M_{H_{2}O}}L$ 表示磁场所 产生的附加在气泡壁上的压强,用 P_{B} 表示,即

$$P_B = C_0 v_1 |\mathbf{P}_{H_2O}| |\mathbf{B}| \frac{\rho N_A}{M_{H_2O}} L.$$
(15)

则(14)式可写成

$$R\ddot{R} + \frac{3}{2}\dot{R}^2 = \frac{1}{\rho}\left[P_L - (P_\infty + P_B)\right].$$
 (16)

因 $P_{\infty} = P_0 + P_t$,其中 P_0 为环境静态压强, P_t 为驱动声场产生的时变压强,于是

$$R\ddot{R} + \frac{3}{2}\dot{R}^2 = \frac{1}{\rho}\left[P_L - (P_0 + P_t + P_B)\right], \quad (17)$$

(17) 式中 *P_B*, *P*₀, *P_t*符号相同, 可见 *P_B*的效果相 当于增大了环境压强. 考虑到

$$P_L = \left(P_0 + \frac{2\sigma}{R_0} - P_v\right) \left(\frac{R_0}{R}\right)^{3K} + P_v - \frac{2\sigma}{R},$$

 $P_{\rm v}$ 为泡内蒸汽压,于是

$$R\ddot{R} + \frac{3}{2}\dot{R}^{2}$$

$$= \frac{1}{\rho} \left[\left(P_{0} + \frac{2\sigma}{R_{0}} - P_{v} \right) \left(\frac{R_{0}}{R} \right)^{3K} + P_{v} - \frac{2\sigma}{R} - \left(P_{0} + P_{t} + P_{B} \right) \right], \qquad (18)$$

(18) 式即为在超声场和磁场共同作用下气泡的运动方程. 当外磁场关闭, 即B = 0时, $P_B = 0$, 该式即为改进的 Rayleigh-Plesset 方程, 即 R-P 方程.

3 数值分析与讨论

数值计算所涉及的参数取值为: 常温 (20 °C) 下,水密度 ρ 值为1.0×10³ kg/m³;水分子的热振动频率 ν_1 取值为10¹² Hz,气泡内水蒸汽压 $P_v = 2.33 \times 10^3$ Pa, $\sigma = 7.2 \times 10^{-2}$ N/m; *L* 为气泡壁距容器的距离,取5×10⁻² m;水的摩 尔质量 $M_{\rm H_2O}$ 值为0.018 kg/mol; 阿伏伽德罗常 数 $N_{\rm A}$ 为6.02×10²³;水分子的电偶极矩 $P_{\rm H_2O}$ 值 为6.5×10⁻³⁰ C·m.对(18)式中各物理量取国 际单位后, C_0 是个无量纲且远小于1的常数,即 0 < $C_0 \leq 1$.

3.1 磁场附加在泡壁上的压强 P_B

(15) 式表示由外加磁场引起的附加压强.温度
 一定时,将 ν₁, **P**_{H₂O}, ρ, N_A, M_{H₂O} 这些量的取值代
 入 (15) 式,运算可得

$$P_B = 2.17 \times 10^{11} C_0 \left| \boldsymbol{B} \right| L. \tag{19}$$

由 (18) 式可见, 气泡距离容器壁的距离 L一定时, 外磁场附加的环境压强 P_B 随外磁场 B 的增强而线性增大; 外磁场 B 一定时, P_B 随 L 的增大而线性增大.

要确定磁场附加在泡壁压强的量值,需要明确 常数 C_0 ,但其取值目前还不确定.本文参考Young 等^[7] 声致发光实验的数据对 C_0 取值进行估算,结 果与Yasui^[8]估算结果一致. Young等实验发现, 当磁场从0增加到6 T时, 气泡声致发光每次辐 射的声子数从 3×10^7 下降到 0.6×10^7 ,由此推断 6 T磁场作用与1.1 atm环境压力时的效果相当 $(1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}).$ 也就是说, 6 T外磁 场附加了 0.1 atm 的环境压强, 即 B = 6 T 对应的 $P_B = 0.1$ atm = 1.01×10^4 Pa. 另外, 利用 (18) 式 估计C0过程中,还需要知道气泡与器壁间的距离 L,考虑到Young等^[7]的声致发光实验是在小型圆 柱空腔内进行,且空腔置于20T Bitter磁场50mm 钻孔内,由此可知L的取值为毫米量级.将这些数 据代入(18)式可估计出 $C_0 \sim 10^{-7}$.这里有一个问 题需要注意,鉴于Young等的实验所限,声场的声 压幅值无法直接测量,所以利用这些数据也只能 是粗略估计. 若设 $L = 5 \times 10^{-2}$ m, C_0 取值约为 10^{-7} ,则 P_B 与B间数量上成单调线性关系,即

$$P_B \approx 10^3 B. \tag{20}$$

也就是说,5 T的磁场产生的附加压强约为5 × 10^3 Pa,若静态压 $P_0 = 1.01 \times 10^5$ Pa = 1 atm,那 么5 T磁场可使环境压强产生约5% P_0 的增量.

3.2 磁场附加压强的性质及其对气泡运动 的影响

驱动声场频率 f 为 19.6 kHz, 幅值 $P_t = 1.317 \times$ 10⁵ Pa 且保持不变, 气泡初始平衡半径为2.6 µm. 当磁场强度 B 取值分别为 0, 5, 10, 15 T时, 气泡 半径随时间的变化见图1. 由图1 可知: B = 5 T 时, 气泡膨胀最大半径 $R_{max} = 9.524R_0$, 坍缩最小 至 0.052 R_0 , 收缩平均速率约为 30 m/s; B = 10 T 时, 气泡膨胀最大半径 $R_{max} = 4.317R_0$, 收缩最小 至 0.208 R_0 , 坍缩平均速率约为 17 m/s. 可见, 随着 磁场的增强, 膨胀速率降低, 气泡膨胀最大半径减 小, 外磁场减缓了微泡坍缩速度.

若保持驱动声场幅值频率不变, B = 0, 改变静态压强 P_0 , 当取值分别为 $P_0 = 1$, 1.05, 1.1 atm 时,

气泡半径随时间的变化见图2. 由图2可知,静态 压强增大,气泡膨胀率降低,最大半径减小(图1、 图2时间轴单位均为s),同时气泡收缩曲线也越来 越平缓.

图1 不同磁场强度下气泡半径随时间的变化

Fig. 1. The bubble radius as a function of time for B = 0, 5, 10, 15 T.

图 2 不同静态压时气泡半径随时间的变化 Fig. 2. The bubble radius as a function of time for $P_0 = 1, 1.05, 1.1$ atm.

关于静态压对气泡动态的影响, Kondic 等^[12] 基于包含 \dot{R}/c_1 一阶修正项 (这里 \dot{R} 为泡壁速度, c_1 为液体声速)的改进 R-P 模型,并考虑了气泡和 液体间的物质交换, 对静态压 P_0 和单个气泡运动 关系的研究表明静态压 P_0 增大,气泡膨胀率下降, 膨胀最大半径减小,见图 3. 从图 3 内插图可以看 出,静态压增大, $P_0 = 1.1$ atm时气泡收缩速度较 $P_0 = 1.0$ atm 减小.

比较以上结果可以发现,外磁场与增大静态压 强都能对气泡振动产生抑制,从作用规律和效果上 两者相似.可见磁场附加的压强作用性质类似于静 压强作用,通过改变压强影响气泡的运动状态.

高强磁场影响气泡声致发光现象是磁场影响 气泡运动的有力证据之一. 声致发光是气泡急剧 坍缩时产生的一种效应, 气泡收缩速度减小, 声致 发光强度减弱. 1996年, Young 等^[7]在高强磁场 下气泡的声致发光实验发现,液体温度、激励声场 和磁场都会对气泡声致发光产生影响. 固定激励 声场、改变外磁场, 声致发光强度随磁场增强而降 低,高于阈值声致发光将消失;固定磁场、改变驱 动声场,声致发光强度随驱动声压的增大而急剧 增大,但驱动压的上下限决定了声致发光区域的范 围. 1998年, Kondic等^[12]通过理论研究预测, 若静 态压强降低5%, 声致发光辐射将增大200%. 该预 测与Young等^[7]在高强磁场下气泡的声致发光实 验及本文模型结论一致.本文模型虽是简化模型, 未考虑热传导、蒸汽压及气泡内外物质交换等,但 仍具有一定的合理性.

图 3 Kondic 模型下不同静态压时气泡半径随时间的变化 Fig. 3. Bubble radius versus time during one period of acoustic field obtained by Kondic model.

关于磁场影响气泡动态的机理, Young等^[7] 认 为, 磁场可能是产生了一个对抗声压的应力, 该应 力来源于微泡界面收缩辐射的冲击波或磁通量压 缩. 刘海军和安字^[13] 计算也发现, 当气泡接近其 最小半径时, 气泡外围形成很薄的高压区, 这个高 压区的外部边缘逐渐向周围的水中传播形成冲击 波; 磁通量压缩则是一个声周期内气泡内电荷密度 振动的结果. 在气泡膨胀到最大尺寸时, 泡内仅有 少量或没有电荷存在, 磁场均匀透过微泡. 随着气 泡收缩, 泡内电荷密度急速增大, 电导率提高, 将磁 场线聚集于气泡中心. 磁场产生的对抗声压的应力 (反抗力) 的幅度由磁场渗透深度决定, 该深度依赖 于周围等离子体的电导率.

声致发光是气泡运动状态发生剧烈改变的一种表现形式,其机制非常复杂. Kondic等^[12]还研

究发现,静态压变化将影响气泡平衡半径 R₀,这使 得静态压对气泡动力学和声致发光的影响更为复 杂;另外,环境温度不同,气泡内蒸汽凝结、水的蒸 发等都会造成泡内蒸汽压的变化,水蒸气对声致发 光单气泡稳定性也会产生影响^[14].目前还没有考 虑磁场效应的气泡动力学准确模型.本文考虑磁 场存在时建立的气泡动力学方程是以R-P方程为 基础,其本质还是绝热模型,将此模型应用到讨论 声致发光是不完善的^[15],因为光辐射会导致能量 丢失.考虑光辐射,引入非绝热方程能得到更准确 的模型^[16];考虑气泡内外存在各种形式的物质交 换^[17]、水蒸气^[10]及泡内化学过程^[18]都可以使方 程得到发展.

4 结 论

激励声场作用下,运动水分子在磁场中受洛伦 兹力作用而使水中空化泡受到外加磁场的作用,本 文基于能量守恒建立了考虑磁场作用的气泡动力 学方程,分析了磁场对气泡的作用等,发现磁场作 用效果相当于增加了气泡所处的环境压强,且附加 在气泡上的压强随磁场的增强而线性增大.磁场附 加压强使气泡运动发生改变,随着磁场增大,气泡 膨胀率下降,膨胀最大半径减小,气泡崩溃速度下 降,总之,磁场抑制了气泡的运动.从影响气泡的 运动方面,外加磁场与增大静态压力具有相同的效 果. 该模型对磁场作用于气泡的附加压力进行了 估算,使对磁场与气泡作用模式有了进一步认识, 但考虑到模型的粗略性和局限性,在研究磁场对气 泡作用的机理上还很不完善,需要进一步建立精确 模型. 感谢张淑芬、袁明芳、马经纬同学在讨论分析中给予的 建议.

参考文献

- [1] Oh J M, Kim P J, Kang I S 2001 Phys. Fluids 13 2820
- [2] Dong W, Li R Y, Yu H L, Huang X 2004 J. Eng. Thermophys. 25 439 (in Chinese) [董伟, 李瑞阳, 郁鸿凌, 黄煊 2004 工程热物理学报 25 439]
- [3] Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 124301 (in Chinese) [沈壮志, 吴胜举 2012 物理学报 61 124301]
- [4] Shalnev K K, Shalobasov I A 1970 Trans. IAHR Symposium Paper H1
- [5] Shalobasov I A, Shalnev K K 1971 Heat Transfer-Soviet Research 3 141
- [6] Hammitt F G 1974 Report No. UMICH 01357-30-I
- [7] Young J B, Schmiedel T, Kang W 1996 *Phys. Rev. Lett.* 77 4816
- [8] Yasui K 1999 Phys. Rev. E 60 1759
- [9] Ding C F, Xing D 2004 Sci. China: Phys. Mech. Astron.
 34 257 (in Chinese) [丁春峰, 邢达 2004 中国科学: 物理 学 力学 天文学 34 257]
- [10] Li C H, An Y 2009 Sci. China: Phys. Mech. Astron. 52 593
- [11] Leighton T G 1994 The Acoustic Bubble (London: Academic Press) p85
- [12] Kondic L, Yuan C, Chan C K 1998 Phys. Rev. E 57 R32
- [13] Liu H J, An Y 2004 Acta Phys. Sin. 53 1406 (in Chinese)
 [刘海军, 安宇 2004 物理学报 53 1406]
- [14] Liu H J, An Y 2003 Acta Phys. Sin. 52 620 (in Chinese)
 [刘海军, 安宇 2003 物理学报 52 620]
- [15] Chen W Z, Huang W, Liu Y N, Gao X X 2006 Sci China: Phys. Mech. Astron. 36 113 (in Chinese) [陈伟中, 黄威, 刘亚楠, 高贤娴 2006 中国科学:物理学 力学 天文学 36 113]
- [16] Chen W Z, Wei R J, Wang B R 1996 Acta Phys. Sin. (Oversea Ed.) 5 620
- [17] Toegel R, Lohse D 2003 J. Chem. Phys. 118 1863
- [18] Matula T J, Crum L A 1998 Phys. Rev. Lett. 80 865

Effect of magnetic field on single-bubble in water^{*}

Mo Run-Yang[†] Wu Lin-Yan Zhan Si-Nan Zhang Yin-Hong

(Shaanxi Key Laboratory of Ultrasonic, College of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China)

(Received 22 October 2014; revised manuscript received 17 December 2014)

Abstract

In this paper, we extend the Rayleigh-Plesset model by considering the effect of a magnetic field on the nonlinear response of an oscillating spherical air bubble in water. Water molecules in motion, derived by a time varying ultrasound pressure field, suffer a torque from the magnetic field by Lorentz force. The rotational energy and the translational energy together constitute the kinetic energy of the water molecule. The work done by the pressure during the contraction and expansion of bubble is equal to the total kinetic energy of the water molecule in liquid. According to energy conservation, we establish a modified control equation of the bubble motion under the action of an applied external magnetic field. The integration of the nonlinear differential equation governing the bubble motion is performed analytically by using a regular expansion, and is solved numerically by using a fourth-order Runge-Kutta method. It is shown that the variation of ambient pressure changes the bubble dynamics when the magnetic field is off. The ambient pressure is increased due to the effect of external magnetic field. The pressure induced by magnetic field increases linearly with the increase of magnetic field intensity and the coefficient is about 10³ times. The bubble expansion rate, maximum radius, and the velocity of the collapsing bubble decrease as the magnetic field increases. It is predicted that the applying of a magnetic field can widen the pressure range and modify bubble dynamics.

Keywords:uniform magnetic field, water medium, single bubble, ambient pressurePACS:43.35.+d, 72.50.+b, 47.55.ddDOI:10.7498/aps.64.124301

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11274216).

[†] Corresponding author. E-mail: mmrryycn@snnu.edu.cn