物理学报 Acta Physica Sinica

Au 纳米颗粒和 CdTe 量子点复合体系发光增强和猝灭效应 周小东 张少锋 周思华 Enhancement and quenching of photoluminescence from Au nanoparticles and CdTe quantum dot composite system Zhou Xiao-Dong Zhang Shao-Feng Zhou Si-Hua

引用信息 Citation: Acta Physica Sinica, 64, 167301 (2015) DOI: 10.7498/aps.64.167301 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.167301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I16

您可能感兴趣的其他文章 Articles you may be interested in

纳米银六角阵列在掺氧氮化硅中的局域表面等离激元共振特性仿真

Simulation of localized surface plasmon resonance of hexagonal Ag nanoarrays and amorphous oxidized silicon nitride

物理学报.2015, 64(17): 177301 http://dx.doi.org/10.7498/aps.64.177301

Au 纳米颗粒和 CdTe 量子点复合体系发光增强和猝灭效应 Enhancement and quenching of photoluminescence from Au nanoparticles and CdTe quantum dot composite system 物理学报.2015, 64(16): 167301 http://dx.doi.org/10.7498/aps.64.167301

复合金属光栅模式分离与高性能气体传感器应用

Split modes of composite metal grating and its application for high performance gas sensor 物理学报.2015, 64(14): 147302 http://dx.doi.org/10.7498/aps.64.147302

径向偏振光下的长焦、紧聚焦表面等离子体激元透镜

Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light 物理学报.2015, 64(9): 097301 http://dx.doi.org/10.7498/aps.64.097301

十字结构银纳米线的表面等离极化激元分束特性

Surface plasmon polaritons splitting properties of silver cross nanowires 物理学报.2015, 64(9): 097303 http://dx.doi.org/10.7498/aps.64.097303

Au纳米颗粒和CdTe量子点复合体系 发光增强和猝灭效应^{*}

周小东1)† 张少锋2) 周思华1)

(周口师范学院物理与机电工程学院,周口 466001)
 (河南科技大学物理工程学院,洛阳 471023)
 (2015年3月1日收到; 2015年4月9日收到修改稿)

利用金属蒸发真空多弧离子源注入机,将Au离子注入到高纯石英玻璃来制备镶嵌有Au纳米颗粒的衬底材料,随后将化学方法合成的CdTe量子点旋涂在玻璃衬底上制备了Au纳米颗粒和CdTe量子点复合体系. 通过对镶嵌有Au纳米颗粒的衬底进行热退火处理来控制Au纳米颗粒的生长和分布,系统研究了Au纳米颗粒的局域表面等离子体共振对CdTe量子点光致发光性能的影响.利用光学吸收谱、原子力显微镜、透射电子显微镜和光致发光谱对样品进行了表征和测试.光致发光谱表明,Au纳米颗粒的局域表面等离子体对CdTe量子点的发光有增强效应也有猝灭效应.深入分析了Au纳米颗粒和CdTe量子点之间的相互作用过程,提出了关于Au-CdTe纳米复合体系中CdTe发光增强和猝灭的新机理.该实验结果为利用金属纳米颗粒表面等离子体技术制备高发光性能的光电子器件提供了较好的参考.

关键词: 离子注入, Au 纳米颗粒, CdTe 量子点, 光致发光 PACS: 73.20.Mf, 78.55.-m

DOI: 10.7498/aps.64.167301

1引言

表面等离激元 (surface plasmons, SPs) 是金属纳米结构中自由电子的共谐振荡^[1], 它有两种 模式:一种是局域的表面等离激元 (localized surface plasmon, LSP)^[2,3]; 另一种是传播型的表面等 离激元 (propagating surface plasmon polaration, SPP)^[4]. 表面等离激元由于具有一系列奇特的光 学性质,如对光的选择吸收和散射、局域电场增 强、电场强束缚、可远程传播等,使得它在材料、生 物、化学等领域得到广泛的应用.如利用金属纳 米颗粒对光的强烈散射效应作为分子图像的生物 标记^[5]; 纳米颗粒对光强烈的吸收可应用于控制 药物在人体内的输运^[6]和对癌细胞的光热处理^[7]; Au纳米颗粒的局域表面等离激元共振吸收可以使 Si纳米颗粒在近红外区域的光吸收增强两个数量 级^[8];链状纳米颗粒阵列可作为波导把电磁能量传 递到几个微米的距离^[9];利用传播型的表面等离 激元(SPP)的传导特性可以实现基于SPP的光开 关^[10-12]以及单量子点的远程激发和探测^[13].另 外,金属纳米颗粒LSP的局域电场增强效应会增强 光与颗粒表面物质的相互作用,导致如典型的表面 增强拉曼散射^[14,15]和增强半导体发光等^[16-18]效 应的出现.

事实上,由于半导体的激子和金属的表面等离 激元之间的耦合过程十分复杂,在半导体-金属耦 合体系中半导体的发光有增强的现象,也有发光猝 灭的现象发生^[16-21],半导体发光增强和猝灭的机 理至今还不十分清晰,因此,更好地理解激子和表 面等离激元的耦合过程和机理就显得尤为重要.半

* 国家自然科学基金 (批准号: 11405280, 51402090)、河南省教育厅科研项目 (批准号: 14B140021) 和周口师范学院博士科研启动经费 (批准号: zksybscx201210) 资助的课题.

†通信作者. E-mail: zhouxd516@163.com

© 2015 中国物理学会 Chinese Physical Society

导体的发光增强或猝灭取决于很多因素,如半导体 发光能量和金属表面等离激元的能量之间的匹配、 金属的几何形状、半导体和金属之间的距离等.一 般来说,半导体发光能量和金属表面等离激元能量 越匹配(接近或相等),共振耦合效应越强,越能带 来更大的发光增强^[22,23].此外,金属纳米颗粒的尺 寸以及金属纳米颗粒和半导体之间的距离对发光 增强和猝灭的竞争过程有一定影响^[17,24-26].

离子注入技术是一种将纳米尺寸的颗粒镶嵌 在衬底近表面而形成纳米颗粒复合材料的最有效、 方便的方法之一, 且金属纳米颗粒受到衬底材料 的保护而具有较好的稳定性. 早在1977年, Arnold 和Borders^[27] 第一次利用离子注入技术在SiO₂ 基 底中制备了镶嵌的Au, Ag 纳米颗粒.结合前期研 究工作基础^[21],本文设计了一种独特的方法来制 备Au纳米颗粒和CdTe量子点耦合体系,先通过 离子注入法在SiO2衬底表面形成镶嵌的Au纳米 颗粒,随后将Au注入样品经过热退火处理来控制 Au纳米颗粒的生长和分布,接下来将化学合成的 CdTe 量子点的胶体旋涂于镶嵌有 Au 纳米颗粒的 SiO₂衬底表面.提出了一种半导体激子和金属表 面等离子体耦合过程,来解释该Au-CdTe纳米复 合体系中CdTe发光增强和猝灭现象,将有助于澄 清半导体和金属耦合体系中的光发射增强和猝灭 机理.

2 实 验

采用金属蒸发真空多弧离子源 (MEVVA) 引出的强束流脉冲 Au离子注入到高纯光学石英玻璃片, Au离子注入的加速电压分别为40 kV,离子注入的剂量是1×10¹⁷ ions/cm².将 Au离子注入后的样品在普通的管式退火炉中,空气氛围下进行热退火处理,退火温度是600—1000°C,间隔100°C,退火时间为1 h,系统研究了热退火处理对 Au纳米颗粒的成核、生长、分布以及光学性能的影响.

CdTe量子点制备所需的实验材料有:硝酸 镉(Cd(NO₃)₂),碲粉(Te),硼氢化钠(NaBH₄),巯 基乙酸(TGA),氮气(N₂),氢氧化钠(NaOH),双 蒸水.量子点合成具体实验过程如下:1)合成 NaHTe水溶液,首先将46 mg的Te粉及2 mL的 双蒸水加入单颈烧瓶中,然后在氮气的保护下, 将40 mg NaBH₄加入,反应2 h后得到无色的 NaHTe水溶液;2)合成CdTe量子点,将0.5 mmol 的 Cd(NO₃)₂ 和 0.5 mmol 的 TGA 溶于 100 mL 水 中,用 1.0 mol/L 的 NaOH 水溶液对溶液的 pH 值进 行调节 (约 8.2),并将此溶液用氮气除氧 30 min, 然 后,在激烈搅拌下,将步骤 1)中新配置的 NaHTe (0.062 mmol)迅速注入上述溶液,在氮气的保护下 回流 30 min 即得 CdTe 量子点胶体.

采用紫外-可见双光束分光光度计(Varian Carry 5000)对样品的光吸收性能进行表征,样品的表面形貌和微观结构分别通过原子力显微镜(AFM, Shimadzu, SPM-9500 J3)和透射电子显微镜(TEM, JEOL 2010 (HT))进行表征.室温光致发光谱(PL谱)测试采用的是Jobin-Yvon公司生产的激光显微拉曼光谱仪,激发光源为波长488 nm的Ar+激光器,采用CCD探测器对数据进行采集.

3 结果与讨论

3.1 SRIM软件模拟Au离子注入的射程 分布

为了使离子注入制备的Au纳米颗粒分布于衬底近表面,利用SRIM (stopping and range of ions in matter)软件程序模拟了40 kV离子注入能量下Au离子射程深度分布图,如图1所示.可见Au离子分布的最大射程在25 nm左右,同时Au离子大部分都分布在从衬底表面到40 nm深的位置.

图 1 SRIM 软件模拟 40 kV Au 离子注入的射程分布 (图 中实线为拟合的高斯分布曲线)

Fig. 1. The Au implanted profiles at 40 kV simulated by SRIM software (the solid line shows the Gaussian fitting result).

3.2 热退火对Au纳米颗粒表面等离子 共振吸收性能的影响

图 2 给出了 Au 离子刚注入样品以及注入样品 经 700—1000 °C 热退火处理后的光吸收谱.可见 Au离子刚注入样品中在520 nm附近出现一个微弱的吸收峰,该吸收峰是Au纳米颗粒的局域表面等离激元共振(localized surface plasmon resonance, LSPR)吸收峰^[28,29],这一结果表明由于Au离子的注入剂量较高(1×10¹⁷ ions/cm²),在刚注入样品中,Au离子在衬底内部已经自发团聚成核而形成纳米颗粒了.同时光吸收谱中出现的微弱的吸收峰也暗示了衬底中Au颗粒的尺寸较小.随着退火温度的增加,Au纳米颗粒的局域表面LSPR吸收峰越来越尖锐,同时Au纳米颗粒的局域表面LSPR吸收峰的位置随退火温度升高都发生了红移(向长波长方向移动).金属纳米颗粒的吸收峰的峰强和峰位与金属纳米颗粒的尺寸、分布、介质环境等诸多因素有关,这里我们主要认为是由于Au纳米颗粒的尺寸和分布改变造成的.一般而言,随着退火

温度的升高,金属纳米颗粒的尺寸会增大,颗粒尺 寸增大,在量子尺寸效应下导致Au纳米颗粒的局 域表面LSPR吸收峰发生红移.

3.3 Au离子注入样品微观结构的透射电镜 (TEM)表征

为了证实样品经热退火处理后纳米颗粒会逐 渐团聚而长大,并揭示Au纳米颗粒经热退火处理 后颗粒的生长和分布与样品光吸收性能之间的关 系,对样品进行了TEM表征.如图3所示,图3(a), (b), (c) 和 (d) 分别是 Au 注入能量为 40 kV 时, Au 离子刚注入的样品和样品经过800,900 和1000°C 退火后样品的截面TEM像. 从图3(a)可以看出, Au离子刚注入样品中, Au纳米颗粒尺寸较小(直 径2 nm 左右). 当注入的样品经过热退火处理后, Au纳米颗粒随退火温度的升高而逐渐长大, 当退 火温度在900°C(图3(c)),一些颗粒的尺寸达到 20 nm 左右. Au 纳米颗粒的生长过程可以用奥斯 瓦尔德成熟机理 (Ostwald ripening)^[30] 来解释, 随 着退火过程的进行,小尺寸的纳米颗粒会逐渐融 合, 生成粒径更大的纳米颗粒, Ostwald 过程强调 的是大尺寸纳米颗粒依靠摄取小粒径纳米颗粒的 质量进行生长,因此大尺寸纳米颗粒逐渐长大的过 程,伴随着小颗粒逐渐消失.

TEM结果证实Au纳米颗粒在热退火下的生长过程与光吸收结果中Au纳米颗粒吸收峰的变化是一致的,随着热退火温度的升高,Au纳米颗粒的平均尺寸逐渐增大,颗粒尺寸的增大带来光吸收谱

图 3 40 kV Au 离子刚注入样品 (a) 和样品在 (b) 800 °C, (c) 900 °C 和 (d) 1000 °C 退火后 TEM 像 Fig. 3. TEM images of the Au ions at 40 kV as-implanted sample (a) and the implanted samples annealed at 800 °C (b), 900 °C (c) and 1000 °C (d).

中吸收峰的红移. 然而当退火温度达到1000°C,在 SiO₂衬底表面出现了大量Au纳米颗粒,这一现象 是由于在氧气氛围下退火, Au原子在O₂分子的驱 使下向样品表面迁移,而逐渐在样品表面团聚成大 的颗粒. 这一结果与Mattei研究小组^[28,29]报道的 实验结果相符合,也证实了氧化性气氛热退火过程 中,气氛中的O₂分子会促使Au原子的扩散,因此 有利于Au纳米颗粒的团聚长大和颗粒向样品表面 扩散.

3.4 Au纳米颗粒和CdTe量子点复合体系的光致发光谱

我们选择40 kV Au离子注入的SiO2石英片 经600,700,800,900和1000°C退火后作为复合 体系的衬底,为描述方便,这里将这几个样品分 别用Au40-600, Au40-700, Au40-800, Au40-900和 Au40-1000表示. 将化学合成CdTe量子点胶体旋 涂在这些镶嵌有Au纳米颗粒的衬底上,同时也选 取了空白的石英玻璃片作为参照样. 对这组样品进 行了光致发光(PL)测试, PL谱如图4 所示.显然, 与空白石英片上CdTe量子点PL谱相比, 镶嵌有 Au 纳米颗粒的衬底样品的 CdTe 量子点的 PL 谱有 较大影响. PL 谱中发光峰的强度随衬底中 Au 纳米 颗粒的退火温度有明显的关系, 当Au纳米颗粒退 火温度较低时(600和700°C)CdTe量子点的发光 强度被减弱,随后当退火温度的升高时,PL 谱发光 强度逐渐增强,在Au40-900样品中PL谱发光强度 被增强了6倍. 然而, 当Au纳米颗粒的退火温度达 到1000°C, PL 谱的发光强度反而又急速被猝灭.

图4 (网刊彩色) CdTe量子点旋涂在空白玻璃片(1) 和Au离子注入并经600—1000°C热退火后的玻璃片上 (2—6)的PL谱

Au纳米颗粒对CdTe量子点PL谱的影响与前 期研究工作中报道的 Ag 纳米颗粒和 ZnO 薄膜耦合 体系中PL 增强和猝灭的结果类似^[21]. 结合图2中 的光吸收谱和图3中TEM结果,对本实验Au纳米 颗粒和CdTe量子点耦合体系中PL增强和猝灭的 机理给出如下解释.光吸收谱中Au纳米颗粒在 520 nm 左右有一个很强的 LSPR 吸收峰, 该吸收 的位置与CdTe量子点的发光峰位置(530 nm)十 分接近,因此Au纳米颗粒LSP和CdTe量子点激 子之间能发生局域场共振耦合效应. 由图3可见, SiO2中的Au纳米颗粒的尺寸随退火温度的升高 而逐渐增大,故而PL发光峰的强度与Au纳米颗 粒的尺寸有一定关系. 当退火温度较低时(600和 700°C), 样品中Au纳米颗粒的尺寸较小, Au纳米 颗粒对光的等离子体共振吸收大于散射部分,因 此CdTe量子点的发光被Au纳米颗粒有效的吸收, 另一方面,由于CdTe的发光能量和Au的LSPR能 量接近,二者之间将发生非辐射能量转移,从而导 致CdTe 量子点的发光被减弱. 随着退火温度升 高(800和900°C), Au纳米颗粒尺寸增大, Au纳米 颗粒周围的局域场效应增强. Au纳米颗粒的局域 表面等离子与CdTe量子点的激子发生共振耦合, 一方面,局域场耦合光入射场增加CdTe量子点的 激子产生率,同时Au纳米颗粒的LSPR能量大于 CdTe的发光能量, Au纳米颗粒的局域表面等离子 体波可作为一个激发波激发 CdTe 发光, 所以 CdTe 量子点的发光被增强,且PL的峰位发了蓝移.然 而,当Au纳米颗粒退火温度达到1000°C时,PL峰 的发光强度又急剧减弱, 根据 TEM 结果, 图 3 (d) 中样品表面出现了大量Au纳米颗粒,这样当再向 样品表面旋涂CdTe量子点时,CdTe 量子点将与 Au纳米颗粒直接接触,此时将发生了另外一种物 理过程,即CdTe量子点和Au纳米颗粒直接接触时 发生了电子转移过程.为了进一步证实Au注入样 品经1000°C退火后样品表面出现大量Au纳米颗 粒,对该样品的表面形貌做了AFM表征,如图5所 示. AFM结果再次表明1000°C退火样品表面存 在大量的Au纳米颗粒,因此旋涂的CdTe量子点与 Au纳米颗粒直接接触. CdTe量子点在光激发下产 生电子-空穴对,然而因CdTe量子点的导带位置高 于Au纳米颗粒的费米面,二者在直接接触的情况 下,CdTe导带上电子将转移到Au纳米颗粒的费米 面上,降低了电子-空穴对的复合概率,故导致CdTe 量子点的PL发光强度猝灭.

Fig. 4. (color online) PL spectra of the CdTe quantum dots spin coated on bare silica (1) and the Au ions implanted silica annealed at 600–1000 $^{\circ}$ C.

图 5 Au 离子注入玻璃样品经 1000 °C 热退火后的 AFM 图像

Fig. 5. AFM image of the Au ions implanted silical annealed at 1000 $^{\circ}\mathrm{C}.$

4 结 论

通过在Au离子注入的SiO₂衬底上旋涂CdTe 量子点来制备 Au 纳米颗粒和 CdTe 量子点复合体 系,对镶嵌有Au纳米颗粒SiO2衬底进行热退火 处理来控制Au纳米颗粒的生长和分布,进而系统 研究了Au纳米颗粒的LSP对CdTe量子点光致发 光性能的影响.结果表明,Au纳米颗粒的LSP对 CdTe量子点的发光有增强效应也有猝灭效应. 当 Au注入样品经900°C退火, 镶嵌在衬底中的Au 纳米颗粒尺寸较大时, Au 纳米颗粒周围的局域场 增强效应使得CdTe量子点的发光强度增强了6倍. 然而造成CdTe量子点发光猝灭有两种情况:1)Au 注入样品热退火温度较低时, Au 纳米颗粒的尺寸 较小, Au 纳米颗粒和 CdTe 量子之间发生非辐射能 量转移; 2) Au注入样品经1000°C退火, 大量Au 纳米颗粒扩散到SiO2衬底表面,使得CdTe量子点 和Au纳米颗粒直接接触,发生了电子从CdTe量子 点向Au纳米颗粒费米面的转移,降低了电子-空穴 对的复合概率. 该实验结果有助于澄清半导体和金 属耦合体系中发光增强和猝灭机理,同时为利用金 属纳米颗粒LSP技术制备高发光性能的光电子器 件提供了参考价值.

参考文献

- Tong L M, Xu H X 2012 Physics 41 582 (in Chinese)
 [童廉明, 徐红星 2012 物理 41 582]
- [2] Willets K A, van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267

- [3] Mayer K M, Hafner J H 2011 Chem. Rev. 111 3828
- [4] Ritchie R H 1957 Phys. Rev. 106 874
- [5] Cvitkovic A, Ocelic N, Aizpurua J, Guckenberger R, Hillenbrand R 2006 Phys. Rev. Lett. 97 60801
- [6] Peer D, Karp J M, Hong S, Farokhzad O C, Margalit R, Langer R 2007 Nat. Nanotech. 2 751
- [7] Gobin A M, Lee M H, Halas N J, James W D, Drezek R A, West J L 2007 Nano Lett. 7 1929
- $[8]\$ Liu J, Zhong X L, Li Z Y 2014 Chin. Phys. B 23 047306
- [9] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229
- [10] Krasavin A V, Zheludev N I 2004 Appl. Phys. Lett. 84 1416
- [11] Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photonics 1 402
- [12] Li J B, He M D, Wang X J, Peng X F, Chen L Q 2014 Chin. Phys. B 23 067302
- [13] Li Q, Wei H, Xu H X 2014 Chin. Phys. B 23 097302
- [14] Shan G, Xu L, Wang G, Liu Y 2007 J. Phys. Chem. C 111 3290
- [15] Ci X T, Wu B T, Song M, Chen G X, Liu Y, Wu E, Zeng H P 2014 Chin. Phys. B 23 097303
- [16] Hsieh Y P, Liang C T, Chen Y F, Lai C W, Chou P T 2007 Nanotechnology 18 415707
- [17] Chen C W, Wang C H, Wei C M, Chen Y F 2009 Appl. Phys. Lett. 94 071906
- [18] Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M 2002 Nano Lett. 2 1449
- [19] Nikoobakht B, Burda C, Braun M, Hun M, El-Sayed M A 2002 Photochem Photobiol 75 591
- [20] Hosoki K, Tayagaki T, Yamamoto S, Matsuda K, Kanemitsu Y 2008 Phys. Rev. Lett. 100 207404
- [21] Zhou X D, Xiao X H, Xu J X, Cai G X, Ren F, Jiang C Z 2011 Europhys. Lett. 93 57009
- [22] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nat. Mater. 3 601
- [23] Lai C W, An J, Ong H C 2005 Appl. Phys. Lett. 86 251105
- [24] Cheng P H, Li D S, Yuan Z Z, Chen P L, Yang D R 2008 Appl. Phys. Lett. 92 041119
- [25] Ni W H, An J, Lai C W, Ong H C, Xu J B 2006 J. Appl. Phys. 100 026103
- [26] Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, Woggon U, Artemyev M 2002 Nano Lett. 2 1449
- [27] Arnold G, Borders J 1977 J. Appl. Phys. 48 1488
- [28] Miotello A, Marchi G D, Mattei G, Mazzoldi P, Sada C 2001 Phys. Rev. B 63 075409
- [29] Marchi G D, Mattei G, Mazzoldi P, Sada C, Miotello A 2002 J. Appl. Phys. 92 4249
- [30] Voorhess P W 1985 J. Stat. Phys. 38 231

Enhancement and quenching of photoluminescence from Au nanoparticles and CdTe quantum dot composite system^{*}

Zhou Xiao-Dong^{1)†} Zhang Shao-Feng²⁾ Zhou Si-Hua¹⁾

(School of Physics and Mechanical & Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China)
 (School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China)
 (Received 1 March 2015; revised manuscript received 9 April 2015)

Abstract

New composite systems consisting of Au nanoparticles (NPs) and CdTe quantum dots (QDs) are fabricated by spin coating chemically synthesizing CdTe QDs on silica substrates which have already been implanted by Ag ions through using a metal vapor vacuum arc (MEVVA) ion source implanter. By thermally annealing the Au ions implanted silica substrates, the growth and redistribution of Au NPs can be controlled, the influence of localized surface plasmon (LSP) of Au NPs on the photoluminescence (PL) of CdTe QDs is well studied. The optical properties, surface morphologies, microstructures, and light emission properties of the Au-ion implanted samples are investigated by using optical absorption spectroscopy, atomic force microscopy, transmission electron microscopy and PL spectra measurements. PL spectra show that the PL intensities from Au NPs and CdTe QDs composite systems can be enhanced or quenched compared with those of CdTe QDs directly spin coated on bare silica substrate. The underlying interaction processes between Au NPs and CdTe QDs are discussed in depth, and the new mechanisms for the PL enhancement and quenching in the Au-CdTe coupled systems are put forward. These results provide a good reference for the future designing of optoelectronic devices with improved luminescence efficiency by LSP of metal NPs.

Keywords: ion implantation, Au nanoparticles, CdTe quantum dots, photoluminescence

PACS: 73.20.Mf, 78.55.-m

DOI: 10.7498/aps.64.167301

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11405280, 51402090), the Foundation from Education Department of Henan Province of China (Grant No. 14B140021), and the Startup Foundation for Doctors of Zhoukou Normal University of China (Grant No. 2ksybscx201210).

 $[\]dagger\,$ Corresponding author. E-mail: <code>zhouxd516@163.com</code>