物理学报 Acta Physica Sinica

电场诱导(MgO)₁₂储氢的从头计算研究 尹跃洪 陈宏善 宋燕

The electric field effect on the hydrogen storage of $(MgO)_{12}$ by *ab intio* calculations

Yin Yue-Hong Chen Hong-Shan Song Yan

引用信息 Citation: Acta Physica Sinica, 64, 193601 (2015) DOI: 10.7498/aps.64.193601 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.193601 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I19

您可能感兴趣的其他文章 Articles you may be interested in

基于遗传算法的Au-Cu-Pt 三元合金纳米粒子的稳定结构研究

Stable structure optimization of Au-Cu-Pt trimetallic nanoparticles based on genetic algorithm 物理学报.2015, 64(15): 153601 http://dx.doi.org/10.7498/aps.64.153601

高背压超声气体团簇喷流中团簇平均尺寸沿喷流方向演化研究 Evolution of average cluster size in supsonic cluster jet under high gas backing pressure 物理学报.2015, 64(1): 013601 http://dx.doi.org/10.7498/aps.64.013601

高指数晶面 Au-Pd 纳米合金粒子的稳定结构研究

Investigation on stable structures of Au-Pd alloy nanoparticles with high-index facets 物理学报.2015, 64(1): 013602 http://dx.doi.org/10.7498/aps.64.013602

静态真空对超声喷流气体团簇制备的实验研究

Influence of static vacuum on the preparation of cluster of supersonic gas jet 物理学报.2014, 63(20): 203601 http://dx.doi.org/10.7498/aps.63.203601

 $Al_2S_n^{\pm}$ (n=2--10)团簇结构特征和稳定性的密度泛函理论研究

Density functional theory study of structure characteristics and stabilities of $AI_2S_n \pm$ (n = 2-10) clusters 物理学报.2014, 63(16): 163601 http://dx.doi.org/10.7498/aps.63.163601

电场诱导 $(MgO)_{12}$ 储氢的从头计算研究^{*}

尹跃洪 陈宏善 宋燕

(西北师范大学物理与电子工程学院,甘肃省原子与分子物理及功能材料重点实验室,兰州 730070)

(2015年4月15日收到;2015年6月5日收到修改稿)

管状 (MgO)₁₂ 是 (MgO)_n 的幻数团簇,非常稳定.为研究电场对其储氢性能的影响,本文在 B3LYP/6-31G**水平上研究了电场中H₂在 (MgO)₁₂ 管状结构上的吸附性质.结果表明 (MgO)₁₂ 能承受强电场 而保持管状结构并被极化,其偶极矩增大为场强0.01 a.u.和0.02 a.u.时的9.21和19.39 deb (1 deb = 3.33564×10⁻³⁰ C·m).H₂ 能稳定吸附在单个Mg/O原子上.无电场时H₂在Mg上为侧位吸附,而在O上为 端位吸附;电场中,H₂在Mg和O上均为端位吸附,且其分子取向沿外电场方向.由于 (MgO)₁₂ 及H₂ 均被电 场极化,因此H₂在 (MgO)₁₂ 部分位置上的吸附强度显著提高.H₂在 3 配位的Mg/O上的吸附能由无电场时 0.08/0.06 eV分别提高到场强为0.01 a.u.和0.02 a.u.时的0.12/0.11 eV和0.20/0.26 eV.电子结构分析表明 H₂ 吸附在 Mg 原子上时,向团簇转移电荷,电场极化效应是其吸附能较无电场时增大的主要原因.吸附在 O 原子上时,一方面由于O 阴离子极化效应更强;另一方面,H₂ 从 (MgO)₁₂ 得到电荷,其价轨道与团簇价轨道 重叠形成化学键,因此电场效应更显著.电场中 (MgO)₁₂ 最多能吸附 16 个 H₂,相应的质量密度为 6.25 wt%.

关键词: 电场, (MgO)₁₂, 储氢, 电子结构 PACS: 36.40.-C, 31.15.A, 68.43.Bc

DOI: 10.7498/aps.64.193601

1引言

能源在现代社会中具有基础地位,不断增长的 能源需求与化石燃料的日益枯竭是当今社会的主 要矛盾之一.氢储量丰富、燃烧值高、可再生、清 洁无污染,是化石燃料的理想替代品.氢能利用 涉及氢的生产、储运及燃烧三个环节^[1].氢的生 产有两条基本途径,一是利用碳氢化合物制取^[1,2], 另一个是利用太阳能解离水.关于光解水制氢和 利用太阳能高温裂解水制氢的发展现状 Nocera 和 Kodama等做了详尽的评述^[3-5],利用太阳能电池 解离水的研究最近也取得了突破性进展^[6].由于氢 分子间的作用很弱,汽化温度低(33 K),而且氢分 子很小易渗漏,因此氢的储运是制约氢能利用的主 要因素.根据美国能源部制定的标准(2010),氢能 的质量密度需达到6 wt%^[7].低温液态(21 K)和高 压(35—70 MPa)储氢的成本高,还存在严重的安 全问题. 研发各种固体储氢材料是解决储氢问题的 基本途径[8,9]. 固体储氢可分为物理吸附和化学吸 附. 物理吸附材料主要是一些比表面积很大的多孔 性材料、金属有机骨架化合物(MOF)以及碳纳米 材料等. 由于物理吸附材料与氢作用较弱(吸附能 一般小于0.1 eV), 一般需在较低的温度下储存, 并 且其储氢密度较小. 化学吸附材料可以达到很高 的储氢密度,但由于吸附材料与氢较强的化学作用 (吸附能一般2-3 eV), 脱氢通常需要在几百度的 高温下进行,并且氢的释放一般分多步进行,脱氢 不完全,再生过程也难以控制.对理想的储氢材料, 追求的目标是对氢分子产生介于物理吸附和化学 吸附之间的结合方式. 根据热力学分析, 在室温和 1 MPa条件下,理想固体储氢材料吸附单个氢分子 的吸附能应为0.1—0.2 eV^[10]. 探寻具有适宜吸附

© 2015 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金(批准号: 20873102)、西北师范大学科技创新工程(批准号: NWNU-KJCXGC03-62)、甘肃省高等学校基本科研 业务费和西北师范大学青年教师科研能力提升计划项目(批准号: NWNU-LKQN-12-30)资助的课题.

[†]通信作者. E-mail: Chenhs@nwnu.edu.cn

强度的储氢方法对寻找室温下储氢材料具有重要 意义.

材料处于外电场或磁场的外场效应是研究材 料结构及性质的重要内容[11-13],近年来,电场诱 导极性材料储氢逐渐受到人们的关注[14-21]. 电场 极化增强了主体材料与氢分子的静电作用.提高 对氢的吸附强度;而将外电场移除,又可实现快速 脱氢. Zhang等综述了电场诱导C纳米材料储氢的 研究工作^[14]; Guo等利用密度泛函理论方法计算 表明外加0.05 a.u. 电场可使单层 BCN 及 BC₂N 的 储氢密度分别提高至5.1 wt%和3.9 wt%,对氢分 子的平均吸附能由无电场时的0.10 eV/H₂提高至 0.13 eV/H₂和0.18 eV/H₂^[15]; Zhou等采用 BLYP 方法计算给出单层BN置于0.04 a.u.的外电场中, 其对氢分子的吸附能可由无电场时的0.03 eV/H2 提高至0.14 eV/H₂^[16]. 块体MgO是典型的离子 化合物. 虽然H2在离子型化合物表面的吸附很早 就受到人们的关注,而理论与实验研究表明H2通 常在MgO晶体表面形成弱的物理吸附^[22-28].纳 米材料如团簇因其极大的比表面积和独特的电子 结构而具有比相应体相材料更优越的吸附性能. Morokuma 等利用 (MgO)_n (n = 4, 6, 8) 模拟氧化 镁晶体的面、棱、角,用从头计算方法研究了H2在 其上的吸附及解离^[22,23].最近, Sun等制备了多孔 MgO材料,发现外加电场后其储氢能力得到一定 程度的提高^[19].我们采用密度泛函方法研究了H₂ 在 (MgO)₉ 和 (MgO)₁₂ 幻数团簇上的吸附性质 ^[29], 结果表明 H_2 在(MgO)₉和(MgO)₁₂上均为弱的物 理吸附,吸附能为0.03—0.08 eV. 本文利用从头计 算方法研究了(MgO)12六元管状结构在电场中的 储氢性质,结果给出当外电场为0.02 a.u.时,H₂在 部分3配位的Mg/O离子上的吸附能可由无电场 时的0.08/0.06 eV 提高至0.20 eV /0.26 eV, 电场中 (MgO)12 最多能吸附16个H2,相应的质量密度为 6.25 wt%.

2 计算方法

本文计算在密度泛函理论B3LYP 框架下进 行,电子交换能采用HF和Becke 三参数混合形式, 电子相关能的定域部分使用函数VWNIII,而非 定域部分使用LYP 的泛函形式^[30].基组采用6-31G**^[31].电场作用通过在哈密顿中引入-μ·E 项考虑,其中 μ 为分子偶极矩,E为外场矢量.我们 优化了不同场强条件下 $H_2 \propto (MgO)_{12}$ 上的稳定吸 附结构.利用吸附能衡量 H_2 的吸附强度,其定义为

$$Ea = E[(MgO)_{12}H_2]^- E[(MgO)_{12}] - E[H_2], (1)$$

式中 $E[(MgO)_{12}H_2], E[(MgO)_{12}]及 E[H_2]分别为 吸附体系、<math>(MgO)_{12}团簇及 H_2$ 的总能量.通过电子 结构分析,研究了电场影响 $(MgO)_{12}$ 储氢性能的微 观机理.所有计算使用Gaussian03程序完成[32].

3 结果与讨论

3.1 电场中 (MgO)12 的几何与电子结构

实验与理论研究均表明六元管状结构是 (MgO)₁₂的最稳定结构^[33,34],如图1所示.该结构可看作四层六元环上下重叠的结构,每层六 元环相对其邻层旋转60°.Mg—O键长在层内为 1.91—2.05 Å,层间1.97—2.01 Å.我们优化了强度 分别为0.01 a.u.和0.02 a.u.的不同方向的外电场 中(MgO)₁₂的稳定结构,结果表明当外场方向沿 (MgO)₁₂管径方向(即六元环中正对的一对O-Mg 原子连线方向)时,团簇的能量最低,其稳定结构 如图1所示(场强为0.01 a.u.时(MgO)₁₂的结构与 场强为0.02 a.u.时相似,图中未给出).由于Mg 为阳离子(NBO电荷为1.34e—1.40e)O为阴离子 (NBO电荷为-1.36e—-1.39e),外加电场后Mg顺 电场方向移动而O逆电场方向移动,因此(MgO)₁₂

Fig. 1. (color online) The stable structures of $(MgO)_{12}$ without external electric field (a) and with field intensity of 0.02 a.u. (b). The figures in brackets are the NBO charges of corresponding atoms (The green and red balls represent Mg and O atoms, respectively).

压缩. 场强为0.01 a.u.时 Mg—O键长在层内为 1.89—2.10 Å, 层间1.96—2.00 Å; 场强为0.02 a.u. 时在层内为1.87—2.21 Å, 层间1.95—1.99 Å. 图1还给出了不同场强条件下(MgO)₁₂各原子上 的NBO电荷. 与无电场时相比, 电场中(MgO)₁₂ 右半侧 Mg/O离子上的净电荷的绝对值增大, 而 左半侧 Mg/O离子上的净电荷的绝对值减少, 但O 离子的电荷改变量较小(0.01—0.03*e*), 远小于Mg 离子(0.06—0.15*e*). 电场诱导电荷重新分布, 使 (MgO)₁₂极化, 场强为0.01 a.u.和0.02 a.u.时的偶 极矩分别为9.21和19.39 deb.

图 2 (网刊彩色) Mg, O 原子及 (MgO)₁₂ 的分波态密度 (a) 为 Mg 和 O 原子的态密度; (b) 和 (c) 分别为无电场和 场强为 0.02 a.u. 时 (MgO)₁₂ 的态密度 Fig. 2. (color online) The PDOS of Mg, O atoms (a) and (MgO)₁₂ without external electric field (b) and with field intensity of 0.02 a.u.(c).

图 2 给出了 Mg, O原子及不同场强条件下 (MgO)₁₂ 团簇的分波态密度 (PDOS). Mg 原子的 3s 能级位于 -5.3 eV 处, O原子的两个 2p 能级分别位 于 -12.2 eV 和 -10.2 eV 处. Mg 和 O 原子价电子能 级差约为5 eV, 表明 Mg 的 3s 电子易向 O 的 2p 轨道 转移, 与 O 形成强极性的离子型化合物. (MgO)₁₂ 团簇中 O 的 2p 和 Mg 的 3s 成分在 -10.0—-7.5 eV 间有重叠,表明团簇中除了典型的离子键外,还存 在 O 的 2p 和 Mg 的 3s 轨道形成的共价键,这与 Ziemann 等计算得出小尺寸 (MgO)_n 团簇的成键模式 是具有共价特征的离子键的结论一致 ^[33]. 与无电 场时比, 电场中 (MgO)₁₂ 团簇的能级向低能方向移 动,表明电场中团簇稳定性增加.同时团簇的态密 度呈现峰的数目增多而强度降低的特点.这是由于 电场使团簇极化变形,对称性降低,原来简并的能 级在电场中劈裂为多个能级,导致峰的数目增多而 强度降低.

3.2 电场中单个 H_2 在 (MgO)₁₂上的吸附

无外场时H2可以稳定地吸附在(MgO)12的单 个Mg/O离子上. 由于 $(MgO)_{12}$ 的对称性 (D_{3d}) , 其表面有四类不等价离子,即3配位和4配位 Mg/O离子. H₂在3 配位 (Mg_{3c}/O_{3c}) 离子上的吸 附较在4配位(Mg_{4c}/O_{4c})离子上的相应吸附方 式更稳定^[29]. 电场中 (MgO)₁₂结构的对称性降 低,不等价离子增多.我们优化了电场中H₂在 (MgO)12 的单个原子、各原子对及面上的各种可 能吸附方式,结果表明电场对不同吸附位置有不 同的影响. 当H2置于各原子对以及前后各面的原 子上时,最终优化为在棱 O₄, Mg₁₀, O₁₆和 Mg₂₂ 以 及棱 Mg1, O7, Mg13 和 O19 八个离子上的结构.例 如对H2在Mg3-O2原子对上的平行吸附方式,当场 强为0.01 a.u.时,最终优化为H₂以端位方式吸附 在Mg1上的结构. H2在Mg10, Mg22, O7和O19上 的吸附能仅为0.02—0.06 eV,低于无电场时的吸附 能; 而只有在 Mg1, O4, Mg13 及 O16 四个离子上的 吸附能高于无电场时的吸附能,因此这里我们只讨 论H2在这四个离子上的稳定吸附方式.

图 3 给出了不同场强条件下, $H_2 在 Mg_{3c}/O_{3c}$ (即 Mg₁/O₄)和 Mg_{4c}/O_{4c}(即 Mg₁₃/O₁₆)离子上的 稳 定 吸 附 结 构 (由 于 场 强 为 0.01 a.u. 时 H₂ 在 (MgO)12上的吸附结构与场强为0.02 a.u.时的稳 定结构相似,图中未给出).无电场时,H₂在Mg上 为侧位吸附(H2分子的方向与H2分子到 Mg离子 的连线垂直), 而在O上为端位吸附(H₂分子的方 向与H2分子到 O离子的连线一致). 随着电场的 增强, H₂在O离子上仍为端位吸附, 并逐渐转向 外电场方向; H₂在Mg离子上则由侧位吸附逐渐 变为端位吸附. 表1中列出了不同场强条件下, H2 在 (MgO)12 上稳定吸附方式的吸附能、结构参数 及NBO电荷数据. 随着场强增加, H₂在Mg/O上 吸附能均逐渐增大, H2 到团簇的距离变短而 H—H 键长变长,表明电场使H2与团簇的相互作用增强 而H—H键被削弱.NBO电荷表明,H2吸附在Mg 离子上,近Mg离子端的H原子带负电荷,另一端

H原子带正电荷, H₂上的净电荷为正, 电场使H₂ 分子极化且有少量电荷由H₂分子向团簇转移.当 H₂吸附在O离子上时, 近O离子端的H原子带正 电荷,另一端H原子带负电荷,H₂上的净电荷为 负,H₂分子的极化增强且有电荷由团簇向H₂分子 转移.

图 3 (网刊彩色) 不同场强条件下 H₂ 在 3 配位 (Mg_{3c}, O_{3c}) 和 4 配位 (Mg_{4c}, O_{4c}) Mg/O 离子上的稳定吸附结构 (绿色球 Mg 原子; 红色球 O 原子; 灰色球 H 原子)

Fig. 3. (color online) The stable adsorption structures of H_2 on three-coordinated (Mg_{3c}, O_{3c}) and fourcoordinated (Mg_{4c}, O_{4c}) Mg/O atoms under the external electric field with different intensities (The green balls are Mg atoms, the red and grey balls represent the O and H atoms, respectively).

表1 H₂在 (MgO)₁₂上的吸附能、H₂到团簇距离 $R_{(H-Mg/O)}$, H—H 距离 $R_{(H-H)}$ 及 H₂的 NBO 电荷 Table 1. The adsorption energies E_a , distances between H₂ and cluster $R_{(H2-Mg/O)}$, H—H distances R_{H-H} and NBO charges of H atoms for the adsorption structures of H₂ on (MgO)₁₂.

吸附位	电场强度/a.u.	吸附能/eV	$R_{\rm (H-Mg/O)}/{\rm \AA}$	$R_{\rm (HH)}$ /Å	H原子电荷/e
${ m Mg_{3c}}$	0.00	0.079	2.489	0.747	0.012/0.012
	0.01	0.116	2.370	0.748	-0.016/0.042
	0.02	0.206	2.202	0.751	-0.191/0.222
$\mathrm{Mg}_{\mathrm{4c}}$	0.00	0.048	2.721	0.746	0.006/0.006
	0.01	0.061	2.525	0.747	-0.008/0.029
	0.02	0.090	2.439	0.748	-0.120/0.151
O _{3c}	0.00	0.061	2.381	0.749	0.035/-0.052
	0.01	0.107	2.116	0.762	0.081/-0.117
	0.02	0.263	1.849	0.797	0.129/-0.213
O _{4c}	0.00	0.032	2.779	0.745	0.034/-0.049
	0.01	0.055	2.377	0.753	0.046/-0.072
	0.02	0.140	2.237	0.776	0.199/-0.246

3.3 电场增强 (MgO)₁₂ 吸附 H₂ 的机理

为了在分子轨道水平上理解电场增强 (MgO)₁₂吸附 H₂的机理,我们对其典型吸附结 构进行了NBO分析并研究了其电子结构. 电场中, H₂在(MgO)₁₂上吸附时受到电场的极化及与(MgO)₁₂团簇的分子轨道的共同作用. 首先考虑电场作用, NBO电荷给出H₂在(MgO)₁₂上吸附时

两个H原子总是带异号电荷(如表1所示),表明H₂ 被电场极化,同时团簇也被极化,其偶极矩增加,因 此H₂与团簇间的静电作用显著增强.另外,当H₂ 吸附在Mg_{3c}/Mg_{4c}离子上时,每个H原子上的电荷 绝对值均小于在O_{3c}/O_{4c}上,表明H₂吸附在O原 子上极化更强.这可能是由于O为阴离子,其离子 半径更大,更易被电场极化,并能进一步有效极化 H₂,从而与之形成较Mg离子更强的静电作用.

为了研究 (MgO)₁₂ 与H₂ 的分子轨道作用, 我 们计算了其典型吸附结构的 PDOS. 图4给出了 不同场强条件下H₂ 在 Mg_{3c}和O_{3c}上吸附结构的 PDOS. 无电场时 (图4(a)和(c)), 团簇的态密度与 自由 (MgO)₁₂ 的态密度 (图2(b))相似. H₂ 分子与 团簇态密度无重叠, 表明H₂在 (MgO)₁₂上形成弱 的物理吸附. H₂ 在 Mg上吸附时的能级低于在O 上吸附时的能级, 因此无电场时H₂ 吸附在Mg_{3c}上 时较在O_{3c}上更稳定. 电场中 (图4(b)和(d)), 由 于电场降低了体系的能量, 因此H₂和 (MgO)₁₂的 能级均向低能方向移动. H₂在 Mg上吸附时与团簇 价轨道的能级差由无电场时的3 eV减小为1.5 eV, 但并无重叠,表明H₂分子吸附在Mg上时,其间无 显著的分子轨道作用.H₂在O_{3c}上的吸附时情况 则有所不同.图4(d)插图清晰显示出H₂的1s成 分与团簇中Mg的3s和O的2p成分重叠,表明其 间存在分子轨道作用.

考虑电场作用, H₂分子被极化并转向外电场 方向,即无论在 Mg离子上还是在O离子上, H₂分 子均趋向以端位方式吸附.优化结果表明H₂吸附 在 Mg离子上,无电场时为侧位吸附,而电场中则 变为端位吸附,表明电场作用较强;同时态密度分 析表明 H₂吸附在 Mg离子上时,其间无显著的分子 轨道作用,因此电场极化效应是其吸附能较无电场 时增大的主要原因.H₂在O上吸附时,一方面由于 电场极化,O与H₂形成了较强的静电作用,另一方 面态密度分析表明O与H₂之间还存在较强的分子 轨道作用,因此我们进一步进行了细致的分子轨道 研究.自由H₂分子的组态为1 $\sigma_{g}^{2}1\sigma_{u}^{0}$.由于H₂在O 上吸附时得电子,其1 σ_{g} 轨道完全占据(图5(a)是 以H₂的1 σ_{g} 轨道为主形成的分子轨道),而 1 σ_{u} 轨

图 4 (网刊彩色) 无电场和场强为 0.02 a.u. 时, H₂ 在 Mg_{3c} 和 O_{3c} 上吸附的分波态密度. (d) 中插图是对能量在 -14—-10 eV 间的态密度放大后的结果

Fig. 4. (color online) The PDOS of the adsorption structures of H_2 on Mg_{3c} and O_{3c} without external electric field and with field intensity of 0.02 a.u., respectively. The insert in (d) is the result of magnifying the PDOS in the energies ranging from -14—-10 eV.

道部分占据. $1\sigma_u$ 轨道中,电子集中分布于两个原子上,而在两原子间形成截面. 根据轨道最大重叠规则, H₂ 在O上吸附时采取端位方式利于其 $1\sigma_u$ 轨道与团簇轨道重叠,这与电场极化作用的效应是相同的. 图5(b)和(c)为H₂的 $1\sigma_u$ 轨道与O的2p和Mg的3s轨道形成的分子轨道,对应图4(d)插图中H的1s成分位于-13.2 eV和-11.5 eV处的峰. H₂吸附在O上时,由于轨道作用与电场极化作用的效应相同,因此在电场作用的基础上,这些轨道作用进一步增强了H₂与团簇的作用.

图 5 (网刊彩色)场强为 0.02 a.u. $H_2 \pm O_{3c}$ 上吸附结构中 氢参与形成的典型分子轨道

Fig. 5. (color online) The typical molecular orbitals composed of the $\rm H_2$ on $\rm O_{3c}$ with field intensity of 0.02 a.u.

无电场时, H₂吸附在(MgO)₁₂上的稳定性与 吸附离子的配位数相关, 配位数越小, 吸附能越大. 3配位的Mg/O离子由于价键不饱和,能与H2形成 稳定的吸附; 而配位数相同时, H₂在Mg上吸附能 均大于在O原子上,这与Morokuma等对无电场时 (MgO) n (n = 4, 6, 8) 团簇对H₂吸附的结果一 致^[22,23]. 电场中, 吸附稳定性仍然与吸附离子的配 位数相关, 配位数越小, 吸附结构越稳定; 但配位 数相同时,与无电场时不同,H2吸附在O阴离子上 时更稳定. Zhang等通过对碱金属、过渡金属及稀 土金属掺杂C纳米管,石墨烯等多个体系在电场中 的储氢行为的理论计算总结认为,具有较低配位数 阴离子是电场中 H_2 分子的最优吸附位^[14]. Zhou 等通过对电场中单层BN储氢性能的理论计算也 给出低配位的非金属阴离子能更有效地吸附H2分 子的结论^[16].我们的分析表明H₂吸附在低配位的 O阴离子更稳定的原因在于一方面阴离子半径大, 电场极化效应更强;另一方面,由于H2价轨道与 MgO团簇中O的2p和Mg的3s轨道重叠形成化学 键,因此电场效应更显著.

3.4 电场中多个 H_2 在 (MgO)₁₂上的吸附

为研究电场中 (MgO)₁₂ 分子的储氢质量密度, 我们优化了场强为0.02 a.u. 时多个 H₂ 在 (MgO)₁₂ 上的吸附结构. 首先我们优化了多个 H_2 吸附在 $(MgO)_{12}$ 中单个Mg/O上的结构,发现每个Mg/O 离子上最多能吸附 2 个 H_2 分子. 由于电场中,只有 4 对 Mg/O 离子能有效吸附 H_2 分子,因此我们优 化了 16 个 H_2 吸附在 $(MgO)_{12}$ 上的结构 (如图 6 所 示),当继续增加 H_2 分子数目时,则不能形成稳定 的吸附结构,表明电场中 $(MgO)_{12}$ 最多能吸附 16 个 H_2 ,相应的质量密度为6.25 wt%,达到了美国 能源部制定的质量密度需达到 6 wt% 的要求.吸附的 16 个 H_2 的键长为0.747—0.791 Å,到吸附的 Mg/O离子间的距离为1.935—4.017 Å,由于先吸 附的 H_2 对后吸附 H_2 的位阻效应,相应每个 H_2 分子的平均吸附能也减小为0.104 eV.

图 6 (网刊彩色) (MgO)₁₂ 吸附 16 个 H₂ 的稳定结构 (绿 色球 Mg 原子; 红色球 O 原子; 灰色球 H 原子) Fig. 6. (color online) The stable structure of sixteen H₂ adsorbed on (MgO)₁₂ (The green balls are Mg atoms, the red and grey balls represent the O and H atoms, respectively).

4 结 论

本文在密度泛函理论水平上研究了电场中 H₂在 (MgO)₁₂管状结构上的吸附行为.结果表 明电场能提高H₂在 (MgO)₁₂部分位置上的吸附 强度.H₂在 3配位的Mg/O上的吸附能由无电 场时 0.08/0.06 eV分别提高到场强为 0.01 a.u. 和 0.02 a.u. 时的 0.12/0.11 eV 和 0.20/0.26 eV. 电场中 (MgO)₁₂最多能吸附 16个H₂,相应的质量密度为 6.25 wt%.电子结构分析表明,电场诱导H₂与 (MgO)₁₂极化,增强了H₂与团簇的相互作用.H₂ 吸附在 O离子上时,由于阴离子极化效应更强,并 且 H₂价轨道与MgO 团簇的价轨道重叠形成化学 键,因此电场效应更显著.

参考文献

[1] Lubitz W, Tumas W 2007 Chem. Rev. 107 3900

- [2] Palo D R, Dagle R A, Holladay J D 2007 Chem. Rev. 107 3392
- [3] Hambourger M, Moore G F, Kramer D M, Gust D, Moore A L, Moore T A 2008 Chem. Soc. Rev. 38 25
- [4] Kudo A, Miseki Y 2008 Chem. Soc. Rev. 38 253
- [5]~Esswein A J, Nocera D G 2007 $Chem.\ Rev.$ 107 4022
- [6] Nocera D G 2012 Acc. Chem. Res. 45 767
- [7] Jena P 2011 J. Phy. Chem. Lett. 2 206
- [8] Struzhkin V V, Militzer B, Mao W L, Mao H, Hemley R J 2007 Chem. Rev. 107 4133
- [9] Rowsell J L C, Yaghi O M 2005 Angew. Chem. Inter. Edti. 44 4670
- [10] Bhatia S K 2006 Langmuir **22** 1688
- [11] Zhang W X, Liu Y X, Tian H, Xu J W, Feng L 2015 Chin. Phys. B 24 076104
- [12] Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世 雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理 学报 64 043101]
- [13] Ling Z G, Tang Y L, Li T, Li Y P, Wei X N 2014 Acta Phys. Sin. 63 023102 (in Chinese) [凌智钢, 唐延林, 李涛, 李玉鹏, 魏晓楠 2014 物理学报 63 023102]
- $[14]\,$ Zhang Z
 W, Li J C, Jiang Q 2011 Front. Phys. 6 162
- [15] Guo J H, Zhang H 2011 Struc. Chem. 22 1039
- [16] Zhou J, Wang Q, Sun Q, Jena P, Chen X S 2010 PNAS 107 2801
- [17] Ao Z M, Hernandez-Nieves A D, Peeters F M, Li S 2012 Phys. Chem. Chem. Phys. 14 1463
- [18] Jhi S H, Ihm J 2011 MRS Bull. 36 198
- [19] Sun X, Jiang Y H, Shang Z S 2010 J. Phys. Chem. C 114 7

- [20] Ao Z M, Peeters F M 2010 J. Phys. Chem. C 114 14503
- [21] Liu W, Zhao Y H, Nguyen J, Li Y, Jiang Q, Lavernia E J 2009 Carbon 47 3452
- [22] Sawabe K, Koga N, Morokuma K, Iwasawa Y 1992 J. Chem. Phys. 97 6871
- [23] Sawabe K, Koga N, Morokuma K, Iwasawa Y 1994 J. Chem. Phys. 101 4819
- [24] Hermansson K, Baudin M, Ensing B, Alfredsson M, Wojcik M 1998 J. Chem. Phys. 109 7515
- [25] Skofronick J G, Toennies J P, Traeger F, Weiss H 2003 Phys. Rev. B 67 035413
- [26] Larese J Z, Frazier L, Adams M A, Arnold T, Hinde R J, Ramirez-Cuesta A 2006 Phys. B Cond. Matt. 385 144
- [27] Dawoud J N, Sallabi A K, Fasfous, II, Jack D B 2009 J. Surf. Sci. Nano. 7 207
- [28] Wu G, Zhang J, Wu Y, Li Q, Chou K, Bao X 2009 J. Alloys. Comp. 480 788
- [29] Chen H S, Chen H J 2011 Acta Phys. Sin. 60 073601
 (in Chinese) [陈宏善, 陈华君 2011 物理学报 60 073601]
- [30] Becke A D 1993 J. Chem. Phys. 98 5648
- [31] Ditchfield R, Hehre W, Pople J A 1971 J. Chem. Phys. 54 724
- [32] Frisch M J, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Montgomery J, Vreven T, Kudin K, Burant J 2008
- [33] Ziemann P J, Castleman Jr A W 1991 J. Chem. Phys. 94 718
- [34] Ge G X, Luo Y H 2008 Acta Phys. Sin. 57 4851 (in Chinese) [葛桂贤, 罗有华 2008 物理学报 57 4851]

The electric field effect on the hydrogen storage of $(MgO)_{12}$ by *ab intio* calculations^{*}

Yin Yue-Hong Chen Hong-Shan[†] Song Yan

(Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China)

(Received 15 April 2015; revised manuscript received 5 June 2015)

Abstract

 $(MgO)_{12}$ in a tube structure is one of the magic number clusters of $(MgO)_n$ and exhibits particular stability. To study the electric field effect on the hydrogen storage properties of $(MgO)_{12}$, the H₂ adsorption behavior on the surface of the tube $(MgO)_{12}$ in an external electric field is explored at the level of B3LY/6-31G^{**}. In the external electric field, the $(MgO)_{12}$ keeps the frame of tube structure but with little distortion, implying that the $(MgO)_{12}$ cluster can sustain the strong electric field for hydrogen storage. The NBO analysis also indicates that $(MgO)_{12}$ is polarized by the external electric field; and its dipole momenta increase to 9.21 and 19.39 Debye at the field intensities of 0.01 and 0.02 a.u., respectively. Without the external electric field, H_2 can be adsorbed on Mg atoms in the end on modes, while on O atoms in the top on modes. When the external electric field is applied, whether H_2 is adsorbed on Mg or O atoms, the stable adsorption structures are all top on modes and the molecular orientation of H_2 is turned to the direction of the external electric field. Because $(MgO)_{12}$ and H_2 are effectively polarized by the external electric field, the adsorption strength of H_2 on some adsorption sites are enhanced remarkably. The adsorption energies of H_2 on the three-coordinated Mg/O are promoted from 0.08/0.06 eV in free field to 0.12/0.11 eV and 0.20/0.26 eV at field intensities of 0.01 a.u. and 0.02 a.u., respectively. Electronic structure analysis reveals that when H_2 is adsorbed on Mg atoms, this process denotes charges moving to the cluster, and the improvement of adsorption interaction of H_2 on Mg atoms is mainly due to the polarization effect. While the adsorption on O atoms, on the one hand implies the polarization effect of O anion is stronger than that of Mg cations, on the other hand, H_2 receives charges from (MgO)₁₂ and its valence orbitals also take part in the bonding with the valence orbitals of the cluster. Thus the structures of H_2 adsorbed on O atoms are more stable. In an external electric field, $(MgO)_{12}$ can adsorb sixteen H₂ molecules at most, and the corresponding mass density of hydrogen storage reaches 6.25wt%.

 Keywords:
 electric field, (MgO)₁₂, hydrogen storage, electronic structure

 PACS:
 36.40.-C, 31.15.A, 68.43.Bc
 DOI: 10.7498/aps.64.193601

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 20873102), the Innovative Project in Science and Technology of Northwest Normal University, China (Grant No. NWNU-KJCXGC03-62), the College Research Funding of Gansu Province and the Foundation of Promotion of Researching Ability of Young Teachers of Northwest Normal University, China (Grant No. NWNU-LKQN-12-30).

[†] Corresponding author. E-mail: Chenhs@nwnu.edu.cn