物理学报 Acta Physica Sinica

多晶 TaN $_{1-\delta}$ 薄膜的电输运性质研究

周定邦 刘新典 李志青

Electrical transport properties of polycrystalline TaN $_{1-\delta}\;$ films

Zhou Ding-Bang Liu Xin-Dian Li Zhi-Qing

引用信息 Citation: Acta Physica Sinica, 64, 197302 (2015) DOI: 10.7498/aps.64.197302 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.197302 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I19

您可能感兴趣的其他文章 Articles you may be interested in

对称双势垒量子阱中自旋极化输运的时间特性

Time of spin-polarized tunneling through a symmetric double-barrier quantum well structure 物理学报.2013, 62(8): 087303 http://dx.doi.org/10.7498/aps.62.087303

费米超流气体在幺正极限区域的非线性 Ramsey 干涉 Nonlinear Ramsey interference of Fermi superfluid gases in unitarity regime 物理学报.2012, 61(19): 197301 http://dx.doi.org/10.7498/aps.61.197301

铁基 Heusler 合金 $Fe_2Co_{1-x}Cr_xSi$ 的结构、磁性和输运性质的研究 Structural magnetic transport and half-metallic properties of $Fe_2Co_{1-x}Cr_xSi$ Heusler alloys 物理学报.2012, 61(14): 147304 http://dx.doi.org/10.7498/aps.61.147304

NdNi₂Ge₂化合物的结构和电磁输运性质

Structure and electromagnetic transport properties of compound NdNi₂Ge₂ 物理学报.2011, 60(10): 107306 http://dx.doi.org/10.7498/aps.60.107306

β-Zn₄Sb₃/Zn_{1-δ}Al_δO 复合材料的制备及热电性能研究 Preparation and thermoelectric properties of β-Zn₄Sb₃/Zn_{1-δ}Al_δO 物理学报.2011, 60(6): 067201 http://dx.doi.org/10.7498/aps.60.067201

多晶 ${ m TaN}_{1-\delta}$ 薄膜的电输运性质研究 *

周定邦 刘新典 李志青

(天津大学理学院,天津市低维材料物理与制备技术重点实验室,天津 300072)

(2015年3月18日收到;2015年5月27日收到修改稿)

利用射频溅射法在石英玻璃基底上制备了一系列面心立方结构的多晶 $TaN_{1-\delta}$ 薄膜,并对其晶体结构和 2—350 K温度范围的电子输运性质进行了系统研究. 薄膜呈多晶结构,并且平均晶粒尺寸随着基底温度的升 高逐渐增大. 电输运测量结果表明, $TaN_{1-\delta}$ 薄膜在5 K以下表现出类似超导体-绝缘体颗粒膜的电输运性质; 随着温度的升高,薄膜在10—30 K表现出类似金属-绝缘体颗粒膜的性质;在70 K以上,热涨落诱导的遂穿 导电机理主导着电阻率的温度行为. 我们的结果表明: $TaN_{1-\delta}$ 多晶薄膜的类颗粒膜属性使其具有较高的电 阻率和负的电阻温度系数.

关键词: 电输运性质, 颗粒薄膜, 跳跃电导 **PACS:** 73.61.At, 72.80.Tm, 73.40.Gk

1引言

在过去的几十年, 面心立方结构的 TaN_{1- δ} (δ 一般介于-0.3和0.1之间)材料因其优越的物理、 化学及机械性能 (如高硬度、耐磨、化学惰性、热 稳定性以及低的电阻温度系数) 而引起人们的广 泛关注,现已在耐磨涂层、薄膜电阻以及集成电 路中的扩散势垒等领域得到了广泛应用^[1-3].目 前,针对TaN_{1-δ}的研究主要集中于薄膜的制备和 器件的开发应用^[4-6], 有关TaN_{1-δ}薄膜的基本性 质的基础研究却很少,对其中的一些基本问题仍然 认识不清. 例如, 第一性原理计算显示 TaN_{1- δ} 具 有类金属的能带结构^[7], 而实验所得 TaN_{1- δ} 薄膜 的载流子浓度也高达10²² cm⁻³数量级^[6,8], 与一 般金属的载流子浓度相当,尽管Yu等^[9]也曾制备 出了具有金属导电特性的TaN_{1-δ}薄膜,但绝大多 数实验结果却显示 TaN_{1- δ} 薄膜的电阻率较大, 并 且电阻温度系数 (TCR) 为负, 表现出类半导体的 导电性质. 对于该现象的物理原因目前尚无定论. Tiwari 等^[10] 测量了 12—300 K 范围内 TaN_{1-δ} 薄 膜的电阻率与温度的关系,认为薄膜的负的电阻温

DOI: 10.7498/aps.64.197302

度系数源于弱局域效应. 而Lal等^[11]同样分析了 $TaN_{1-\delta}$ 薄膜的电阻率随温度的变化关系,提出薄 膜在80—300 K间的导电性质满足Sheng等^[12,13] 提出的颗粒膜中的跳跃导电机理,而在1.5—12 K 温区内的电输运性质则由电子-电子相互作用主 导^[14]. 一般来讲, 弱局域效应往往发生在低温区 域 (液He温区), 而在颗粒膜中, 跳跃导电一般发生 在强局域样品中. 在低于发生跳跃导电的温区, 电 子将变得更加局域化, Altshuler-Aronov类型的电 子-电子相互作用的贡献可以忽略^[14-16].因此,上 述两种解释的正确性均需商榷. 我们知道, TaN_{1-δ} 薄膜的导电机理对其在器件中的应用及新器件的 开发都至关重要,因此,针对目前的研究现状,有 必要对TaN_{1- δ}薄膜的电输运性质进行系统研究, 探究TaN1-δ薄膜电阻率较大且呈现负电阻温度系 数的物理原因. 在本文中, 我们利用射频磁控溅射 法制备了系列多晶 $TaN_{1-\delta}$ 薄膜,通过改变基底温 度来调节薄膜的晶粒尺寸,我们发现薄膜表现出 类似金属颗粒膜的性质, 低温下随着晶粒尺寸的增 加, TaN_{1- δ} 薄膜中出现了整体超导体现象, 而高温 时样品的电阻率与温度的关系符合热涨落诱导的

* 国家自然科学基金(批准号: 11174216)和高校博士点基金(批准号: 20120032110065)资助的课题.

© 2015 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: xindianliu@tju.edu.cn

遂穿 (fluctuation-induced tunneling, FIT) 导电模 型^[17–21], 我们的结果揭示了高载流子浓度的多晶 TaN_{1- δ} 薄膜具有较高电阻率和负电阻温度系数的 物理原因.

2 实 验

目前,制备 $TaN_{1-\delta}$ 薄膜的方法主要有磁控溅 射法、脉冲激光沉积法及离子束辅助沉积法.磁 控溅射是较为廉价及方便的一种方法,但以往的 报道都是以金属Ta作为靶材, 通过控制N₂/Ar比 率来获得的^[4,6,9,22]. 由于 TaN_{1- δ} 体系的相图比较 复杂[6,22,23],通过调节溅射过程中的 N_2 分压,往往 会同时得到几种不同的结晶相, 如密堆六方结构 的 γ -Ta₂N、面心立方结构的TaN_{1- δ}、正交结构的 Ta_3N_5 及六角结构的 Ta_5N_6 .为获得单相 $TaN_{1-\delta}$ 薄膜,我们的样品采用射频溅射法、选用纯度为 99.9%的TaN靶材 (由上海光机所提供)来制备. 溅射前, 腔室的背底真空约为 9.0×10^{-5} Pa, 工作 气体采用高纯 (99.999%) Ar 气, 溅射过程中压强 维持在 0.6 Pa, 溅射功率为 60 W. 为了调节薄膜的 晶粒尺寸, 溅射过程中石英玻璃基片的温度分别设 定为523 K, 613 K, 653 K, 683 K, 723 K, 763 K, 813 K和853 K.

利用台阶仪 (Dektak, 6 m) 对薄膜的厚度进行 了测量, 所得结果见表1.利用粉末X射线衍射仪 (D/MAX-2500/pc, Rigaku) 测量了薄膜的晶体结 构, 测量过程中选取Cu Kα辐射作为射线源.利用 扫描电子显微镜 (SEM, SUPRA 55VP) 对薄膜的 微观形貌进行表征.通过四点法测量薄膜的电阻率 与温度的关系, 测量范围为2—350 K, 室温霍尔效 应测量同样采用四点法, 所得样品的载流子浓度列 于表1, 电阻率及霍尔效应测量均在物理性质测量 系统 (PPMS-6000, Quantum Design) 上完成.

图 1 (网刊彩色) 基底温度分别为 523 K, 613 K, 683 K, 763 K, 853 K 条件下制备的 TaN_{1- δ} 薄膜的 XRD 图 Fig. 1. (color online) XRD patterns for TaN_{1- δ} films deposited at 523 K, 613 K, 683 K, 763 K, 853 K.

表1 不同基底温度条件下制备的 TaN_{1- δ} 薄膜的样品参数. T_s 为基底温度, d 为样品的膜厚, D 为样品的晶粒尺 寸, $n_{\rm RT}$ 为室温载流子浓度, $\rho_{350 \text{ K}}$ 为 350 K 时的电阻率. ρ_0 , W, V_0 分别为由 (2)—(5) 式拟合得到的电阻率、绝缘势垒宽度及高度

Table 1. Sample parameters for $\text{TaN}_{1-\delta}$ films deposited at different temperatures. T_s is the substrate temperature during deposition, d is the thickness of the films, D is the mean-grain radius, and n_{RT} is room-temperature carrier concentration, $\rho_{350 \text{ K}}$ is the resistivity at 350 K, ρ_0 , W and V_0 are the fitting parameters in Eq. (2)–(5), respectively.

$T_{ m s}/{ m K}$	d/nm	D/nm	$n_{\rm RT}/10^{22}~{\rm cm}^{-3}$	$\rho_{350~\rm K}/\mu\Omega\cdot~\rm cm$	$ ho_0/\mu\Omega\cdot~{ m cm}$	W/nm	V_0/meV
523	248	10.52	1.00	5574	2191	0.586	76.98
613	270	10.14	1.03	3748	1457	0.528	84.41
653	255	12.61	1.71	2551	972	0.560	73.98
683	244	11.21	2.00	1635	759	0.465	67.43
723	240	13.14	3.26	1324	486	0.524	80.35
763	233	15.59	4.51	1038	385	0.545	70.85
813	240	23.01	5.81	827	281	0.663	56.24
853	237	25.66	6.50	702	241	0.659	53.40

3 结果与讨论

图1给出了不同基底温度下制备的几个典型的 TaN_{1- δ} 薄膜的 X 射线衍射 (XRD) 图.可以看

出,随着基底温度的升高,衍射强度逐渐增强,出现的衍射峰数量也逐渐增加,并且最强峰半峰宽逐渐减小,表明TaN_{1-δ}的晶粒尺寸随基底温度的升高逐渐变大,这与SEM结果一致 (见后面的详细讨论).在853 K下生长的TaN_{1-δ}薄膜出现了5

个明显的衍射峰,经过和标准X射线衍射卡片对 比,发现这些衍射峰分别对应面心立方结构TaN 的 (111), (200), (220), (311), (222) 晶面 (如图1所 示). 而在523 K条件下制备的TaN_{1-δ}薄膜除最强 峰(111)外,仅出现(200)晶面对应的微弱的衍射 峰,且最强峰的峰强较弱.根据 (111) 和 (200) 衍 射峰,我们计算了所得薄膜的晶格常数a,发现随 着基底温度的升高, a 逐渐减小, 由 4.404 Å 减小到 4.365 Å. 文献 [6] 曾报道在 TaN_x 薄膜中随着 N含 量的增加,晶格常数逐渐减小,但在确定温度下其 电阻率逐渐增加,这与我们的样品不同,我们的样 品随着基底温度的升高,在确定温度下的电阻率 是减小的 (见下文). 另外, 也有研究者发现 [24], 随 着N含量的增加, TaN_x 薄膜的晶格常数逐渐增加. 我们的样品是由TaN 靶溅射得到的, 制备时所用气 体为高纯氩气,这样样品中N的含量随基底温度的 变化不会严重.因此,样品晶格常数变化的原因仍 需进一步研究.

图 2 不同基底温度下制备的 TaN_{1-δ} 薄膜的 SEM 图 (a), (b), (c) 和 (d) 分别对应基底温度 523 K, 613 K, 763 K和 853 K

Fig. 2. SEM images for ${\rm TaN}_{1-\delta}$ films deposited at (a) 523 K, (b) 613 K, (c) 763 K, and (d) 853 K.

图 2 给出了基底温度为 523 K, 613 K, 763 K 和 853 K时制备的 TaN_{1-δ} 薄膜的 SEM 图, 可以看 出,基底温度对 TaN_{1-δ} 薄膜的微观形貌有明显影 响. 523 K时所得样品的表面由细密的小颗粒 (尺 寸小于 10 nm)聚集成疏松团状物组成.随着基底 温度的升高,聚集成团效应逐渐降低,部分细小颗 粒从团状结构分离出来并逐渐长大,颗粒形状逐渐 明晰. 当基底温度升高至 853 K时, 样品表面主要 由一些结构致密的类三角形晶粒组成, 晶粒平均尺 寸约 30 nm. 表1给出了 TaN_{1-δ}薄膜的室温载流 子浓度 $n_{\rm RT}$, 样品的载流子浓度随着基底温度的升 高而增大, 由 523 K的 ~ 1 × 10²² cm⁻³ 增加到 853 K的 6.5 × 10²² cm⁻³, 与金属材料的载流子浓度相 近, 这与先前文献报道一致 ^[6,8].

我们对 $TaN_{1-\delta}$ 薄膜的电阻率随温度的变化关 系进行了测量,测量温度范围为2-350 K. 我们发 现,当温度低于5K时,不同基底温度所得样品的 电阻率与温度的依赖关系有非常大的差异. 图3 给 出了几个有代表性的TaN1-δ薄膜在2-6 K温区 的电阻率与温度的关系曲线. 当基底温度低于 613 K时,薄膜的电阻率随温度的降低而升高,呈现出 类似半导体的导电性质:在653 K和683 K温度下 制备的 $TaN_{1-\delta}$ 薄膜, 在高于3 K时, 薄膜的TCR 为负,但在2-3 K温度范围,随着温度的降低,电 阻率出现明显下降趋势,且下降幅度随基底温度 的升高而变大;对于基底温度高于723 K时制备的 薄膜,随着温度的降低,电阻率在4K左右时开始 减小,随后陡然消失.上述现象揭示出,随着基底 温度的升高, TaN_{1-δ}薄膜在低温下出现了整体超 导体态. TaN_{1-δ}薄膜中的超导电现象最早由Gerstenberg 和 Hall^[25] 报道. Shapira 等^[26] 在 200 nm 厚的Al-Ge颗粒膜中观察到,只有当金属Al颗粒的 尺寸增大到一定程度时,体系在低温才有可能出 现整体超导体态,如果金属颗粒尺寸太小,超导现 象将不会发生,而且当体系中的金属体积分数增 大到一定程度时, Al-Ge颗粒膜的超导转变温度 $T_{\rm C}$ 将减小至块体金属 Al的 Tc 值. 仔细观察我们的数 据可以发现,不同的TaN1-δ薄膜,超导转变温度 $T_{\rm C}$ 不同,对于653 K和683 K条件下所得样品,当 温度分别降至2.32 K和2.88 K时其电阻率开始减 小. 随着基底温度的升高, 超导转变温度持续增 加,由723 K时所得样品的4.08 K增至813 K时所 得样品的4.51 K. 继续增加基底温度, 超导转变温 度出现下降趋势,在基底温度为853 K时,T_C降至 3.93 K. 我们所观察到的 $T_{\rm C}$ 值与文献报道一致^[27]. 文献 [6] 也曾对 TaN_x 薄膜中的超导电现象进行了 报道,并且发现同系列样品中,随着N含量的增加, 在电阻率增大的同时,超导温度单调减小,这与我 们所观察到的现象不一致. 在超导颗粒系统中, 约 瑟夫森耦合能J及金属颗粒的库仑充电能Ec对 材料的电输运性质起决定性作用. 当颗粒间的耦

合足够强, 即 $J \gg E_{\rm C}$ 时, 在足够低的温度条件下就会出现超导现象, 且超导转变温度随颗粒体系导电性的增强而升高. 当颗粒间的耦合作用非常弱, $J \ll E_{\rm C}$ 时, 局域于颗粒内部的库伯对由于排斥作用导致库仑阻塞, 此时系统的基态为绝缘态^[28-30]. 对我们的 TaN_{1-δ} 薄膜来说, 随着基底温度的升高, 晶粒尺寸逐渐增大 (同时电阻率逐渐减小, 导电性

逐渐增强),库仑充电能 $E_{\rm C}$ 逐渐减小,这时就会有 超导转变现象发生,且超导转变温度的变化规律同 超导体-绝缘体颗粒膜中的规律相同,这说明我们 的 TaN_{1-δ} 薄膜在低温下具有超导体-绝缘体颗粒 系统的属性.因此,样品在高温下应该同样具有颗 粒膜的性质.

图 3 不同基底温度条件下制备的 TaN_{1- δ} 薄膜在 2—6 K 温度范围的电阻率与温度的关系 Fig. 3. Resistivity as a function of temperature between 2 and 6 K for TaN_{1- δ} films deposited at different temperatures.

在弱耦合金属颗粒系统中, 在温度较低时, 颗粒的库仑充电能 $E_{\rm C}$ 较大 ($E_{\rm C} > k_{\rm B}T$, 其中 $k_{\rm B}$ 为波尔兹曼常数), 电子只能以跳跃模式由一个颗粒转移至另一颗粒, 此时系统的电阻率与温度间满足如下指数关系^[28]:

$$\rho(T) = \rho' \exp\left(\frac{T'}{T}\right)^{1/2},\tag{1}$$

其中 ρ' 和T'为常量.在我们的样品中,基底温度低于613 K条件下制备的TaN_{1- δ}薄膜,其电阻温度

系数在整个测温范围 2—350 K均为负值,且在较低温度(低于 30 K)时,电阻率随温度降低而升高的速率明显高于较高温度时的速率(图4(a)).同样对于基底温度高于 653 K的薄膜,在较低温度(约10—30 K范围)时样品的TCR的绝对值也明显高于较高温度(约70—350 K范围)时的值,暗示在这两个温区样品的电输运性质应具有不同的机理.鉴于10—30 K温度范围ρ-T曲线较陡的特点,同时考虑到样品的颗粒属性,我们将该温度范围的

实验数据同(1)式进行了比较,图4(b)绘出了几个 典型样品在该温度范围的 $\log \rho = T^{-1/2}$ 的关系曲 线,可以看出,样品的 $\log \rho = T^{-1/2}$ 很好地满足线 性关系,说明我们的样品在10—30 K温度范围的 电输运行为具有金属颗粒系统的跳跃导电特性,这 进一步证明了样品具有颗粒膜的属性.

图 4 (网刊彩色) 不同基底温度下制备的 TaN_{1-\delta} 薄膜的归一化电阻率随温度的变化 (a) 归一化电阻率 $\rho(T)/\rho$ (350 K) 与温度 T 的关系; (b) $\rho(T)/\rho$ (30 K) 的对数随 $T^{-1/2}$ 的变化关系. 这里空心圆为实验结果, 实线是 (2) 式 的拟合结果. 为清楚起见, (a) 中 683 K 和 613 K 条件下制备的样品的数据分别向上平移了 0.05 和 0.1 Fig. 4. (color online) Normalized resistivity as a function of temperature for the TaN_{1-\delta} films deposited at different temperatures. (a) $\rho(T)/\rho$ (350 K) versus temperature T, (b) $\rho(T)/\rho$ (30 K) (in logarithmic scale) varies as a function of $T^{-1/2}$. The open circles are the experimental results, and the solid lines represent the least-squares fits to Eq. (2). In (a), the data for the samples deposited at 683 and 613 K have been shifted up by 0.05 and 0.1 respectively, for clarity.

在导体-绝缘体颗粒系统中,当温度较高 或颗粒尺寸较大时,库仑充电能 $E_{\rm C}$ 相对较小 ($E_{\rm C} < k_{\rm B}T$),此时电子可遂穿通过颗粒间的绝 缘层,体系的电子输运行为由热涨落诱导的遂穿 (FIT) 机理所主导. Sheng等^[17–19]对该问题进行 了理论研究,得到由FIT导致的电阻率与温度的 关系为

$$\rho(T) = \rho_0 \exp\left(\frac{T_1}{T + T_0}\right),\tag{2}$$

这里

$$T_1 = \frac{8\varepsilon_0 A V_0^2}{\mathrm{e}^2 k_\mathrm{B} W},\tag{3}$$

$$T_0 = \frac{8\varepsilon_0 h A V_0^{3/2}}{\pi^2 (2m_{\rm e})^{1/2} W^2 e^2 k_{\rm B}},\tag{4}$$

其中, ρ_0 为常数, T_1 和 T_0 是与绝缘势垒相关的特征 温度, ε_0 为真空介电常数, h 为普朗克常量, m_e 为 电子质量, A 为绝缘势垒的有效面积, e 为电子电 量, V_0 和W 分别为绝缘势垒的高度和宽度. 我们 用(2) 式对样品的 $\rho(T)$ 曲线进行了拟合, 拟合结果 见图 4(a) 中的实线. 对于所有样品, 当温度高于70 K时, 都可以用(2) 式来描述, 说明我们的 TaN_{1-δ} 薄膜在 70—350 K 温区的导电行为遵从 FIT 机理,即体系在较高温度时的导电行为是通过 TaN_{1-δ} 晶粒中的电子遂穿晶界势垒来完成的.这很可能是多晶 TaN_{1-δ} 薄膜具有较高载流子浓度但却呈负的电阻温度系数的物理原因.

由(3)式和(4)式可得

$$\frac{T_1^2}{T_0} = \frac{4\pi A\varepsilon_0}{k_{\rm B}\,{\rm e}^2} \frac{\sqrt{2m}}{\hbar} V_0^{5/2} \propto A V_0^{5/2}.$$
 (5)

由上式可知,如果已知隧道结的有效面积A,就 可根据拟合参数 T_1 和 T_0 求出绝缘势垒的高度 V_0 和宽度W.在我们的样品中,TaN_{1-δ}颗粒的 尺寸D可由XRD结果根据Scherrer公式^[31]D = $0.89\lambda/(\beta\cos\theta)$ [其中 λ 为所用X射线波长, θ 为衍 射角, β 为衍射峰的半高宽度,这里采用 (111) 晶 面对应衍射峰的半高宽]计算得出 (见表1),所得 结果与由SEM得出的结果大致相当.由于样品中 TaN_{1-δ}颗粒的形状并不规则,因此我们考虑了A与 D^2 具有不同比例系数时的 V_0 和W的结果.我 们取 $A = D^2/p$,其中p为1—10之间的整数.经 计算发现,当p介于该范围时,所有样品 V_0 的值 均为几十meV,而W的数量级均为10⁻¹ nm.在 表1中给出了 $A = D^2/5$ 时样品的绝缘势垒高度 V_0 和宽度W的计算结果.可以看出绝缘势垒宽 度 $W \sim 0.6$ nm,势垒高度 $V_0 \sim 70$ meV,该结果 与文献报道在同一量级.例如在掺杂的GaAs^[18], ITO^[32]等颗粒膜中,绝缘势垒高度分别约50 meV 和80 meV,绝缘势垒宽度分别约7 nm和1 nm.因此,我们获得的W和 V_0 值是合理的.上述结果 更加确定了多晶TaN_{1-δ}薄膜中电子的传输过程 由FIT机理主导,如前所述,这种隧穿导电机理势 必会造成样品具有较高的电阻率和负的电阻温度 系数.

4 结 论

使用 TaN 靶, 采用射频磁控溅射法在石英玻璃 基底上成功生长出面心立方结构的多晶 TaN_{1-δ}薄 膜. 系统地研究了基底温度对薄膜晶体结构、微观 形貌和电输运性质的影响,探究了薄膜中载流子的 电输运机理.结果表明:在溅射过程中,随着基底 温度的升高,薄膜的平均颗粒尺寸逐渐增大,室温 电阻率逐渐减小. 测量了 $TaN_{1-\delta}$ 薄膜在 2—350 K 温度范围内电阻率随温度的变化,在低温(低于 5 K) 区域, 随着基底温度的升高, TaN_{1- δ}薄膜中 出现了超导态,且超导转变温度随基底温度的升高 而升高, 与超导颗粒膜中观察到的现象相同. 在较 高温区,所有薄膜的电阻温度系数均为负值,随着 温度的升高,薄膜的导电机理由导电颗粒间的跳跃 导电机理逐渐过渡到70 K以上的热涨落诱导的遂 穿导电机理,因此,TaN1-δ多晶薄膜的类颗粒膜属 性可能是其具有较高的电阻率和负的电阻温度系 数的主要原因.

参考文献

- [1] Baba K, Hatada R 1996 Surf. Coat. Technol. 84 429
- [2] Bozorg-Grayeli E, Li Z J, Asheghi M, Delgado G, Pokrovsky A, Panzer M, Wack D, Goodson K E 2011 *Appl. Phys. Lett.* **99** 261906
- [3] Kwon J, Chabal Y J 2010 Appl. Phys. Lett. 96 151907
- [4] Engel A, Aeschbacher A, Inderbitzin K, Schilling A, Il'in K, Hofherr M, Siegel M, Semenov A, Hübers H W 2012 *Appl. Phys. Lett.* 100 062601
- [5] Chaudhuri S, Maasilta I J 2014 Appl. Phys. Lett. 104 122601

- [6] Shin C S, Gall D, Kim Y W, Desjardins P, Petrov I, Greene J E, Odén M, Hultman L 2001 J. Appl. Phys. 90 2879
- [7] Stampfl C, Mannstadt W, Asahi R, Freeman A J 2001 *Phys. Rev. B* 63 155106
- [8] Breznay N P, Michaeli K, Tikhonov K S, Finkel' stein A M, Tendulkar M, Kapitulnik A 2012 Phys. Rev. B 86 014514
- [9] Yu L, Stampfl C, Marshall D, Eshrich T, Narayanan V, Rowell J M, Newman N, Freeman A J 2002 Phys. Rev. B 65 245110
- [10] Tiwari A, Wang H, kumar D, Narayan J 2002 Mod. Phys. Lett.B 16 1143
- [11] Lal K, Ghosh P, Biswas D, Meikap A K, Chattopadhyay S K, Chatterjee S K, Ghosh M, Baba K, Hatada R 2004 Solid State Commun. 131 479
- [12] Sheng P, Abeles B 1972 Phys. Rev. Lett. 28 34
- [13] Sheng P, Abeles B, Arie Y 1973 Phys. Rev. Lett. **31** 44
- [14] Altshuler B L, Aronov A G, Lee P A 1980 Phys. Rev. Lett. 44 1288
- [15] Altshuler B L, Aronov A G, in Electron-Electron Interactions in Disordered Systems, edited by A. L. Efros, M. Pollak (Elsevier, Amsterdam, 1985) pp74–78
- [16] Lee P A, Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
- [17] Sheng P, Sichel E K, Gittleman J I 1978 *Phys. Rev. Lett.* 40 1197
- [18] Sheng P 1980 Phys. Rev. B **21** 2180
- [19] Xie H, Sheng P 2009 Phys. Rev. B 79 165419
- [20] Liu X D, Liu J, Chen S, Li Z Q 2012 Appl. Surf. Sci. 263 486
- [21] Zheng X W, Li Z Q 2009 Appl. Surf. Sci. 255 8104
- [22] Sun X, Kolawa E, Chen J S, Reid J S, Nicolet M A 1993 Thin Solid Films 236 347
- [23] Sreenivasan R, Sugawara T, Saraswat K C, McIntyre P C 2007 Appl. Phys. Lett. 90 102101
- [24] Nie H B, Xu S Y, Wang S J, You L P, Yang Z, Ong C
 K, Li J, Liew T Y F 2001 Appl. Phys. A 73 229
- [25] Gerstenberg D, Hall P M 1964 J. Electrochem. Soc. 111 936
- [26] Shapira Y, Deutscher G 1983 Phys. Rev. B 27 4463
- [27] Breznay N P, Kapitulnik A 2013 Phys. Rev. B 88 104510
- [28] Beloborodov I S, Lopatin A V, Vinokur V M, Efetov K B 2007 Rev. Mod. Phys. 79 469
- [29] Ivry Y, Kim C S, Dane A E, Fazio D D, McCaughan A N, Sunter K A, Zhao Q Y, Berggren K K 2014 *Phys. Rev. B* 90 214515
- [30] Lerer S, Bachar N, Deutscher G, Dagan Y 2014 Phys. Rev. B 90 214521
- [31] Yang X C, Riehemann W, Dubiel M, Hofmeister H 2002 Mater. Sci. Eng. B 95 299
- [32] Ederth J, Johnsson P, Niklasson G A, Hoel A, Hultåker A, Heszler P, Granqvist C G, van Doorn A R, Jongerius M J, Burgard D 2003 *Phys. Rev. B* 68 155410

Electrical transport properties of polycrystalline ${\rm TaN}_{1-\delta}$ films^{*}

Zhou Ding-Bang Liu Xin-Dian[†] Li Zhi-Qing

(Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072, China)

(Received 18 March 2015; revised manuscript received 27 May 2015)

Abstract

Tantalum nitride with a face-centered cubic structure $(TaN_{1-\delta})$ has received much attention due to its high hardness, good wear resistance, chemical inertness, thermodynamic stability, and low temperature coefficients of resistivity. First-principles calculations have indicated that cubic-TaN possesses metallic energy band structure, and the experimental results show that the carrier concentration in $TaN_{1-\delta}$ films are comparable to that of normal metals. However, semiconductor-like temperature behavior of resistivity is often observed in polycrystalline $TaN_{1-\delta}$ film. In the present paper, we systematically study the crystal structures and electrical transport properties of a series of $TaN_{1-\delta}$ thin films, deposited on quartz glass substrates at different temperatures by the rf sputtering method. Both X-ray diffraction patterns and scanning electron microscope images indicate that the films are polycrystalline and have face-centered cubic structure. It is also found that the mean grain sizes of the films gradually increase with increasing depositing temperature. The temperature dependence of resistivity is measured from 350 K down to 2 K. The films with large grain sizes have a superconductor-insulator transition below ~ 5 K, while the films with small grain sizes retain the semiconductor characteristics down to the minimum measuring temperature, 2 K. These phenomena are similar to that observed in superconductor-insulator granular composites. Above 5 K, the temperature coefficients of the resistivities of the films are all negative. In the temperature range between 10 and 30 K, the films show hopping transport properties which are often seen in metal-insulator granular systems, i. e. the logarithm of the resistivity (log ρ) varies linearly with $T^{-1/2}$, where T represents the measured temperature. The thermal fluctuation-induced tunneling conductive mechanism dominates the temperature behaviors of resistivities from 70 K up to 350 K. It can be seen that the thermal fluctuation induced tunneling conductive mechanism is also the main conductive mechanism in metal-insulator granular systems in the higher temperature regions. Our results indicate that the electrical transport properties of the polycrystalline $TaN_{1-\delta}$ films are similar to that of metal-insulator granular films with different volume fractions of metal, where the metal possesses superconductivity at low temperatures. Hence the high resistivity and negative temperature coefficient of resistivity of $TaN_{1-\delta}$ polycrystalline film can be reasonably ascribed to the similarity in microstructures between $TaN_{1-\delta}$ polycrystalline film and metal-insulator granular film.

Keywords: electrical transport properties, granular films, hopping conductance PACS: 73.61.At, 72.80.Tm, 73.40.Gk DOI: 10.7498/aps.64.197302

* Project supported by the National Natural Science Foundation of China (Grant No. 11174216) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120032110065).

† Corresponding author. E-mail: xindianliu@tju.edu.cn