物理学报 Acta Physica Sinica

NiFe/Pt薄膜中角度相关的逆自旋霍尔效应 韩方彬 张文旭 彭斌 张万里

Angle dependent inverse spin Hall effect in NiFe/Pt thin film

Han Fang-Bin Zhang Wen-Xu Peng Bin Zhang Wan-Li

引用信息 Citation: Acta Physica Sinica, 64, 247202 (2015) DOI: 10.7498/aps.64.247202 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.247202 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I24

您可能感兴趣的其他文章 Articles you may be interested in

Co/Ni多层膜垂直磁各向异性的研究

Perpendicular magnetic anisotropy in Co/Ni multilayers studied by anomalous Hall effect 物理学报.2015, 64(9): 097501 http://dx.doi.org/10.7498/aps.64.097501

FeMn 掺杂 AIN 薄膜的制备及其特性研究

Study on preparation and characteristics of Fe- and Mn-doped AIN thin films 物理学报.2013, 62(21): 217504 http://dx.doi.org/10.7498/aps.62.217504

Ge纳米结构的形貌与铁磁性研究

Morphology and ferromagnetism of Ge nanostructure 物理学报.2013, 62(3): 037502 http://dx.doi.org/10.7498/aps.62.037502

引入纳米氧化层的 CoFe/Pd 双层膜结构中增强的垂直磁各向异性研究 Research on enhanced perpendicular magnetic anisotropy in CoFe/Pd bilayer structure 物理学报.2012, 61(16): 167505 http://dx.doi.org/10.7498/aps.61.167505

CoFeB/Pt多层膜的垂直磁各向异性研究

Perpendicular magnetic anisotropy in the CoFeB/Pt multilayers by anomalous Hall effect 物理学报.2012, 61(16): 167504 http://dx.doi.org/10.7498/aps.61.167504

NiFe/Pt薄膜中角度相关的逆自旋霍尔效应*

韩方彬 张文旭† 彭斌 张万里

(电子科技大学,电子薄膜与集成器件国家重点实验室,成都 610054)

(2015年7月31日收到;2015年9月6日收到修改稿)

NiFe/Pt 双层薄膜样品在铁磁共振时, NiFe 磁矩进动所产生的自旋流注入到 Pt 层中,由于逆自旋霍尔效 应产生直流电压 V_{ISHE},此电压会叠加到 NiFe 薄膜由于自旋整流效应而产生的电压 V_{SRE}上,实验测量所得 电压为 V_{ISHE}和 V_{SRE}的叠加.为了区分这两种不同机理对电压的贡献,本文采取旋转外加静磁场的方法,通 过分析所测电压随磁场角度的变化从而分离出 V_{ISHE}的大小.研究结果表明,相比于单层 NiFe(20 nm)薄膜 样品,NiFe(20 nm)/Pt(10 nm) 双层膜样品中由于 NiFe 自旋注入到 Pt 中导致铁磁共振线宽增加.与逆自旋 霍尔效应产生的电压相比,自旋整流效应的贡献较小,但不可忽略.本文工作有助于认清铁磁/非磁性金属材 料中的自旋相关效应,并提供了一种准确的分析逆自旋霍尔效应的方法.

关键词: 铁磁共振, 自旋整流效应, 自旋抽运, 逆自旋霍尔效应 PACS: 72.25.Ba, 72.25.Pn, 75.70.-i, 76.50.+g DOI: 10.7498/aps.64.247202

1引言

在自旋电子学中,自旋被作为信息存储和传 输的载体,因此,产生、操纵以及探测自旋流始终 是实现自旋电子器件的最基本和最关键的科学问 题^[1,2].随着研究的广泛开展,目前已经发展了多 种产生自旋流的技术,如非局域电注入自旋流技 术^[3],基于自旋霍尔效应的非磁性层电流注入的横 向自旋流产生技术^[4],基于铁磁共振的自旋抽运 效应 (spin pumping) 的自旋流注入技术^[5,6], 基于 自旋塞贝克效应的自旋流技术^[7-9],采用圆偏振光 注入自旋流技术^[10].其中,铁磁共振自旋抽运方 法是将铁磁薄膜材料 (ferromagnetic, FM) 和非磁 性薄膜材料 (nonmagnetic, NM) 沉积在一起, 铁磁 材料在铁磁共振时磁矩进动从而在非磁性金属内 注入自旋流,所产生的自旋流在界面处的注入效 率可由铁磁共振线宽得出[11],同时由于逆自旋霍 尔效应 (inverse spin Hall effect, ISHE), 即基于自 旋轨道耦合作用^[12],自旋相反的电子向垂直于自 旋流的方向偏转, 自旋电子的定向移动形成电荷 流,从而在非磁性金属材料内自旋流转化为电荷 流,通过检测样品两端电压则可以表征出自旋流的 大小[13]. 这种通过自旋抽运效应和逆自旋霍尔效 应相结合来产生自旋流以及检测自旋流的方法,已 经成为当前自旋电子学的研究前沿和热点[14-17]. 在FM/NM结构中,当施加微波磁场时在样品两端 除了逆自旋霍尔效应产生的直流电压 VISHE 以外, 同时在FM薄膜内还存在由于各向异性磁阻效应 (anisotropic magneto resistance, AMR) 和异常霍 尔效应 (anomalous Hall effect, AHE) 而产生的自 旋整流 (spin rectification effect, SRE) 电压 V_{SRE}, 即VAMB 和VAHE,所以样品两端实际测得的电压 是 $V_{\text{ISHE}}, V_{\text{AMR}} 和 V_{\text{AHE}}$ 的叠加. 理论研究表明^[2], VISHE 随外加直流磁场的变化曲线呈现为对称的 Lorentz 线型, 而 V_{AMB} 和 V_{AHE} 的线型则包含对 称和反对称的Lorentz线型. 然而在目前的自旋 抽运-逆自旋霍尔效应研究中,有的研究者并没 有考虑AMR和AHE 效应的贡献, 或是直接将测 试得到的电压中对称分量全部归结为V_{ISHE} 的贡

^{*} 国家自然科学基金 (批准号: 61471095) 资助的课题.

[†]通信作者. E-mail: xwzhang@uestc.edu.cn

^{© 2015} 中国物理学会 Chinese Physical Society

献^[2,18-22],这是目前研究报道的自旋霍尔角出现 偏差^[18,23-25]的原因之一.本文基于一种可以实现 宽频快速测试的微带线夹具,全面考虑AMR,AHE 以及 ISHE 的贡献,通过施加不同方向的静磁场来 测试样品两端的电压,然后对信号进行分离,从而 获得准确的逆自旋霍尔效应所贡献的电压.

2 实验方法

NiFe/Pt薄膜采用射频磁控溅射技术制备,腔体背景真空度为1.5×10⁻⁵ Pa,靶枪倾斜溅射,倾角为45°.采用Pt靶和Ni₈₀Fe₂₀靶(99.9%)作为薄膜溅射的原材料,靶基距为25 cm. 溅射气体为高纯氩气(4 N),溅射气压为0.2 Pa,射频溅射功率为100 W. 在该工艺条件下, Pt沉积速率为11 nm/min, NiFe沉积速率为4 nm/min. 在玻璃基片上分别制备了NiFe(20 nm)/SiO₂样品以及NiFe(20 nm)/Pt(10 nm)/SiO₂样品.

为了测试自旋抽运-逆自旋霍尔效应在样品两 端产生的电压,本文实验采用如图1所示的短路微 带传输线.采用微波源(Rohde & Schwarz, SMB 100 A)产生微波信号,并通过SMA接口馈入到微 带线中,微波信号功率固定为16 dBm.将样品置 于微带传输线中,在样品面内施加静磁场 H, ϕ_H 为 静磁场与x轴的夹角.样品两端的电压采用锁相放 大器(stanford research system, SR830)进行测试. 更详细的测试方法见文献[26],这种测试方法已经 证明可以方便地研究自旋整流效应和逆自旋霍尔 效应^[26,27].

图 1 (网刊彩色) 微带线测试示意图, 静态磁场 H 与 x 轴 的夹角为 ϕ_H , 微波信号从 SMA 接口输入

Fig. 1. (color online) The schematic drawing of the microstrip fixture. The angle between the static magnetic field (H) and the x axis is ϕ_H . The microwave is inputted from a SMA port.

3 结果与讨论

对于单层 NiFe 薄膜, 在 $\phi_H = 230^\circ$, 微波频率 为4.4 GHz 时, 样品两端电压随外加静磁场的变化

曲线如图2所示. 单层膜中测试到的直流电压是由 自旋整流效应产生,该电压可以分解为Lorentz 对 称和反对称分量,即^[26]

$$V_{\rm SRE} = A_L \cdot L + A_D \cdot D, \qquad (1)$$

式中, A_L 和 A_D 分别为该电压值的对称和反对称 分量,其具体表达式将在后面给出. L和D分别是 Lorentz对称与反对称线型,可表示为

$$D = \frac{2\Delta H (H - H_{\rm r})}{4(H - H_{\rm r})^2 + \Delta H^2},$$
 (2a)

$$L = \frac{\Delta H^2}{4(H - H_{\rm r})^2 + \Delta H^2},$$
 (2b)

其中, H_r 是铁磁共振场, ΔH 是铁磁共振线宽. 将图2的实验数据通过(1)式拟合后,可以得到 $A_L = 0.159 \mu$ V, $A_D = 0.092 \mu$ V, $H_r = 345.19$ Oe 以及 $\Delta H = 49.98$ Oe. 从图2中可以看出,实验数 据与拟合曲线非常符合. 从拟合结果可以看出,整 流电压由对称的分量L和反对称的分量D构成. 其 中,对称分量所占比例大于反对称分量. 对称分量 和反对称分量各自所占的比例与样品中微波磁场 的频率、微波电流与微波磁场相位差、外加静磁场 等因素密切相关^[26,28].

图 2 (网刊彩色) ϕ_H 为 230° 时 NiFe(20 nm) 样品两端 测得的电压曲线以及所分离出的对称与反对称分量 Fig. 2. (color online) The measured voltage curve of the NiFe(20 nm) films and its symmetry and asymmetry components when $\phi_H = 230^\circ$.

从图 2 的实验数据拟合中,可以获得所测试 样品的铁磁共振场 H_r 和铁磁共振线宽 ΔH .对于 NiFe/Pt 样品,同样可以采用类似的方法,将测试 得到的电压分解为对称分量和反对称分量,以及得 到 H_r 和 ΔH .图 3 是 ϕ_H 为 90° 时, NiFe(20 nm)样 品和 NiFe(20 nm)/Pt(10 nm)样品在不同微波频率 下的铁磁共振场 H_r .磁性薄膜的铁磁共振频率和 共振场的关系可以用基特尔公式描述^[29]: $f_{\rm FMR} = \frac{\gamma}{2\pi} \sqrt{(H_{\rm r} + H_{\rm k})(H_{\rm r} + H_{\rm k} + M_{\rm s})}, \quad (3)$ 式中, $f_{\rm FMR}$ 为铁磁共振频率, $H_{\rm r}$ 为铁磁共振场, $H_{\rm k}$ 为各向异性场, $M_{\rm s}$ 为饱和磁化强度, γ 为旋磁比.

利用 (3) 式对图 3 的测试数据进行拟合,可以 得出 NiFe(20 nm)样品的 $H_k = 33.7$ Oe, $M_s = 6457$ Oe, NiFe(20 nm)/Pt(10 nm)样品的 $H_r = 36.8$ Oe, $M_s = 7053$ Oe. 所得到的两样品的参数差 异是由于 NiFe 分别生长在 SiO₂ 基片和 Pt 金属薄 膜上,从而导致薄膜的磁性参数有所差别.可以看 到在玻璃基片上生长的 NiFe 薄膜具有较高的饱和 磁化强度,但各向异性场也略微提高.

图 3 (网刊彩色)(a) NiFe(20 nm)样品和(b) NiFe (20 nm)/Pt(10 nm)样品的 H_r 随频率的变化,样品分 别在 2.4, 3.0, 3.6 以及 4.2 GHz 时所测得的电压曲线 Fig. 3. (color online) The dependence of H_r on the frequency for (a) the NiFe(20 nm) films and (b) the NiFe(20 nm)/Pt(10 nm) films. The voltages curves at 2.4, 3.0, 3.6 and 4.2 GHz are also shown.

图 3 (a) 和图 3 (b) 分别给出了样品在 2.4, 3.0, 3.6 和 4.2 GHz 时所测得的电压曲线,可以看出, 图 3 (a) 中的电压线型是对称和反对称线型叠加而 成,而图 3 (b) 中的电压线型基本是对称线型,这与 文献 [30] 的结果一致,其原因是由于在 NiFe/Pt 样 品中,逆自旋霍尔效应产生的电压 V_{ISHE} 为 Lorentz 对称线型,增加了测得电压中的对称线型分量.从 图 3 (b) 中的对称线型可以推断,在NiFe/Pt样品中, V_{ISHE}占据主导地位.

图4是从测试结果中拟合得到的铁磁共振线 宽 ΔH 随着微波频率的变化曲线.从图中可以看 出, ΔH 随着微波频率接近线性增加.可以发现,双 层膜样品的 ΔH 大于单层膜样品的 ΔH ,这与文献 [2,18]所报道的结果一致.双层膜样品的 ΔH 增大 的原因一方面可能是由于两样品中的NiFe薄膜分 别生长在玻璃基片和Pt金属薄膜上,从而导致制 备的NiFe薄膜有所差别,另一方面,NiFe层铁磁共 振时由于自旋抽运效应所引起的自旋注入导致了 Pt层中自旋堆积的弛豫,使得NiFe中的自旋动量 有所损耗,NiFe与Pt层间的界面阻尼增大^[31],从 而使得 ΔH 增大.

图 4 NiFe(20 nm) 样品和 NiFe (20 nm)/Pt (10 nm) 样 品的铁磁共振线宽随频率的变化

Fig. 4. The FMR linewidths of the NiFe(20 nm) and NiFe (20 nm)/Pt(10 nm) as a function of frequency.

下面讨论从测试结果中分离出的对称分量 A_L 和反对称分量 A_D .对于单层NiFe薄膜,自旋整流效应产生的电压中的对称分量 A_L 与反对称分量 A_D 均是角度 ϕ_H 的函数^[27],即

$$A_{L} = -\sin \Phi \cdot [C_{AMRZ} \sin \phi_{H} \cos(2\phi_{H}) - C_{AMRX} \sin \phi_{H} \sin(2\phi_{H})] - C_{AHE} \cos \Phi \sin \phi_{H}, \qquad (4a)$$
$$A_{D} = \cos \Phi \cdot [C_{AMRZ} \sin \phi_{H} \cos(2\phi_{H}) - C_{AMRX} \sin \phi_{H} \sin(2\phi_{H})]$$

$$-C_{\rm AHE}\sin\Phi\sin\phi_H,\tag{4b}$$

其中 C_{AMRZ} , C_{AMRX} 分别是面内z方向和x方向 的微波电流引起的AMR 效应所产生的自旋整流电 压分量, C_{AHE} 代表AHE 效应对电压的贡献值, Φ 为薄膜内微波电流与微波磁场的相位差. 对于双层薄膜NiFe(20 nm)/Pt(10 nm)样品, 不仅要考虑NiFe薄膜的自旋整流效应,还需要考 虑由NiFe向Pt自旋注入而产生的电压V_{ISHE},经 推导^[27]可得出

$$V_{\rm ISHE} = C_{\rm ISHE} \sin^3 \phi_H \cdot L, \tag{5}$$

式中, C_{ISHE} 是在测量电压中由 ISHE 效应所产生的分量. 可以看出, 此电压值呈 Lorentz 对称线型. 在该样品中, 测得电压为自旋整流电压 V_{SRE} 与 V_{ISHE} 两者贡献之和, 也可以分解为对称与反对称 分量之和, 即

$$V_{\rm dc}^{\rm NiFe/Pt} = V_{\rm SRE} + V_{\rm ISHE}$$
$$= A'_L \cdot L + A_D \cdot D, \qquad (6)$$

式中,修正后的双层膜样品的对称分量为

$$A_L' = A_L + C_{\rm ISHE} \sin^3 \phi_H. \tag{7}$$

因此,我们可以测得不同 ϕ_H 下的电压曲线,再通过 拟合 A_L 和 A_D 与 ϕ_H 的关系,继而得出由各效应所 产生的电压值.

将微波频率固定为4.4 GHz,外加静磁场沿着不同 ϕ_H 角的方向时,分别测试两样品的两端

电压, 再利用(1)式和(6)式分别拟合出NiFe样 品和NiFe/Pt样品在不同角度下的 A_L 和 A_D , 如 图5所示.

NiFe单层膜中测试得到的电压来源于自 旋整流效应,将图5(a)中的 A_L 曲线和图5(b) 中的 A_D 曲线分别用(4a)式和(4b)式拟合,拟合 过程中需注意(4a)式和(4b)式都采用相同的 $C_{AMRZ}, C_{AMRX}, C_{AHE}和Φ拟合参数. 可以得$ $到, <math>C_{AMRZ} = -0.286 \ \mu\text{V}, C_{AMRX} = 0.095 \ \mu\text{V},$ $C_{AHE} = -0.119 \ \mu\text{V}, Φ = 117.2°. 从拟合结果可以$ $看出, NiFe薄膜的对称分量<math>A_L$ 和反对称分量 A_D 随着 ϕ_H 呈现出相似的变化趋势,这是由于在NiFe 薄膜中,AMR 效应的贡献大于AHE的贡献. 由 (4)式可以看出,若不考虑AHE效应的贡献,即假 设 $V_{AHE} \approx 0, 则 A_L/A_D = -\tan Φ$,从而图5(a)中 的 A_L 和图5(b)中的 A_D 随着 ϕ_H 呈现出相似的变 化趋势.

图 5 (c) 为 NiFe/Pt 双层膜样品的电压对称分 量随 ϕ_H 变化的曲线. A'_L 经(7) 式拟合后,可以得

图5 (网刊彩色) NiFe(20 nm) 样品的 (a) 对称分量 A_L 和 (b) 反对称分量 A_D 随 ϕ_H 的变化; NiFe(20 nm)/Pt(10 nm) 样 品的 (c) 对称分量 A'_L 和 (d) 反对称分量 A_D 随 ϕ_H 的变化

Fig. 5. (color online) (a) The symmetry A_L and (b) the asymmetry A_D as a function of the ϕ_H for the sample NiFe (20 nm); (c) the symmetry and A'_L and (d) the asymmetry A_D as a function of the ϕ_H for the sample NiFe(20 nm) /Pt(10 nm).

到, $C_{\text{AMRZ}} = -0.094 \ \mu\text{V}$, $C_{\text{AMRX}} = 0.079 \ \mu\text{V}$, $C_{AHE} = -0.059 \mu V, C_{ISHE} = -0.812 \mu V, 此时$ 相位差 $\Phi = 132.8^{\circ}$. 图 5 (c) 与图 5 (a) 相比有较大 区别,这是因为在NiFe/Pt 双层膜中NiFe 薄膜铁 磁共振时自旋注入到Pt层中,由于逆自旋霍尔效 应的作用,在Pt 层两端产生了逆自旋霍尔电压 V_{ISHE},该电压大于由NiFe薄膜自旋整流效应所 产生的 V_{SRE} ,从而使得 A'_L 的线型趋于 $\sin^3 \phi_H$ 函 数.图5(c)中分别给出了由于ISHE效应、AMR效 应以及AHE效应所产生的电压. 通过对比得出, 在这三种效应中,起主导作用的是逆自旋霍尔效 应. 虽然AMR效应和AHE效应并不主要影响 A'r 的线型,但仍不可忽略.如果把对称分量全部归 结为ISHE所做的贡献,则 $V_{ISHE} = 0.937 \mu V$,将 使得 ISHE 产生的电压高于实际电压, 在本样品中 偏差约15.4%,从而会在自旋注入效率以及材料界 面的相关研究中得出不够确切的参量,因此在研 究NiFe/Pt的逆自旋霍尔效应时应当全面考虑三 种效应的作用.对比图5(d)与图5(b)可以看出, 两样品的反对称分量Ap的线型几乎一致,说明 对于反对称分量的贡献仅有NiFe薄膜的自旋整流 效应.

4 结 论

本 文 通 过 测 试 样 品 NiFe(20 nm) 和 NiFe (20 nm)/ Pt (10 nm) 在不同频率和不同时 ϕ_H 的电 压, 分离出对称分量 A_L 和反对称分量 A_D 以及铁 磁共振场 H_r 和铁磁共振线宽 ΔH , 通过对数据的 拟合分析, 可以得到如下结论:

1) 双层膜样品的铁磁共振线宽大于单层膜样品,这是由于双层膜结构中的自旋抽运效应所导致的;

2)相比于单层膜样品,双层膜样品所测得电压 随外加静磁场变化的线型中,对称分量占更大比 重,这是源于ISHE对于对称分量的贡献;

3) NiFe/Pt 双层膜中,虽然 ISHE 对于对称分量的贡献起主导作用,但是不可忽略自旋整流效应的影响,即 AMR 和 AHE 对于对称分量所做的贡献.

参考文献

[1] Žutić I, Dery H 2011 Nat. Mater. 10 647

- [2] Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913
- [3] Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601
- [4] Wang R X, He P B, Xiao Y C, Li J Y 2015 Acta Phys. Sin. 64 137201 (in Chinese) [王日兴, 贺鹏斌, 肖运昌, 李 建英 2015 物理学报 64 137201]
- [5] Tserkovnyak Y, Brataas A, Bauer G E W 2002 Phys. Rev. Lett. 88 117601
- [6] Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509
- [7] Slachter A, Bakker F L, Adam J P, van Wees B J 2010 Nat. Phys. 6 879
- [8] Adachi H, Uchida K, Saitoh E, Maekawa S 2013 Rep. Prog. Phys. 76 036501
- [9] Wu H, Wan C H, Yuan Z H, Zhang X, Jiang J, Zhang Q T, Wen Z C, Han X F 2015 Phys. Rev. B 92 04404
- [10] Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502
- [11] Wu Y, Zhao Y L, Xiong Q, Xu X G, Sun Y, Zhang S Q, Jiang Y 2014 Chin. Phys. B 23 018503
- [12] Gong S J, Duan C G 2015 Acta Phys. Sin. 64 187103
 (in Chinese) [龚士静, 段纯刚 2015 物理学报 64 187103]
- [13] Hoffmann A 2013 IEEE Trans. Magn. 49 5172
- [14] Hahn C, De Loubens G, Viret M, Klein O, Naletov V V, Youssef J B 2013 Phys. Rev. Lett. 111 217204
- [15] Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M, Hillebrands B 2015 *Phys. Rev. B* 91 134407
- [16] Zhang W, Jungfleisch M B, Jiang W J, Sklenar J, Fradin F Y, Pearson J E, Ketterson J B, Hoffmann A 2015 J.
 Appl. Phys. 117 172610
- [17] Nan T X, Emori S, Boone C T, Wang X J, Oxholm T M, Jones J G, Howe B M, Brown G J, Sun N X 2015 *Phys. Rev. B* 91 214416
- [18] Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408
- [19] Shikoh E, Ando K, Kubo K, Saitoh E, Shinjo T, Shiraishi M 2013 *Phys. Rev. Lett.* **110** 127201
- [20] Dushenko S, Koike M, Ando Y, Shinjo T, Myronov M, Shiraishi M 2015 Phys. Rev. Lett. 114 196602
- [21] Ando K, Saitoh E 2012 Nat. Commun. 3 629
- [22] Ando Y, Ichiba K, Yamada S, Shikoh E, Shinjo T, Hamaya K, Shiraishi M 2013 *Phys. Rev. B* 88 140406
- [23] Feng Z, Hu J, Sun L, You B, Wu D, Du J, Zhang W, Hu A, Yang Y, Tang D M, Zhang B S, Ding H F 2012 *Phys. Rev. B* 85 214423
- [24] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
- [25] Mukherjee S S, Deorani P, Kwon J H, Yang H 2012 Phys. Rev. B 85 094416
- [26] Soh W T, Peng B, Chai G Z, Ong C K 2014 Rev. Sci. Instrum. 85 026109
- [27] Soh W T, Peng B, Ong C K 2014 J. Phys. D: Appl. Phys. 47 285001
- [28] Gui Y S, Bai L H, Hu C M 2013 Sci. China 56 124

[29]~ Kittel C 1947 Phys. Rev. $\mathbf{71}~270$

- [30] Chen L, Ikeda S, Matsukura F, Ohno H 2014 Appl. Phys. Express 7 013002
- [31] Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S E, Hoffmann A 2010 Phys. Rev. Lett. 104 046601

Angle dependent inverse spin Hall effect in NiFe/Pt thin film^{*}

Han Fang-Bin Zhang Wen-Xu[†] Peng Bin Zhang Wan-Li

(State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China)

(Received 31 July 2015; revised manuscript received 6 September 2015)

Abstract

In NiFe/Pt bilayer, when spin current originating from the magnetization procession of NiFe is inject into the adjacent Pt layer under ferromagnetic resonance (FMR), the direct current (DC) voltage $V_{\rm ISHE}$ generated by inverse spin Hall effect (ISHE) will be added to the voltage $V_{\rm SRE}$ generated by spin rectification effect (SRE), therefore the measured voltage in experiment is the sum of $V_{\rm ISHE}$ and $V_{\rm SRE}$. It is crucial to separate these contributions, which has been often overlooked before, in order to make a reasonable comparison of the ISHE among different materials. The voltages having symmetric (Lorentz type) and anti-symmetric (dispersive type) components both vary with the static magnetic field strength. However, they have different static magnetic field angle dependences according to our theoretical analysis. In order to distinguish the contribution of ISHE from that of SRE, in this paper, we employ a method, in which the voltage across the sample is measured when the static magnetic field is applied to different directions, to analyze the voltage by varying magnetic field angle in a range from 0° to 360° in steps of 10° , thereby separating the V_{ISHE} . The separation is carried out by fitting the angle dependent symmetric and anti-symmetric curves to different theoretical formulas of ISHE and SRE. The voltages of the two different contributions together with the phase angle of the microwave are obtained. At the same time, the FMR line width and the resonant field can be read out. The results show that the ferromagnetic resonance line width in NiFe(20 nm)/Pt(10 nm) sample is larger than that in NiFe(20 nm) sample due to the injection of spin current from NiFe to Pt in the bi-layer sample. We notice that in the curves of voltage vs. static magnetic field, the Lorentz symmetry components of the voltage from the bi-layer sample weight more than those from the single-layer sample. This is explained as a result of the existence of the ISHE in the bi-layer sample, where the spins are pumped from the magnetic layer to the adjacent nonmagnetic layer. The spin pumping effect does not show up in the single-layer sample. There are a large portion of symmetric components in the double layer sample, which is attributed to the ISHE. Although the voltage caused by the SRE is smaller than that by the ISHE, the SRE voltage cannot be ignored. Our work is crucial to understanding the spin-related effects in ferromagnetic/nonmagnetic metal material and provides an improved analysis method to study the spin pumping and the ISHE.

Keywords: ferromagnetic resonance, spin rectification effect, spin pumping, inverse spin Hall effect PACS: 72.25.Ba, 72.25.Pn, 75.70.-i, 76.50.+g DOI: 10.7498/aps.64.247202

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61471095).

[†] Corresponding author. E-mail: xwzhang@uestc.edu.cn