物理学报 Acta Physica Sinica

最小可分辨气体浓度的等效测试评价方法 李家琨 王霞 金伟其 张旭

Equivalent-measurement evaluation method of minimum resolvable gas concentration

Li Jia-Kun Wang Xia Jin Wei-Qi Zhang Xu

引用信息 Citation: Acta Physica Sinica, 64, 160701 (2015) DOI: 10.7498/aps.64.160701 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.160701 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I16

您可能感兴趣的其他文章 Articles you may be interested in

基于 O2-O2 吸收的非相干宽带腔增强吸收光谱浓度反演方法研究

A concentration retrieval method for incoherent broadband cavity-enhanced absorption spectroscopy based on O_2 - O_2 absorption

物理学报.2015, 64(13): 130705 http://dx.doi.org/10.7498/aps.64.130705

基于差分光学吸收光谱方法的 OH 自由基定标系统研究

Calibration system for OH radicals based on differential optical absorption spectroscopy 物理学报.2015, 64(8): 080703 http://dx.doi.org/10.7498/aps.64.080703

制冷型红外成像系统内部杂散辐射测量方法

Internal stray radiation measurement for cooled infrared imaging systems 物理学报.2015, 64(5): 050702 http://dx.doi.org/10.7498/aps.64.050702

近高超声速高温蓝宝石窗口下中波红外成像退化分析仿真与性能测试实验 Method of imaging performance deterioration anlysis and its experiment simulated high heating sapphire MW infrared window during near-hypersonic flight 物理学报.2013, 62(23): 230702 http://dx.doi.org/10.7498/aps.62.230702

强流电子束阻抗对相对论速调管放大器注入及群聚特性的影响分析 Influence of the strong beam impedance on injection and bunching features of the relativistic klystron amplifier

物理学报.2013, 62(4): 040701 http://dx.doi.org/10.7498/aps.62.040701

最小可分辨气体浓度的等效测试评价方法^{*}

李家琨 王霞† 金伟其 张旭

(北京理工大学,光电成像技术与系统教育部重点实验室,北京 100081)

(2015年1月30日收到;2015年4月6日收到修改稿)

最小可分辨气体浓度 (MRGC) 是最新提出的一种客观评价气体泄漏红外成像检测系统的性能参数, 但 MRGC 测试系统较为复杂.本文首先推导建立了 MRGC 的数学模型, 然后在比较 MRGC 与常规热成像系统 的最小可分辨温差 (MRTD) 性能参数模型原理以及测试方法的基础上, 依据最小可分辨辐射响应差相等的条 件, 提出了一种气体泄漏红外成像检测系统的 MRGC 等效测试评价方法, 并对乙烯气体进行了 MRGC 的直 接测量与等效测试结果的比较.结果表明两者具有较好的一致性, 是一种可行的普适测试方法.由于等效测 试法只需常规 MRTD 测试结果及气体红外光谱数据库, 方法简单可靠, 具有推广应用价值, 对气体泄漏红外 成像检测系统的研发和应用具有重要的意义.

关键词: 气体泄漏检测, 红外成像, 最小可分辨温差, 最小可分辨气体浓度 PACS: 07.57.-c, 07.88.+y, 06.20.Dk DOI: 10.7498/aps.64.160701

1引言

气体泄漏红外成像检测技术以其高效率的遥 测成像模式成为气体泄漏检测的有效手段之一. 气 体泄漏红外成像检测技术主要可分为基于激光辐 射吸收的主动式成像和基于气体辐射及气体对背 景辐射吸收的被动式成像两大类,其中,被动式气 体红外成像技术以其不需要辐射源照明和专门的 辐射背景等优势,成为当前气体泄漏成像检测技 术的重要发展方向,产品市场占有率不断增长[1,2]. 然而,目前气体泄露红外成像系统的性能评价方法 (如噪声等效光谱辐射、噪声等效温差^[3]、噪声等 效浓度路径长度^[4,5]和最小可探测泄漏速率等^[6]) 都缺少对气体吸收特性和气体云团目标尺寸、距 离等因素的综合考虑,难以准确地评价系统的性 能. 我们2014年提出了一种气体泄漏红外成像 系统的最小可分辨气体浓度(minimum resolvable gas concentration, MRGC)性能参数,并在传统热 成像系统的最小可分辨温差(minimum resolvable temperature difference, MRTD)性能测试系统的 基础上, 搭建了 MRGC性能测试系统, 获得了较好 的性能测试效果^[7], 证明 MRGC 是一种可有效评 价气体泄漏红外成像系统性能的综合客观的评价 参数. 然而, MRGC性能测试系统较为复杂, 需要 控制的状态参数多, 操作难度大, 完成一次完整测 试的费用和时间成本都较高; 此外, 由于测试系统 所需的气体浓度计均是针对特定气体设计, 缺乏通 用性, 且其量程要与待测气体 MRGC 的测量区间 相适应, 使得目前针对其他测试方法设计的气体浓 度计可选类型有限, 甚至需要专门定制. 这些因素 都可能限制气体泄漏红外成像 MRGC 性能测试系 统的推广应用.

本文在热成像系统主要性能参数——MRTD 模型基础上,推导建立MRGC的数学模型,分析 MRTD与MRGC模型的关系,并借助目前通用的 气体红外吸收光谱数据库,研究气体泄漏红外成像 检测系统MRGC的等效测试评价方法,以降低气 体泄露红外成像检测系统性能测试评价的成本,推 动气体泄露红外成像检测技术的推广应用.

^{*} 北京市自然科学基金重点项目(批准号: 4121002)资助的课题.

[†]通信作者. E-mail: angelniuniu@bit.edu.cn

^{© 2015} 中国物理学会 Chinese Physical Society

2 热成像系统的MRTD模型分析

按照 MRTD 模型的推导思想^[8], MRTD 是人 眼感觉到的图像信噪比(视觉信噪比)大于或等于 视觉阈值信噪比时的四条带黑体目标和背景之 间的温差.一般地,系统接收的目标图像信噪比 SNR₀,可表示为

$$SNR_0 = \frac{V_s}{V_n} = \frac{\Delta T}{NETD},$$
 (1)

式中, V_{s} 和 V_{n} 分别是探测器的信号和噪声均方根 电压, ΔT 为黑体目标和背景之间的温差, NETD 为噪声等效温差.根据成像关系,对于工作波段 [λ_{1}, λ_{2}]的红外探测器, (1)式可具体表示为

$$\frac{V_{\rm s}}{V_{\rm n}} = \frac{D_0^2 \alpha \beta}{4 \left(A_{\rm d} \Delta f\right)^{1/2}} \int_{\lambda_1}^{\lambda_2} D^*\left(\lambda\right) \tau_{\alpha}\left(\lambda\right) \\ \times \tau_0\left(\lambda\right) \Delta M_{\rm t-b} \,\mathrm{d}\lambda, \tag{2}$$

式中, D_0 为光学系统通光口径, $\alpha \pi \beta$ 为目标对系统的张角, A_d 为探测器面积, Δf 为噪声等效带宽, $D^*(\lambda)$ 为探测器的比探测率, $\tau_{\alpha}(\lambda)$ 为大气的光谱透过率, $\tau_0(\lambda)$ 为光学系统的光谱透过率. ΔM_{t-b} 为目标和背景的光谱辐射出射度的差值,

$$\Delta M_{\text{t-b}} = \varepsilon_{\text{t}} \left(\lambda \right) M \left(\lambda, T_{\text{t}} \right) - \varepsilon_{\text{b}} \left(\lambda \right) M \left(\lambda, T_{\text{b}} \right), \quad (3)$$

式中, T_{t} , $\varepsilon_{t}(\lambda)$ 和 T_{b} , $\varepsilon_{b}(\lambda)$ 分别是目标和背景的温度和发射率; $M(\lambda, T)$ 为温度T 的黑体光谱辐射出射度, 即普朗克公式:

$$M(\lambda, T) = \frac{c_1}{\lambda^5} \frac{1}{\exp\left(c_2/(\lambda T)\right) - 1},\qquad(4)$$

式中, $c_1 = 3.74 \times 10^{-16}$ (W·m²), $c_2 = 1.44 \times 10^{-2}$ (m·K) 分别为第一和第二辐射常数.

对于实验室的黑体目标和背景, $\varepsilon_{t}(\lambda) = \varepsilon_{b}(\lambda) = 1, \tau_{a}(\lambda) = \tau_{0}(\lambda) = 1, \Delta M_{t-b}$ 可改写为

$$\Delta M_{\rm t-b}^{\rm b} = M\left(\lambda, T_{\rm t}\right) - M\left(\lambda, T_{\rm b}\right)$$
$$\approx \frac{\partial}{\partial T} M(\lambda, T_{\rm b}) \Delta T, \tag{5}$$

式中, $\Delta T = T_{t} - T_{b}$ 为黑体目标与背景的温差. 人眼观察时的视觉信噪比 SNR_V 为

$$SNR_{V}(f) = p_{corr}(f) \cdot SNR_{0}$$
$$= p_{corr}(f) \cdot \frac{D_{0}^{2}\alpha\beta}{4\left(A_{d}\Delta f\right)^{1/2}} \int_{\lambda_{1}}^{\lambda_{2}} D^{*}(\lambda) \Delta M_{t-b} d\lambda,$$
(6)

其中, $p_{corr}(f)$ 是与成像系统的调制传递函数 MTF_s(f)、人眼调制传递函数MTF_{eye}(f)、人眼 匹配滤波器以及其他相关修正系数的滤波函数, 对 一代和二代热成像系统的 $p_{corr}(f)$ 可分别参阅文 献 [8, 9].

当视觉信噪比等于视觉阈值信噪比SNR_{DT}时,目标黑体与背景黑体之间的温差ΔT就是热成像系统的MRTD值.

目前, 热成像系统 MRTD 模型已较为成熟, 并 发展了通用的 MRTD 测试方法和测试系统, 成为 热成像系统研制、生产和使用过程中必不可少的质 量检测手段.

3 气体泄漏红外成像检测系统的 MRGC模型

如图1, MRGC的测试靶标是在普通面型差分 黑体辐射源的目标黑体与背景黑体之间插入一个 具有一定厚度l的红外气室, 气室的前后两个端面 是由镀制了在工作波段尽可能平坦增透膜的红外 透射材料(如ZnSe, Ge等)制成的窗口, 使得原来 作为目标的背景黑体镂空部分被气室目标所覆盖. MRGC测量靶标的目标辐射由目标黑体的辐射经 过红外气室中的气体吸收之后出射的辐射和气体 自身辐射构成, 而背景辐射仍为背景黑体辐射. 这 样, 采用与MRTD相同的测量方法和准则, 通过改 变恒温气体的浓度, 记录气体四条带靶标恰可分辨 时对应的待测气体浓度, 该浓度与气室厚度的乘积 即为系统的MRGC值^[7].

图1 MRGC测试靶标及其气室

根据MRGC的定义,人眼能分辨四条带气体 目标图案时,同样应满足视觉信噪比大于或等于视 觉阈值信噪比,根据(1)和(6)式,有

$$SNR_V = p_{corr} \cdot \frac{V_s}{V_n}.$$
 (7)

对于气体目标和黑体背景, (3) 式的光谱辐射 出射度差值 ΔM_{t-b} 应改写为

$$\Delta M_{\rm gas-b} = [1 - \tau_{\rm gas} (\lambda)] M (\lambda, T_{\rm gas}) + \tau_{\rm gas} (\lambda) M (\lambda, T_{\rm t}) - M (\lambda, T_{\rm b}), \quad (8)$$

式中, $\tau_{gas}(\lambda)$ 为气体光谱透过率, 当气体浓度均匀 分布, 根据朗伯-比尔定律:

$$\tau_{\rm gas}\left(\lambda\right) = \exp\left[-\alpha_{\rm gas}\left(\lambda\right)cl\right],\tag{9}$$

式中, $\alpha_{gas}(\lambda)$ 为气体的光谱吸收系数 (m⁻¹); c 为 气体浓度 (ppm); l 为视线方向上的路径长度 (m). 对于某种确定的气体, 当已知气体的温度等状态参 数, 可从气体红外光谱数据库中查到 $\alpha_{gas}(\lambda)$, 从而 通过 (9) 式确定出 $\tau_{gas}(\lambda)$.

考虑到测量前已将气室窗口透射比的影响进 行了校正^[7],可认为 $T_{\rm t} = T_{\rm b}$,且也在实验室测试, $\tau_{\rm a}(\lambda) = \tau_0(\lambda) = 1$,整理(8)式,可得

$$\Delta M_{\rm gas-b}(\lambda) = [1 - \tau_{\rm gas}(\lambda)] [M(\lambda, T_{\rm gas}) - M(\lambda, T_{\rm b})]. \quad (10)$$

将 (2) 和 (10) 式依次代入 (7) 式, 可得人眼视觉 信噪比为

$$SNR_{V}(f) = p_{corr}(f) \cdot \frac{D_{0}^{2}\alpha\beta}{4(A_{d}\Delta f)^{1/2}} \int_{\lambda_{1}}^{\lambda_{2}} D^{*}(\lambda) \\ \times \{1 - \exp\left[-\alpha_{gas}\left(\lambda\right)cl\right]\} \\ \times \left[M\left(\lambda, T_{gas}\right) - M\left(\lambda, T_{b}\right)\right] d\lambda.$$
(11)

当人眼视觉信噪比等于视觉阈值信噪比 SNR_{DT}时, (11)式中的气体浓度值*c*与红外气室 厚度*l*的乘积就是气体泄漏红外成像检测系统的 MRGC值.

4 MRGC等效测试评价方法

由(6)和(11)式可知,在相同的实验室测试环 境下,同一套红外成像系统接收到的目标和背景的 辐射出射度差值是影响观察者视觉信噪比的惟一 因素,即当

$$\int_{\lambda_{1}}^{\lambda_{2}} D^{*}(\lambda) \,\Delta M_{\text{gas}-b} \,\mathrm{d}\lambda = \int_{\lambda_{1}}^{\lambda_{2}} D^{*}(\lambda) \,\Delta M_{\text{t}-b}^{b} \,\mathrm{d}\lambda,$$
(12)

人眼具有相同的视觉感知效果. 由此, 我们提出 MRGC 等效测试评价方法为:

1) 在已知目标黑体温度 T_t 和背景黑体温度 T_b 的条件下,通过实际测量或模拟计算方法,得到热成像系统对应不同频率f的MRTD(f);

2) 若已知探测器的工作波段 [λ_1 , λ_2] 和 (相 对) 响应率 $D^*(\lambda)$, 对于靶标频率 f, 由 T_b 和 $T_t = T_b - MRTD(f)$ (对于管道或储气罐等泄漏的气体, 因膨胀吸热, 其温度低于环境和背景温度), 计算 (12) 式右端, 得到系统的最小可分辨辐射响应差值;

3) 假设在相同测试条件 (靶标频率 f 和背景黑 体温度 T_b 相同) 下测试,将给定的气体温度 T_{gas} 、 红外光谱吸收系数 $\alpha_{gas}(\lambda)$ 、路径长度 l等状态参数 代入 (10) 式,再由 (12) 式求得气体浓度 c,从而得 到系统对待检测气体的 MRGC(f, T_{gas});

4) 对应红外热成像系统的MRTD(f)曲线或 离散的测量值,可推算出系统对应待检测气体的 MRGC(f,Tgas)曲面或离散测量值.

4.1 MRGC等效测试评价的模拟计算 与分析

不失一般性,下面针对采用非制冷长波红外成 像系统(可认为 $D^*(\lambda) = D^*$)对乙烯气体和氨气的 探测问题,说明MRGC等效测试方法. 假设某型非 制冷长波红外成像系统的参数如下:光谱响应波段 为8.0—12.0 μm,像元数为320 × 240,像元尺寸为 17 μm×17 μm, F数为1.1, NETD < 50 mK,镜头 焦距为25 mm,故特征频率 $f_0 = 0.735$ cyc/mrad ($f_0 = 2$ DAS, DAS 为所测系统的瞬时视场);背景 黑体温度 $T_b = 300$ K,气室路径长度l = 0.1 m. 图 2给出模拟的热像仪MRTD(f)曲线,由此可分 别推算出热像仪对乙烯和氨气的MRGC(f, T_{gas}) 曲面(图3).

图 2 模拟的热像仪 MRTD(f) 曲线

Fig. 2. Plot of the simulated MRTD(f) curve.

160701-3

这里以特征频率 f_0 具体说明计算过程:由于MRTD(f_0) = 0.70 K,取目标黑体温度 T_t = (300 – 0.70) K = 299.30 K,代入(12) 式右端,可得靶标和背景黑体的最小可分辨辐射响应差为

$$\int_{\lambda_1}^{\lambda_2} \Delta M_{t-b}^b d\lambda$$

= 1.3805 (W · m⁻² · µm⁻¹). (13)

假设MRGC测试气室中均匀乙烯气体的温度 $T_{gas} = 290 \text{ K}$,从气体红外光谱数据库^[10]查询乙 烯气体的光谱吸收系数 $\alpha_{gas}(\lambda)$,则由(12)式可得 MRGC(f_0, T_{gas}) = 1.0439 × 10³ ppm·m;其他频率 点可依次类推得到.

图 4 热像仪对乙烯气体的 MRGC(f) 模拟曲线 Fig. 4. Plots of the simulated MRGC(f) curves for various gas temperatures (ethylene).

由于气体的光谱吸收系数与气体温度密切相 关,间接影响气体的光谱透过率,且由(8)式可知, 气体温度对气体自身辐射和背景透过气体的辐 射均有影响.图4是模拟的设定温度的乙烯气体 MRGC(f)曲线,可见随着空间频率的不断增大,不 同气体温度下的MRGC数值不断增大,且与背景 黑体温差越小,MRGC增长越快.图5给出了特征 频率 f_0 处乙烯气体温度 T_{gas} 与 MRGC(f_0) 的关系 曲线 (粗实曲线), 其以 $T_{gas} = 300$ K 的竖直线为渐 近线 (细实直线), 即此时无论气体浓度多大 (这里 指气体在常压状态下, 最大浓度为10⁶ ppm), 系统 都无法分辨气体所形成的四杆条纹图案.

图 5 乙烯气体 MRGC(f_0) 与 T_{gas} 的关系曲线 (粗实线), 竖直线是 $T_{gas} = 300$ K 渐近线

Fig. 5. Plot of the relationship between $\text{MRGC}(f_0)$ and the gas temperature T_{gas} (the bold solid curve) for ethylene. The thin vertical line is the asymptote $T_{\text{gas}} = 300$ K.

4.2 MRGC等效测试评价结果与实测 结果比较

利用已搭建的MRGC测量系统^[7]完成4.1 节中非制冷长波红外成像系统对乙烯气体的 MRGC测试,并测试了该系统的负向MRTD数值 (MRTD-),实测结果如表1所示.根据测试时的靶 标空间频率*f*、背景黑体温度*T*_b、气体温度*T*_{gas}、路 径长度*l*以及乙烯气体的光谱吸收系数α_{gas}(λ)等 参数,利用本文等效测试评价方法可求得MRGC 等效测试结果,如表1中粗体数据.图6直观地给 出了MRGC等效测试结果(粗虚线)与MRGC实 测结果(粗实线)以及系统的负向MRTD数值(细 实线)的关系,可以看出,对乙烯气体的MRGC 等效测试结果与实测结果有较好的一致性,表 明MRGC等效测试评价方法的正确性. MRGC 等效测试值与实测值的误差在±20%以内,最大 误差位于0.214f₀处,约为18.26%.由于MRGC等 效测试值是基于系统MRTD值计算得到的,因此 MRGC等效测试值和实测值之间误差产生的原因 与MRGC和MRTD的测量误差产生的原因^[7]应 是相同的,这里不再详细分析.

综上所述, MRGC等效测试评价方法只需利 用传统的MRTD的测试或模拟结果, 并结合气体 红外吸收光谱特征库就能方便地计算出气体泄漏 红外成像检测系统对大部分待测气体的MRGC值, 实现系统的MRGC性能评价, 避免了复杂测量系 统的搭建, 推广应用成本很低. 另外, 通过改变探 测器响应波段范围和气体温度等参数, 等效测试评 价方法可以方便地分析各个参数对气体泄漏红外 成像检测系统性能的影响,指导气体泄漏红外成像 检测系统的研发以及性能优化,降低研发周期和研 发成本.

图 6 (网刊彩色) 某非制冷长波红外成像检测系统的 MRTD-数值(右轴)及其对乙烯的MRGC_m数值(左 轴)和MRGC_em数值(左轴)比较

Fig. 6. (color online) Comparison of the MRTD-value (corresponding to the the right axis), MRGC_m value (corresponding to the left axis) and MRGC_em value (corresponding to the left axis) of an uncooled long-wave infrared imaging system.

表1 乙烯 MRGC 实测结果与等效测试结果

Table 1. MRGC measurement (MRGC_m) and equivalent-measurement (MRGC_em) results of ethylene.

Spatial	Gas	Temperature of	MRTD-/°C	Gas	MRGC m/ppm·m	MRGC em/ppm·m
frequency	temperature/°C	background blackbody/°C	,	concentration/ppm	_ /	
$0.21 f_0$	20.0	28.2	0.17	6752	265.7	325.0
$0.25f_{0}$	20.2	28.0	0.18	10490	412.8	358.9
$0.30 f_0$	19.9	28.1	0.22	9304	366.1	433.2
$0.35f_{0}$	20.1	28.2	0.30	15869	624.4	615.0
$0.40 f_0$	20.2	28.1	0.27	14751	580.5	539.9
$0.45 f_0$	20.1	28.1	0.31	14513	571.1	635.5
$0.50 f_0$	20.2	28.1	0.33	17037	670.4	682.7
$0.55 f_0$	19.9	28.1	0.33	16750	659.1	682.7
$0.60 f_0$	19.8	28.1	0.45	23276	915.9	985.7

5 结 论

MRGC 是一种客观评价气体泄漏红外成像检测系统性能的参数,鉴于 MRGC 测试系统的复杂性,本文在比较 MRGC 与常规热成像系统 MRTD 性能参数在模型原理以及测试方法的基础上,依据最小可分辨辐射响应差相等的条件,提出了气体泄漏红外成像检测系统的 MRGC 等效测试评价方法,并针对乙烯气体进行了 MRGC 的直接测量与等效

测试评价结果的比较,结果表明两者具有较好的一致性,是一种有效的测试方法.

MRGC等效测试评价方法可在传统热成像系统 MRTD测试系统的基础上,结合气体红外吸收 光谱数据库,实现热成像检测系统对大多数危险气体 MRGC 的测试评价,避免了复杂测试系统的搭 建和实验测试工作,方法简单,评价结果可靠,具有 推广应用价值,对气体泄漏红外成像检测系统的研 发和应用具有重要的意义.

参考文献

- Zhang J L, Nie H B, Wang Z B, Tian E M, Zhang H 2008 Journal of North University of China (Natural Science Edition) 29 265 (in Chinese) [张记龙, 聂宏斌, 王志斌, 田 二明, 张辉 2008 中北大学学报 (自然科学版) 29 265]
- [2] Liu X, Wang L X, Jin W Q, Wang X 2009 Infrared Technology 31 563 (in Chinese) [刘秀, 王岭雪, 金伟其, 王霞 2009 红外技术 31 563]
- [3] Samer S, Roland H, Peter R, Jens E, Axel K, Jörn H G 2012 Opt. Eng. 51 111717
- [4] Jonas S, Petter W, Hans E, Sune S 2000 Opt. Express 6 92

- [5] Edward N, Shankar B, Philippe B 2010 Proc. SPIE 7661 76610K
- [6] Nathan H, Robert T K, Christopher G M, Jeffrey A P, Paul D, Dave F, Paul S, Elizabeth A 2013 Proc. SPIE 8710 871005
- [7] Li J K 2015 Ph. D. Dissertation (in Chinese) [李家琨 2015 博士论文 (北京:北京理工大学)]
- [8] Lloyd J M 1975 Thermal Imaging System (New York: Plenum Press)
- [9] Michael C, Dudzik 1993 The Infrared & Electro-Optical System Handbook (Vol. 4) (Bellingham: SPIE Optical Engineering Press) pp235–241
- [10] Pacific Northwest National Laboratory http://www. pnl. gov/ [2014-08-10]

Equivalent-measurement evaluation method of minimum resolvable gas concentration^{*}

Li Jia-Kun Wang Xia[†] Jin Wei-Qi Zhang Xu

(Key Laboratory of Photoelectronic Imaging Technology and System of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, China)

(Received 30 January 2015; revised manuscript received 6 April 2015)

Abstract

Currently, there is no standard method of evaluating the performance of the gas leak infrared imaging detection system. The evaluating criterions vary greatly and are deficient in aspects of completeness and accuracy, such as noise equivalent temperature difference, noise equivalent concentration path length, and minimum detectable leak rates. Minimum resolvable gas concentration (MRGC) is a latest proposed parameter for evaluating the performance of a passive gas leak infrared imaging detection system, which takes full advantage of the comprehensive evaluation capability of the temperature resolution and spatial resolution of the minimum resolvable temperature difference (MRTD) model. The MRGC takes into account the environmental and gas state parameters, the size of the gas plume and other factors which influence the MRGC measurement. However, the MRGC measurement system is complicated and many state parameters need to be controlled, especially the wide range and dedicated gas concentration meters are required. Therefore, the mathematical model of MRGC is derived and established. By comparing the principles and measurement methods of the performance parameters, MRGC and MRTD, a novel MRGC equivalent measurement evaluation method is proposed, on condition that the minimum resolvable radiation differences are equal. Using ethylene and ammonia as the target, the equivalently measured results of MRGC are obtained. The results show that the MRGC increases with the spatial frequency increasing and the smaller the temperature difference is between the gas and the background blackbody, the faster the MRGC increases. What is more, when the spatial frequency is fixed, MRGC increases with the gas temperature approaching to the background temperature. The background temperature varies asymptotically, which means that if the gas temperature equals the background temperature, the system cannot detect the gas four-bar pattern, no matter what the gas concentration is (here, the maximum gas concentration is 1 million ppm under normal pressure.). The directly measured and equivalently measured results of ethylene are in good agreement within errors of less than $\pm 20\%$, and the maximum error is 18.26% at a spatial frequency of $0.214f_0$, which demonstrates the feasibility and effectiveness of the method. Because the equivalent measurement method only needs the traditional MRTD measurement results and the gas infrared spectrum database, it is simple and reliable, which is very significant for the study and application of the gas leak infrared imaging detection systems.

Keywords: gas leak detection, infrared imaging, minimum resolvable temperature difference, minimum resolvable gas concentration

PACS: 07.57.–c, 07.88.+y, 06.20.Dk

DOI: 10.7498/aps.64.160701

^{*} Project supported by the Key Project of the Natural Science Foundation of Beijing, China (Grant No. 4121002).

[†] Corresponding author. E-mail: angelniuniu@bit.edu.cn