物理学报 Acta Physica Sinica

含硫宽禁带Ga₂Te₃基热电半导体的声电输运特性

刘海云 刘湘涟 田定琪 杜正良 崔教林

Acoustic charge transport behaviors of sulfur-doped wide gap Ga₂Te₃-based semiconductors

Liu Hai-Yun Liu Xiang-Lian Tian Ding-Qi Du Zheng-Liang Cui Jiao-Lin

引用信息 Citation: Acta Physica Sinica, 64, 197201 (2015) DOI: 10.7498/aps.64.197201 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.197201 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I19

您可能感兴趣的其他文章 Articles you may be interested in

高压烧结法制备Bi2Te3纳米晶块体热电性能的研究

Thermoelectric properties of the Bi₂Te₃ nanocrystalline bulk alloy pressed by the high-pressure sintering 物理学报.2015, 64(4): 047201 http://dx.doi.org/10.7498/aps.64.047201

半导体温差发电过程的模型分析与数值仿真

Analysis and simulation of semiconductor thermoelectric power generation process 物理学报.2014, 63(19): 197201 http://dx.doi.org/10.7498/aps.63.197201

非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu₃Ga₅Te₉的热电性能

Thermoelectric properties of chalcopyrite Cu₃Ga₅Te₉ with Sb non-isoelectronic substitution for Cu and Te 物理学报.2014, 63(5): 057201 http://dx.doi.org/10.7498/aps.63.057201

Si100P2.5 (GaP)1.5 中随机孔洞对热电性能的影响

Effects of random pores on the thermoelectric properties of Si₁₀₀P_{2.5} (GaP)_{1.5} bulk 物理学报.2012, 61(23): 237201 http://dx.doi.org/10.7498/aps.61.237201

磁各向异性热电效应对自旋相关器件的影响

Influence of magnetic anisotropy thermoelectric effect on spin-dependent devices 物理学报.2012, 61(20): 207201 http://dx.doi.org/10.7498/aps.61.207201

含硫宽禁带Ga₂Te₃基热电半导体的 声电输运特性^{*}

刘海云¹⁾ 刘湘涟²⁾ 田定琪¹⁾²⁾ 杜正良²⁾ 崔教林^{2)†}

(太原理工大学材料科学与工程学院,太原 030024)
 2)(宁波工程学院材料学院,宁波 315010)
 (2015年5月14日收到;2015年6月2日收到修改稿)

目前对宽禁带半导体热电材料的研究开始升温,原因是本征情况下宽禁带半导体往往具有低的热导率和高的Seebeck系数. Ga₂Te₃ 是一类带有缺陷的宽禁带半导体,其在临界温度(680±10) K和(757±10) K处 会参与共析转变和包晶反应,因此会产生反应热.本次工作采用少量的S元素等电子替换Ga₂Te₃中的Te元素,观察到在临界温度附近热焓的变化,但没有相变发生.受热焓变化的影响这类材料在临界温度附近出现了较活跃的声电输运行为,具体表现为热容和Seebeck系数(α)明显增大及热扩散系数(热导率)和电导率下降.例,对于x = 0.05的材料,其 α 值从596 K时的376.3 (μ V·K⁻¹)迅速增大到695 K时的608.2 (μ V·K⁻¹),然后又随温度升高到764 K时迅速降低到213.8 (μ V·K⁻¹).在596 K到812 K范围,Seebeck系数和电导率几乎随温度均呈Z字形变化.这些输运行为的变化揭示了在Ga₂Te₃基半导体中声子和载流子的临界散射特点,这种临界散射特征对以后的继续研究具有重要的参考价值.

关键词: 热电材料, 宽禁带, Ga₂Te₃, 临界声电输运 PACS: 72.15.Jf, 64.70.-kg, 71.20.Nr, 65.40.Ba

DOI: 10.7498/aps.64.197201

1引言

Ga₂Te₃ 是一类具有闪锌矿结构的宽禁带 III-VI型半导体材料,其带隙宽度 $E_g = 1.65$ eV^[1].由 于该半导体内部阴阳离子价不匹配,因而具有三分 之一的阳离子缺位,从而形成了周期性空位面^[2,3]. 该周期性空位面对声子及载流子的输运均具有极 大地阻碍作用,因此,在本征情况下Ga₂Te₃往往具 有较低的热导率和电导率^[3,4].通过在Ga₂Te₃中 添加Cu或Sb,或同时添加该两元素均可以提高其 电导率^[5,6],但掺杂Sb元素后热导率并未获得有效 地降低^[6].Cu原子虽然可以占位在Ga₂Te₃的阳 离子Ga晶格位置从而扰乱其周期性空位面^[7],但 由于Cu原子在材料内部的扩散系数太大,含Cu的 Ga₂Te₃基材料很快就会变成金属型导体,表现为 带隙宽度 $E_{g} \approx 0^{[8]}$.因此,含Cu的Ga₂Te₃基热电 半导体不适合于长期服役使用.

另外,尽管Ga₂Te₃基半导体在~1057 K温度 以下本身并不存在相变情况,因此也不发生晶格 结构转变,但在(680±10) K温度时Ga₂Te₃和Te 会发生共析转变(Ga₂Te₃+Te \leftrightarrow Ga₂Te₅),生成 Ga₂Te₅.当温度升高到(757±10) K时Ga₂Te₃又 会参与包晶反应(Ga₂Te₅ \leftrightarrow Ga₂Te₃+L,L为液 相).受该两反应的的诱导,在共析和包晶转变温 度区会产生热焓的变化,具有一级相变的部分特 征.S和Te元素同族,如果用少量的S等电子替换 Te元素后,可以确信S将占位在Te的晶格位置形 成Ga-S-Te三元固溶体,从而会使共析和包晶反应

^{*} 国家自然科学基金(批准号: 51171084)、浙江省自然科学基金(批准号: LY14E010003)和宁波市自然科学基金(批准号: 2014 A610016)资助的课题.

[†]通信作者. E-mail: cuijiaolin@163.com

^{© 2015} 中国物理学会 Chinese Physical Society

变得异常活跃.由于在临界温度区域存在着成分 和密度的涨落,因此在临界温度区域应具有较活 跃的声电输运行为.具体表现为Seebeck系数大 幅提高,而热扩散系数大幅降低,从而可以大幅度 地降低晶格热导率及提高材料热电性能^[9,10].这 种现象已经在Cu₂Se^[11],Ag₂Se(Te)^[12,13],VO₂^[14] 及β-Zn₄Sb₃^[15]等化合物中获得了证实.

因此,本次工作将采用不同量的S元素等电子 替换Ga₂Te₃中的Te元素,研究其声子和载流子的 输运特征,重点考察在共析和包晶转变温度区域附 近的临界散射特性.

2 实 验

按照 Ga₂S_xTe_{3-x} (x = 0.01, 0.05, 0.1, 0.2, 0.3) 分子式配比称取 Ga, S, Te 三种元素, 分别封 装在不同的石英管内熔炼. 熔炼温度为1373 K, 时间为24 h. 在熔炼期间每隔 0.5 h 左右振摇管子 一次, 以促使化学反应均匀发生. 熔炼后将石英 管缓慢冷却到973 K 左右, 然后迅速放到水中急 冷. 根据经验, 急冷可以防止 Ga₂Te₃ 相大量转变 成 Ga₂Te₅. 为进一步确保材料主相为 Ga₂Te₃ 相, 急冷后在 663 K采用 240 h 的长时间退火. 退火后 的铸锭经粉碎、球磨, 然后采用放电等离子烧结系 统 (SPS-1030) 烧结成形. 样品密度 (d) 采用排水法 测量.

材料的电学性能 (Seebeck 系数 (α) 和电导率 (σ))采用 ZEM-3 热电性能综合测试仪测试, 热扩散 系数 (λ) 和热容 (C_p) 分别采用激光热扩散系数测 试仪 (TC-1200RH) 和比热分析仪 (Netzsch 449F3) 测试获取. 测试温度从室温—812 K. 电学性能 的测量误差均在 7% 以下, 热扩散系数和热容的 测量误差分别为 12% 和 6%. 材料的总热导率 (κ) 则根据 $\kappa = d\lambda C_p$ 计算获得. 上述物性参数经过 不同样品重复验证. 晶格热导率 (κ_L)则直接从 $\kappa_L = \kappa - \kappa_e$ 得到, 其中 κ_e 为载流子热导率, 可根据 Wiedemann-Franz定律 $\kappa_e = LT\sigma$ 计算获取, L为 Lorenz 常数 (2.45 × 10⁻⁸ WΩK⁻²).

材料的物相采用X射线衍射仪(布鲁克D8 Advance)进行分析,使用Cu K_{α} 靶(波长l = 0.15406 nm)以 4°/min 的扫描速度在10° ≤ 2 θ ≤ 120°范围内记录衍射图谱.高温物相分析时步长为 0.3 s, 扫描步长 0.02°, 电压 40 kV. 材料的差示扫 描热分析 (DSC)采用 Perkin-Elmer (Pris Diamond DSC)分析仪分析, 升温速度为 5°/min, 氮气流量 50 ml/min.

3 实验结果与讨论

3.1 $Ga_2S_xTe_{3-x}$ 相结构分析

图1为室温时分析获得的各材料X-射线衍射 图. 当S含量x < 0.2时材料物相为单相固溶体 Ga_2Te_3 , 当 $x \ge 0.2$ 时有微量的 Ga_2S_3 析出, 但材 料主相仍为Ga₂Te₃. 说明上述制备Ga₂Te₃材料 的工艺是有效的. 图2为DSC分析曲线, 当S含量 很少时 (x = 0.01), 无吸热和放热反应发生, 但在 735 K左右似乎发生了玻璃化转变. 值得注意的是, 当 $x \ge 0.05$ 时材料均出现了不同形态的吸热峰,且 当温度高于吸热峰温度后,吸热流出现台阶型下 降,见蓝色虚圈标记.这种台阶型热流变化是不是 与玻璃化转变有关值得商榷. x = 0.05 的材料有两 个吸热峰,分别发生在695 K和752 K左右.前者 吸热峰较弱,后者较强.x = 0.1 和 0.2的材料只有 一个吸热峰(696—698 K左右). 在 696—698 K附 近的吸热峰峰高及出现吸热峰时的温度均随S含 量而增高. 当S含量增加到x = 0.3时, 吸热峰出现 在714 K左右. 掺杂不同量的S元素后出现的各种 形态吸热峰说明了S元素可诱导Ga2Te3的共析和 包晶反应发生;另一方面也说明了吸热峰温度与相 变点温度存在着一些偏差. 这种偏差在正二十二烷 组成的无定形结构材料体系中也已经获得证实,其

图 1 (网刊彩色) 粉末 $Ga_2S_xTe_{3-x}(x = 0.01, 0.05, 0.1, 0.2, 0.3)$ 的 XRD 图谱

Fig. 1. (color online) XRD patterns of the $Ga_2S_xTe_{3-x}$ powders (x = 0.01, 0.05, 0.1, 0.2, 0.3).

图 2 (网刊彩色) Ga₂S_xTe_{3-x}(x = 0.01, 0.05, 0.1, 0.2, 0.3) 的 DSC 分析图谱

Fig. 2. (color online) Differential scanning calorimetry (DSC) analyses of the different $Ga_2S_xTe_{3-x}$ samples (x = 0.01, 0.05, 0.1, 0.2, 0.3).

偏差值可达到 0.98%^[16]. 在本实验中, 这种偏差可 能有两种原因: 1) 掺杂 S 元素后形成的 Ga-S-Te 三 元合金具有新的共析转变温度, 但目前尚缺乏该三 元合金图谱加以直接佐证. 2) 各材料熔点与 DSC 实验值本身存在着一定的差异.

通过上述DSC分析结果说明,在696 K附近 x ≥ 0.05的各种材料似乎均有相变发生 (x = 0.05的材料在752 K左右似乎也有相变). 但通过对 x = 0.05 和 0.3的两种材料进行高温X射线衍射分 析,结果并没有观察到相变现象,见图3(a),(b),同 时也没有观察到杂相Ga₂S₃.这可能是与高温X射 线衍射分析时的设备特性有关,较弱的衍射峰受设 备外套屏蔽而检测不出;另一方面说明在整个温 区Ga2Te3主相比较稳定.但高温X射线衍射分析 结果不能解释图2中出现的吸热峰现象. 但经仔细 分析认为,各材料没有发生明显相变的原因可能 是在696-698 K, 698-714 K 温度时发生的共析 转变和在(757±10) K时发生的包晶反应受到原 子的扩散速率控制.随着过冷(热)度增大,相变驱 动力增大,故转变速度增大.但当过冷(热)度增大 到一定程度后,扩散成为决定性因素.因此,进一 步增大过冷(热)度又会使转变速度减慢,原来在高 温时发生的相变可被抑制^[17].因此在696—698 K, 698-714 K和(757±10) K附近Ga2Te3本应发生 的共析转变和包晶反应可能由于相变速度极缓慢, 使得Ga2Te3主相仍然保留下来. 这种情况在Zn含 量为38%—58%的黄铜中也出现过. 根据Cu-Zn相 图, 黄铜本应在 250 °C 左右发生 $\beta \rightarrow \alpha + \gamma$ 的共析 转变,但由于该温度较低,相变速度极缓慢,因此共 析转变被抑制而β相则保留下来.

图 3 Ga₂S_xTe_{3-x}的高温 XRD 图谱 (a) x = 0.05; (b) x = 0.3

Fig. 3. High temperature XRD patterns: (a) x = 0.05; (b) x = 0.3.

3.2 $Ga_2S_xTe_{3-x}$ 声电输运性能分析

虽然没有观察到明显的相变,但是由于在临 界温度时出现的热焓突变及可能存在的玻璃化 转变可以引起材料物性参数例热容的变化,并进 而影响声电输运特性.为此,我们测试了各材料 的物性参数,尤其对部分样品在临界温度696 K, 714 K及752 K(包括可能的玻璃化转变温度)附 近作了详细的分析研究. 图 4(a) 是材料热容 (C_p) 与温度的关系曲线,插图为放大图. 在整个温 区,随温度上升和S含量增大 C_p 呈增大趋势,从 室温时的0.26-0.27 J·g⁻¹·K⁻¹ 增大到812 K时的 0.33—0.35 J·g⁻¹·K⁻¹. 室温下的热容基本与根据 Dulong-Petit($C_v = 3nR, n$ 为单胞中的原子数, R 为摩尔气体常数)估算的热容(0.24 J·g⁻¹·K⁻¹)接 近. 但当温度升高后, 实测热容则明显高于估算值. 原因是采用Dulong-Petit估算时并未考虑温度因 素.因此,测试数据应该比估算值更为准确.在735 K附近, x = 0.01的材料由于出现玻璃化转变热容 也随之增大;同时,在696—698 K临界温区附近, x = 0.05, 0.1, 0.2 三种材料的热容也均出现了不同程度的增大现象. 在714 K(x = 0.3) 及752 K 左右

(x = 0.05)也均观察到热容增大情况,这与发生的吸热反应有关.在735 K附近可能的玻璃化转变 $\overline{O}, x = 0.1 和 0.2$ 两种材料的热容也出现快速增大.

图4 (网刊彩色) (a) $\operatorname{Ga}_2 S_x \operatorname{Te}_{3-x}(x = 0.01, 0.05, 0.1, 0.2, 0.3)$ 的热容 (C_p) (插图为放大图) 和 (b) 热扩散系数 (λ) Fig. 4. (color online) (a) Heat capacities (C_p) (b) and thermal diffusivities (λ) of different $\operatorname{Ga}_2 S_x \operatorname{Te}_{3-x}$ samples (x = 0.01, 0.05, 0.1, 0.2, 0.3), an insert is the magnified plot.

同样地,热焓突变也引起了材料热扩散系数 (λ)的变化,见图4(b).热扩散系数随温度上升和S 含量增大呈下降趋势(室温: 0.26—0.46 mm²·s⁻¹; 812 K: 0.14—0.30 mm²·s⁻¹).但与热容变化相反 的是,热扩散系数(λ)在发生共析和包晶反应的临 界温度附近呈现突降的现象;在可能的玻璃化转变 区各材料的热扩散系数均有不同程度的变化.但这 些变化规律与有序无序类的相变情况不同^[18].当 有序结构转变为无序结构后,热容和热扩散系数基 本不随温度而变^[18].说明材料既没有发生相的转 变,也不存在有序/无序转变.但在临界温度处由于 受共析和包晶反应的诱导存在一定的成分和密度 涨落,结构也比较混乱,因此导致材料储热能力提 升,同时也增大了声子的散射概率^[9,10].

材料的总热导率(κ)主要由晶格热导率(κ_L) 和载流子热导率(κ_e)共同组成.在整个温区,材料 的电导率均很低,因此载流子热导率(κ_e)值很小 (<6% κ),晶格热导率(κ_L)主要担负起传热任务.

由于总热导率与热容 ($C_{\rm p}$) 及热扩散系数 (λ) 成正 比, 即 $\kappa = d\lambda C_{\rm p}$, 因此具有竞争关系的两个参量 $(C_{\rm p} \pi \lambda)$ 对热导率的贡献相反,从而使在临界温 度区域热导率下降有限,实验结果也印证了这一 结论,见图5(a).因此,在临界温度处材料的热电 优值(ZT)未能出现所期望的突增现象,见图5(b), (插图为局部放大图). 各材料出现最大ZT值的温 度也不一致, x = 0.05的材料在752 K左右出现 了最大ZT值(ZT = 0.14), 而x = 0.3的材料却在 733 K时出现了第一个ZT值峰值(ZT = 0.10), 第 二个峰值出现在793 K (ZT = 0.17). 在临界温 度处的这些物性参数变化幅度仍无法与目前报道 的Cu₂Se^[11], Ag₂Se(Te)^[12,13]及AgCrSe₂^[19]三种 材料相比拟,其热电优值(ZT)的增加幅度也远低 于两元合金Cu₂Se^[11]和Ag₂Se(Te)^[12,13]. 但是在 Ga2Te3基材料内部这种临界储热或热输运特征可 为以后的继续研究提供依据.

图 5 (网刊彩色) (a) Ga₂S_xTe_{3-x} (x = 0.01, 0.05, 0.1, 0.2, 0.3)的热导率 (κ) 和 (b) 热电优值 (ZT) (插图为 690 K 到 830 K 的放大图)

Fig. 5. (color online) (a) Thermal conductivities (κ) and (b) dimensionless thermoelectric figure of merit (ZT), for different Ga₂S_xTe_{3-x} samples (x = 0.01, 0.05, 0.1, 0.2, 0.3). An insert is the magnified plot from 690 K to 830 K.

图 6(a), (b) 分别是材料的 Seebeck 系数 (α) 和 电导率(σ)随温度的变化关系. 在临界温度附 近的吸热反应也对电学性能 (α, σ) 产生了一定 的影响. 在696—714 K区域,各材料的α值均 有不同程度的突增现象. 但当温度高于该区域 时 α 值则迅速降低. 例x = 0.05的材料, α 值从 596 K时的376.3(µV·K-1)迅速增大到695 K时的 608.2(µV·K⁻¹), 然后又随温度升高到764 K时迅 速降低到213.8(µV·K⁻¹). 同样地,其他各材料 在 705 K(x = 0.2) 和 750—760 K 这些温区, 其 α 值也出现大幅上升现象. α值发生突变的温度 点或温度区间基本与DSC曲线中出现热焓变化 的临界温度相对应,也似乎与玻璃化转变相关 联,说明在临界温度处载流子的散射机理发生了 重大改变^[11]. 与Seebeck系数变化相反的是, 各 材料的电导率在相应的临界温度处却出现下降 现象,但当温度高于各临界温度(包括玻璃化转 变温度)后又开始迅速增大. 例在696—725 K的 温区附近, x ≥ 0.05时各材料的 σ 值分别处于最 低值 $2.12 \times 10^2 \ \Omega^{-1} \cdot \mathrm{m}^{-1}$ (x = 0.05), 0.25×10^2 $\Omega^{-1} \cdot \mathrm{m}^{-1}(x=0.1), \ 0.12 \times 10^2 \ \Omega^{-1} \cdot \mathrm{m}^{-1} \ (x=0.2)$

国 6 (岡田参巴)(a) $\operatorname{Ga}_2 \operatorname{Sx} \operatorname{Ie}_{3-x}(x = 0.01, 0.05, 0.1, 0.2, 0.3)$ 的 Seebeck 系数 (α) 和 (b) 电导率 (σ) (插图为放大图) Fig. 6. (color online) (a) Seebeck coefficients (α) and (b) electrical conductivities (σ) of different $\operatorname{Ga}_2 \operatorname{Sx} \operatorname{Te}_{3-x}$ samples (x = 0.01, 0.05, 0.1, 0.2, 0.3). An insert is the magnified plot.

及 0.14 × 10² Ω^{-1} ·m⁻¹ (x = 0.3). 但当温度从该 温区升高后,其 σ 值均迅速增大. 直到 ~750 K,各 种材料的电导率增加速度开始变缓或再度出现下 降. 在 596 K 到 812 K 范围, Seebeck 系数和电导率 随温度几乎均呈 Z 字形变化.

总之,含硫宽禁带 Ga₂Te₃ 半导体材料由于其 在加热(冷却)过程中有共析转变和包晶反应,具有 存在一级相变特征的热焓突变,同时也具有玻璃化 转变的某些特征.虽然热焓突变并没有使材料产生 相变,但由于在临界温度(包括玻璃化转变)处存在 成分和密度的涨落及结构混乱,使得载流子和声子 的散射机理产生了较大的改变.这一发现仍具有重 要的学术和潜在的应用研究价值.

4 结 论

本次工作研究了含S宽禁带Ga₂Te₃半导体材 料的载流子与声子散射特征,发现了Ga₂Te₃材料 中固有的共析转变和包晶反应使得材料具有一级 相变的热焓突变,但没有发生相变.不同S含量的 材料出现热焓突变的临界温度略有不同,但在临界 温度处材料具有更好的储热能力,同时对载流子和 声子的输运机理也产生了重大改变.这种固有的临 界输运机理对进一步了解宽禁带Ga₂Te₃半导体材 料及其应用具有重要的科学研究价值.

感谢宁波工程学院的叶恩和曹晓峰参与性能测试研究.

参考文献

- [1]~Guizzetti G, Meloni F 1982 Luglio-Agosto 1D 503
- [2] Guymont M, Tomas A, Guittard M 1992 *Philos. Mag.* 66 133
- [3] Finkman E, Tauc J, Kershaw R, Wold A 1975 *Phys. Rev.* B 11 3785
- [4] Kurosaki K, Matsumoto H, Charoenphakdee A, Yamanaka S, Ishimaru M, Hirotsu Y 2008 Appl. Phys. Lett. 93 012101
- [5] Cui J L, Gao Y L, Zhou H, Li Y P, Meng Q S, Yang J F 2012 Appl. Phys. Lett. **101** 081908
- [6] Fu H, Ying P Z, Cui J L, Yan Y M, Zhang X J 2011 Rare Metal Mater. Eng. 40 849 (in Chinese) [付红, 应鹏 展, 崔教林, 颜艳明, 张晓军 2011 稀有金属材料与工程 40 849]
- [7] Tian D, Liu H, Deng Y, Du Z, Cui J L 2014 RSC Adv.
 4 34104
- [8] Wuyts K, Watte J, Langouche G, Silverans R E, Zégbé G, Jumas J C 1992 J. Appl. Phys. 71 744

- [9] Wang Z, Li H, Su X, Tang X 2011 Acta Phys. Sin. 60 027202 (in Chinses) [王作成, 李涵, 苏贤礼, 唐新峰 2011 物理学报 60 027202]
- [10] Zhang X, Ma X Y, Zhang F P, Wu P X, Lu Q M, Liu Y Q, Zhang J X 2012 Acta Phys. Sin. 61 047201 (in Chinses) [张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴 2012 物理学报 61 047201]
- [11] Liu H, Yuan X, Lu P, Shi X, Xu F, He Y, Tang Y, Bai S, Zhang W, Chen L, Lin Y, Shi L, Lin H, Gao X, Zhang X, Chi X, Uher, C 2013 Adv. Mater. 25 6607
- [12] Xiao C, Xu J, Li K 2012 J. Am. Chem. Soc. 134 4287
- [13] Capps J, Drymiotis F, Lindsey S, Tritt T M 2010 Philos. Mag. Lett. 90 677

- [14] Wu C, Feng F, Feng J, Dai J, Peng L, Zhao J, Yang J, Si C, Wu Z, Xie Y 2011 J. Am. Chem. Soc. 133 13798
- [15] Wang Q, Qin X 2012 Proc. Eng. 27 77
- [16] Rao Z H, Wang S F, Zhang Y L, Peng F F, Cai S H 2013
 Acta Phys. Sin. 62 056601 (in Chinses) [饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒 2012 物理学报 61 056601]
- [17] Hu G X, Qian M G 1980 Metallography (Shanghai: Shanghai Scientific and Technical Publishers) p350 (in Chinese) [胡庚祥, 钱苗根 1980 金属学 (上海: 上海科学技 术出版社) (上海: 上海科学技术出版社) 第 350 页]
- [18] Gascoin F, Maignan A 2011 Chem. Mater. 23 2510
- [19] Gascoin F, Ottensmann S, Stark D, Haïle S M, Snyder G J 2005 Adv. Func. Mater. 15 1860

Acoustic charge transport behaviors of sulfur-doped wide gap Ga₂Te₃-based semiconductors^{*}

Liu Hai-Yun¹⁾ Liu Xiang-Lian²⁾ Tian Ding-Qi¹⁾²⁾ Du Zheng-Liang²⁾ Cui Jiao-Lin^{2)†}

1) (Materials Science and Engineering College, Taiyuan University of Technology, Taiyuan 030024, China)

2) (School of Materials, Ningbo University of Technology, Ningbo 315010, China)

(Received 14 May 2015; revised manuscript received 2 June 2015)

Abstract

Wide gap semiconductors as the thermoelectric (TE) candidates have been increasingly interested because of their inherent high Seebeck coefficients and low thermal conductivities. Ga_2Te_3 is one of the typical defect compounds $(E_g = 1.65 \text{ eV})$ among the $A_2^{\text{III}}B_3^{\text{VI}}$ type semiconductors, in which there are periodically self-assembled 2D vacancy planes that wrap the nanostructured domains. The vacancy planes scatter phonons highly effectively and are responsible for reducing the lattice thermal conductivity. Hence Ga_2Te_3 might be a good TE candidate. In the phase diagram of Ga-Te, Ga_2Te_3 is involved in the eutectoid and peritectic reactions at the critical temperatures (CTs) of (680 ± 10) K and (757 ± 10) K respectively. These reactions would lead to the generation of enthalpies of reactions, and induce the alteration of some thermo-physical properties.

In the present work, we have not observed the phase transformations at CTs in the Ga₂Te₃-based materials with sulfur isoelectronic substitution for Te, which are prepared by powder metallurgy with the spark plasma sintering (SPS) technique, but can observe the generation of assumed enthalpies of reactions near CTs, which directly gives rise to the critical acoustic charge transport behaviors. The critical behaviors involve the remarkable increase of heat capacities and Seebeck coefficients and, at the same time, reductions of thermal diffusivities (thermal conductivities) and electrical conductivities. For example, the Seebeck coefficient (α) at x = 0.05 increases rapidly from 376.3 (μ V·K⁻¹) to 608.2 (μ V·K⁻¹) when the temperature rises from 596 to 695 K, and then decreases to 213.8 (μ V·K⁻¹) at 764 K. Similarly, all the S-doped samples, which have lowest electrical conductivities (σ) of 2.12 × 10² (x = 0.05), 0.25 × 10² (x = 0.1), 0.12 × 10² Ω^{-1} ·m⁻¹ (x = 0.2) and 0.14 × 10² Ω^{-1} ·m⁻¹ (x = 0.3) at 696—725 K, undergo dramatic changes when the temperature rises to about 750 K, and then the electrical conductivities begin to decrease, and the changes tend to slow down. It is notable that both the Seebeck coefficients and electrical conductivities exhibit a typical zigzag temperature dependence in the temperature range from 596 to 812 K. These behaviors reveal the remarkable alterations in scattering mechanism of both phonons and carriers at temperatures near the CTs.

Although the materials with these critical behaviors near CTs do not have satisfactory thermoelectric performance $(ZT_{max} = 0.17 \text{ at } 793 \text{ K} \text{ for } x = 0.3)$ as compared with the known binary Cu₂Se, Ag₂Se(S) or ternary based AgCrSe₂ alloys, however, the findings of such critical transport behaviors have a great significance for future researches.

Keywords: thermoelectric materials, wide gap, Ga2Te3, critical acoustic charge transportPACS: 72.15.Jf, 64.70.-kg, 71.20.Nr, 65.40.BaDOI: 10.7498/aps.64.197201

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51171084), the Zhejiang Provincial Natural Science Foundation (Grant No. LY14E010003), and the Ningbo Natural Science Foundation (Grant No. 2014 A610016).

[†] Corresponding author. E-mail: cuijiaolin@163.com