物理学报 Acta Physica Sinica

多铁材料 $Bi_{1-x}Ca_xFeO_3$ 的介电、铁磁特性和高温磁相变

宋桂林 苏健 张娜 常方高

Dielectric properties and high temperature magnetic behavior on multiferroics $Bi_{1-x}Ca_xFeO_3$ ceramics

Song Gui-Lin Su Jian Zhang Na Chang Fang-Gao

引用信息 Citation: Acta Physica Sinica, 64, 247502 (2015) DOI: 10.7498/aps.64.247502 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.247502 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I24

您可能感兴趣的其他文章 Articles you may be interested in

电子自旋共振研究 Bi_{0.2}Ca_{0.8}MnO₃ 纳米晶粒的电荷有序和自旋有序

Electron spin resonance study on charge ordering and spin ordering in nanocrystalline Bi_{0.2}Ca_{0.8}MnO₃ 物理学报.2015, 64(18): 187501 http://dx.doi.org/10.7498/aps.64.187501

钙钛矿锰氧化物 (La_{1-x}Gd_x)_{4/3}Sr_{5/3}Mn₂O₇ (x=0 0.025) 磁性和输运性质研究 Magnetic and transport properties of perovskite manganites (La_{1-x}Gd_x)_{4/3}Sr_{5/3}Mn₂O₇ (x=0 0.025) polycrystalline samples 物理学报.2015, 64(6): 067501 http://dx.doi.org/10.7498/aps.64.067501

(Fe_{1-x}Co_x)₃BO₅ 纳米棒磁性的研究
Magnetic properties of (Fe_{1-x}Co_x)₃BO₅ nanorods
物理学报.2015, 64(5): 057501 http://dx.doi.org/10.7498/aps.64.057501

双层钙钛矿 $(La_{1-x}Gd_x)_{4/3}Sr_{5/3}Mn_2O_7(x=00.05)$ 的相分离 Phase separation of bilayered perovskite manganite $(La_{1-x}Gd_x)_{4/3}Sr_{5/3}Mn_2O_7$ (x=0 0.05) 物理学报.2014, 63(15): 157501 http://dx.doi.org/10.7498/aps.63.157501

钙钛矿锰氧化物 $(La_{1-x}Eu_x)_{4/3}Sr_{5/3}Mn_2O_7(x=0\ 0.15)$ 的磁性和电性研究 Magnetic and transport properties of layered perovskite manganites $(La_{1-x}Eu_x)_{4/3}Sr_{5/3}Mn_2O_7(x=0\ 0.15)$ 物理学报.2014, 63(14): 147503 http://dx.doi.org/10.7498/aps.63.147503

多铁材料 $Bi_{1-x}Ca_xFeO_3$ 的介电、铁磁特性和高温磁相变*

宋桂林 苏健 张娜 常方高†

(河南师范大学物理与电子工程学院,河南省光伏材料重点实验室,新乡 453007)

(2015年6月27日收到;2015年9月29日收到修改稿)

采用溶胶凝胶法制备 Bi_{1-x}Ca_xFeO₃ (x = 0, 0.05, 0.1, 0.15, 0.2) 陶瓷样品. X 衍射图谱表明所有样品的 主衍射峰均与纯相 BiFeO₃ 相符合且具有良好的晶体结构. 随着 x 的增大, Bi_{1-x}Ca_xFeO₃ 样品的主衍射峰由 双峰 (104) 与 (110) 逐渐重叠为单峰 (110), 当 $x \ge 0.15$ 时, 样品呈现正方晶系结构; 扫描电镜形貌分析可知, 晶粒由原来的 0.5 µm 逐渐增大到 2 µm. Bi_{1-x}Ca_xFeO₃ 样品介电常数和介电损耗随着 x 的增加先增大而后 减小. 当f = 1 kHz, Bi_{0.9}Ca_{0.1}FeO₃ 的介电常数达到最大值, 是 BiFeO₃ 的7.5 倍, 而 Bi_{0.8}Ca_{0.2}FeO₃ 的介电 常数达到最小值, 仅仅是 BiFeO₃ 的十分之一. Bi_{1-x}Ca_xFeO₃ 样品所呈现的介电特性是由偶极子取向极化 和空间电荷限制电流两种极化机理共同作用的结果. 随着 Ca²⁺ 的引入, BiFeO₃ 样品的铁磁性显著提高. X 射线光电子能谱图表明 Fe²⁺和 Fe³⁺ 共存于 Bi_{1-x}Ca_xFeO₃ 样品中, Fe²⁺/Fe³⁺ 比例随着 Ca²⁺ 掺杂量的增 加而增大, 证明 Ca²⁺ 掺杂增加了 Fe²⁺ 的含量, 增强 BiFeO₃ 的铁磁特性. 从 *M-T* 曲线观察到 BiFeO₃ 样品在 878 K 附近发生铁磁相变, 示差扫描量热法测试再次证明 BiFeO₃ 在 878 K 发生相变. Ca²⁺ 掺杂使 BiFeO₃ 样 品的 T_N 略有变化而 T_M 基本不变, 其主要原因是 Fe-O-Fe 反铁磁超交换作用的强弱和磁结构相对稳定.

关键词: 铁磁电材料, 介电特性, 磁滞回线, 磁相变温度 PACS: 75.47.Lx, 76.50.+g, 75.60.Ej, 77.80.Dj

DOI: 10.7498/aps.64.247502

1引言

多铁材料BiFeO₃(BFO) 是少数在室温下同时具有铁电和铁磁特性的材料之一,其在室温下呈现反铁磁有序($T_{\rm N} = 380$ °C)和铁电有序($T_{\rm C} = 830$ °C)^[1].对于BiFeO₃而言,因制备过程中产生杂相和氧空位而导致较大漏导电流,很难获得饱和的电滞回线和较大的剩余极化,严重阻碍其在信息存储等领域的应用^[2,3].

为了解决漏导电流和较弱磁性这一关键性问题,国内外对BiFeO3材料从理论、实验方面进行 了大量的研究工作.在理论方面,利用第一性原理 对BiFe1-*x*Mn*x*O3材料的铁磁特性进行计算,研究 表明: Mn^{3+} 掺杂将导致临近 Fe³⁺ 与 Mn^{3+} 形成铁 磁耦合,改变临近 O²⁻ 的电子自旋极化状态^[4,5]. Kornev 等^[6]利用蒙特卡罗模拟计算方法研究高温 下 BiFeO₃ 的铁磁特性,发现 BiFeO₃ 在 750 K 附近 发生铁磁相变,即磁相变居里温度 $T_{\rm C} = 750$ K.

实验方面,科研工作者对BiFeO₃陶瓷和薄膜 材料做了大量工作,主要集中在介电性、铁电性、 铁磁性和磁电耦合效应等方面.采用过渡金属 如Ca,Mn,Zn,Co^[7-10]和稀土元素La,Sm,Dy 等^[11-15] 替代的方法来抑制氧空位和Fe²⁺形成, 进一步减少漏导电流,提高其介电、铁电、铁磁 特性,并对BiFeO₃的光伏效应开展研究^[16,17]. Zhang等^[7]报道了Bi_{1-x}Ca_xFeO₃样品的高温磁 性,发现Bi_{1-x}Ca_xFeO₃样品在878 K存在铁磁相

* 国家自然科学基金(批准号: U1204111)、河南省重点科技攻关项目(批准号: 122102210191)和河南省基础与前沿技术研究计划(批 准号: 122300410203)资助的课题.

© 2015 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†]通信作者. E-mail: chfg@htu.cn

变,认为铁磁和反铁磁相变之间的变化是由于 Fe³⁺-O²⁻-Fe³⁺和Fe³⁺-O²⁻-Fe²⁺这两种超交换作 用之间相互竞争的结果. Khomchenko等^[8]采 用抗磁性元素如Ca, Sr, Pb, Ba掺杂研究其对 BiFeO₃材料的铁磁特性的影响,发现掺杂抗磁 性元素离子半径是调控BiFeO3 自发磁化最有效 的方法,导致掺杂Ba²⁺样品的饱和磁化强度是 BiFeO₃的100倍. Chen 等^[9]采用脉冲激光沉积法 制备Bi0.9Ba0.1FeO3/La2/3Sr1/3MnO3异质结薄膜 材料,观察到饱和的电滞回线、磁滞回线,其剩 余极化强度和剩余磁化强度分别为85 μC/cm², 12.4 emu/cm³. Mei等^[10]采用氧等离子体辅助 分子束外延技术在SrTiO3基片上制备了BFO 薄 膜材料,研究发现在SrTiO₃(001)和(111)基片上 生长的BiFeO3薄膜材料的直接带隙分别为2.65, 2.67 eV.

Yang 等^[18] 研 究 了 Ca²⁺ 和 Ba²⁺ 共 同 替 代 Bi³⁺ 对 BiFeO₃ 磁性和介电特性的影响, 结果表明: Ca²⁺ 和 Ba²⁺ 共掺杂能大幅度提高 BiFeO₃ 的铁磁 性, 也提高了奈尔温度 (T_N), 却没有研究 Ca²⁺ 和 Ba²⁺ 共掺杂对 BiFeO₃ 居里温度 T_C 及高温铁磁相 变的影响; Song 等研究了 Bi_{0.95} $R_{0.0.05}$ Fe_{1-x}Co_xO₃ (R = Gd, Dy) 系 列 陶 瓷样 品,发现 BiFeO₃ 和 Bi_{0.95} R_{0.05}FeO₃ 陶瓷在 870 K存在铁磁相变,随 着 Co掺杂导致 BiFeO₃ 磁相变温度 T_M 由 870 K降 低到 780 K,其 T_M 变化主要取决于 Fe-O-Fe 反铁磁 超交换作用的强弱和磁结构的相对稳定性 ^[3,19,20]. 然而,实验上有关 Ca 掺杂对 BiFeO₃ 材料的微观结 构、介电、铁磁性及高温磁相变影响的报道相对较 少 [7-9,21-24].

本 文 采 用 溶 胶 凝 胶 法 合 成 $Bi_{1-x}Ca_xFeO_3$ (x = 0, 0.05, 0.1, 0.15, 0.2) 样品, 对 $Bi_{1-x}Ca_xFeO_3$ 样品的晶体结构、微观结构、介电特性、铁磁性及高 温铁磁相变等特性进行表征, 以期通过 Ca^{2+} 适量 掺杂来调控 $BiFeO_3$ 样品中氧空位和 Fe^{2+} 的含量, 改变其漏导电流、介电、铁磁性, 探讨 Ca^{2+} 掺杂对 $BiFeO_3$ 高温铁磁相变的影响.

2 实 验

采用溶胶凝胶法制备 $Bi_{1-x}Ca_xFeO_3$ (x = 0, 0.05, 0.1, 0.15, 0.2)陶瓷样品. 利用高纯

度的Bi(NO₃)₃·5H₂O, Fe(NO₃)₃·9H₂O, Ca(NO₃)₂· 4H₂O 为原料,按化学组分进行配料,乙二醇甲醚 作为溶剂,柠檬酸作为络合剂,冰醋酸来调节溶液 的pH值,放在磁力搅拌器上持续搅拌72h后制备 成前驱体溶液.放入烘箱进行烘干,研碎,在烧结 炉中650°C保温1h.为了对样品进行表征,把合 成的Bi_{1-x}Ca_xFeO₃粉末压成直径为13 mm,厚度 为1 mm的圆片样品,两面涂抹Ag电极^[24,25].

利用德国布鲁克D-8型X射线衍射仪(XRD) 对样品晶体结构进行测量;采用德国蔡司场发射扫 描电镜(SEM)对样品的微观形貌进行观察;采用 阻抗分析仪测试样品的介电常数和介电损耗;用 美国量子公司生产的振动样品磁强计(VersaLab, Quantum Design)分别测量样品的磁滞回线、磁 化强度随温度的变化关系;利用差示/差热扫描仪 (DSC)测量样品的相变,用X射线光电子能谱仪 (XPS)测试Fe 元素化合价态的变化,研究Ca²⁺适 量掺杂对BiFeO₃的晶体结构、微观形貌、介电特 性、铁磁特性及高温磁相变的影响.

3 结果与讨论

3.1 晶体结构

利用 XRD 对 $Bi_{1-x}Ca_x FeO_3(x = 0, 0.05, 0.1,$ 0.15, 0.2) 样品进行物相分析, 其结果如图1 所示. 根据 XRD 图谱,利用结构精修对所有样品的 XRD 数据进行分析,计算出样品的晶胞参数,具体数据 列于表1.参照标准X射线粉末衍射卡片(JCPDS 20-10169) 可知: Bi_{1-x}Ca_xFeO₃样品的XRD图谱 与BiFeO3标准图谱相一致,BiFeO3样品的XRD 图谱在 25° — 30° 处存在少量的 $Bi_2Fe_4O_9$ 杂相,随 着 Ca^{2+} 的引入, $Bi_{1-r}Ca_r FeO_3$ 样品的 XRD 图谱 中Bi₂Fe₄O₉杂相峰消失,说明掺杂Ca²⁺可以有效 地消除Bi₂Fe₄O₉杂相的产生,这一结果与掺杂La, Sm 等能有效地消除杂相的报道^[11,12]相一致.从 图 1 (a) 中可见, $Bi_{1-x}Ca_xFeO_3$ 样品的特征峰 (104) 和(110)两个衍射峰与纯相BiFeO3相比有所增强 且向右移动. 当 $x \ge 0.15$ 时,其特征峰(104)和 (110)两个衍射峰重叠为(104)一个衍射峰,这说 明BiFeO3样品的晶体结构发生变化,这与Zhang 等^[7] 报道的结果相符合, 引起样品 XRD 图谱变化 可能有以下方面原因.

图 1 (a) $Bi_{1-x}Ca_xFeO_3$ 样品的 XRD 谱; (b) 样品在 30°—34° 范围内的 XRD 图谱 Fig. 1. (a) X-ray diffraction (XRD) patterns of $Bi_{1-x}Ca_xFeO_3$ samples; (b) XRD patterns $Bi_{1-x}Ca_xFeO_3$ in the range of 2θ from 30° to 34°.

表1 样品晶胞参数 (a, α, V) 、容忍因子 (t)、剩余磁化强度 (M_r) 、饱和磁化强度 (M_s) 、相变温度 (T_N, T_C) 参数及 Fe^{3+/2+} 比例

Table. 1. The structural parameters (a, c, V), t (tolerance factor), M_s , M_r , T_N , T_C parameters and the ratio of Fe²⁺/Fe³⁺ for Bi_{1-x}Ca_xFeO₃ ceramics.

样品	$a=b=c/{\rm \AA}$	$\alpha = \beta = \gamma/(^{\circ})$	$V/{\rm \AA}^3$	t	$M_{\rm r}/{\rm emu}\cdot{\rm g}^{-1}$	$M_{\rm s}/{\rm emu}\cdot{\rm g}^{-1}$	$T_{\rm N}/{\rm K}$	$T_{\rm C}/{\rm K}$	${\rm Fe}^{2+/3+}$
BFO	3.942	89.4028	61.248	0.9065	0.00267	0.199	644	878	21/79
BCFO-5%	3.941	89.4205	61.221	0.8973	0.03445	0.2832	641	878	23/77
BCFO-10%	3.937	89.6101	61.019	0.8869	0.109	0.33225	641	878	27/73
$\mathrm{BCFO}\text{-}15\%$	3.935	89.6225	60.932	0.8765	0.0258	0.2126	644	878	32/68
BCFO-20%	3.934	89.6435	60.827	0.8662	0.0304	0.217	644	878	32/68

首先,本文采用溶胶凝胶法制备 Bi_{1-x}Ca_x-FeO₃样品,因 Bi_{1-x}Ca_xFeO₃样品在烧结过程中的 升、降温速率较低,烧结温度为650°C,远低于 Bi₂O₃的熔点(825°C),Bi³⁺挥发相对较少,有利 于获得晶粒生长较好、结晶度较高的 BiFeO₃样品, 其对应的 XRD 衍射图谱的特征峰值相对较强.当 $x \ge 0.15$ 时,BiFeO₃样品主衍射峰(104)与(110) 完全重叠,即样品的晶体结构由原来的斜六面体转 变为正方体^[14],这种晶格转变可能是后面将要讨 论介电及铁磁特性的主要原因之一.

其次,由于Ca²⁺半径($R_{Ca^{2+}} = 0.099$ nm)略 小于Bi³⁺($R_{Bi^{3+}} = 0.103$ nm),导致Bi_{1-x}Ca_xFeO₃ 样品的晶格常数逐渐减小,使Bi_{1-x}Ca_xFeO₃ 晶胞 体积收缩,其宏观表现在XRD衍射主峰向右略有 移动^[17].可根据布拉格方程对这种现象进行解释:

$$2d\sin\theta = n\lambda \quad (n = 0, 1, 2, \cdots), \tag{1}$$

式中, d是晶面面间距, θ 是反射面与入射面的夹角, λ 是X射线的波长, n是衍射级数.因Ca²⁺半径小

于 Bi³⁺ 导致 BiFeO₃ 晶格参数变小, 晶胞体积收缩, 晶胞体积收缩使 d 值变小, λ 为定值, 结果引起θ值 增大, 衍射峰向右略有移动. 由此可见: BiFeO₃ 样 品的晶胞参数和晶体结构均可通过掺杂不同元素 和含量来有效地加以调控.

3.2 表面形貌

Bi_{1-x}Ca_xFeO₃ (x = 0, 0.05, 0.1, 0.15)样 品的SEM微观形貌如图2所示,从图2中可知 Bi_{1-x}Ca_xFeO₃样品的晶粒生长较好,晶粒尺度 约为0.5—2 μm.对于BiFeO₃样品,其表面由形状 较为规则的立方晶粒堆积而成,晶粒与晶粒之间存 在着一定的孔隙,晶粒尺寸约为500 nm.随着x不 断增加,其晶粒形状由立方块逐渐形成椭圆石头 状,且晶粒尺寸逐渐增大,由原来的0.5 μm逐渐增 大到2 μm.

SEM形貌分析表明: BiFeO₃在合成过程中生 长成立方状、较小的晶粒. 在合成温度为650°C (低于Bi₂O₃的熔点825°C)条件下,因Bi³⁺挥发 较少而在 BiFeO₃ 样品中形成较少的氧空位.随着 Ca²⁺ 的掺杂,可能在样品中产生相对较多的氧空 位,产生氧空位的化学方程式如下^[20,21,25]:

$$Ca^{2+} + 2O^{2-} = Ca^{2+} + O_2 \uparrow + V_O^{2+}, \quad (2)$$

 $2 Fe^{3+} + O^{2-} \rightarrow 2 Fe^{2+} + 0.5O_2 \uparrow + 2V_O^{2+}.$ (3)

Image: Display billing billing

图 2 $Bi_{1-x}Ca_xFeO_3$ 样品的SEM图谱 (a) $BiFeO_3$; (b) $Bi_{0.95}Ca_{0.05}FeO_3$; (c) $Bi_{0.8}Ca_{0.1}FeO_3$; (d) $Bi_{0.85}Ca_{0.15}FeO_3$; (e) $Bi_{0.8}Ca_{0.2}FeO_3$

Fig. 2. The SEM micrographs of $Bi_{1-x}Ca_xFeO_3$ sample: (a) $BiFeO_3$; (b) $Bi_{0.95}Ca_{0.05}FeO_3$; (c) $Bi_{0.8}Ca_{0.1}FeO_3$; (d) $Bi_{0.85}Ca_{0.15}FeO_3$; (e) $Bi_{0.8}Ca_{0.2}FeO_3$.

3.3 介电特性

图 3 和图 4 分别是 $Bi_{1-x}Ca_xFeO_3$ 样品的介电 常数(ε_r)和介电损耗(tan σ)随频率(f)的变化关 系. 从图 3 和图 4 可知: $Bi_{1-x}Ca_x FeO_3$ 的 ε_r 随着 f 的增加而减少, 而 tan σ 随 f 的增加先增大而后 减少. 介电常数随频率的增加而减小主要由偶 极子在某一频率内的极化滞后于外加电场变化 和空间电荷极化或者符合麦克斯韦类型的界面 极化不能响应高频电场的变化,这符合德拜弛豫 理论^[24].为了进一步研究 Ca^{2+} 掺杂对 $BiFeO_3$ 介 电特性的影响,把Bi_{1-x}Ca_xFeO₃样品 ε_r , tan σ 在 不同频率 f (0.1, 1, 10, 100 kHz 和1 MHz) 下随 x 的变化关系分别在图3和图4内. 从图3插图中 发现:随着x增大,BiFeO₃的 ε_r 先增加而后减小. 例如: 在f = 1 kHz 下, Bi_{0.9}Ca_{0.1}FeO₃的 ε_r 为最 大值 ($\varepsilon_r = 4603.9$), 是 BiFeO₃ ($\varepsilon_r = 629.9$)的 7.5 倍,而Bi_{0.8}Ca_{0.2}FeO₃的 ε_r 为最小值($\varepsilon_r = 57$),不 足 BiFeO₃($\varepsilon_r = 629.9325$)的十分之一,这一实验结

果与文献报道的数据相符合^[24-26].在相对较低的 频率下,Bi_{1-x}Ca_xFeO₃样品所表现出来的介电特 性可以用偶极子的取向极化和空间电荷限制电流 两种机理进行解释^[12,18,19].

首先, 偶极子的取向极化对介电常数有重要的影响. 因 Ca^{2+} 掺杂导致 $BiFeO_3$ 晶胞体积缩 小, 铁氧八面体出现扭曲, Fe^{3+} 沿(111)方向的 偶极运动增强致使 $BiFeO_3$ 样品的介电常数增大. 当 $x \ge 0.15$ 时, 因x增大导致 $BiFeO_3$ 的Fe-O和Bi/Ca-O的健角发生变化. 与 Bi^{3+} 半径相 比, Ca^{2+} 半径($R_{Ca^{2+}} = 0.099$ nm)略小于 Bi^{3+} ($R_{Bi^{3+}} = 0.103$ nm),导致 $Bi_{1-x}Ca_xFeO_3$ 的容忍 因子减小. 容忍因子(t)定义为

$$t = \frac{R_{\rm a} + R_{\rm o}}{\sqrt{2}(R_{\rm b} + R_{\rm o})},$$
 (4)

 R_{a} 是A位的离子半径, $(R_{b}$ 是B位的离子半径, R_{o} 是O离子半径. 通过计算, 样品的t值列于表1. 从 表1可知: 随着x的增加, 其t值逐渐减小, 这说明 BiFeO₃ 晶格中Fe—O键长被压缩, Bi/Ca—O键长

而BiFeO₃样品中氧空位浓度的增大会加快在 BiFeO₃合成过程中氧离子的运动,加快BiFeO₃ 晶粒的生长速率,有利于BiFeO₃晶粒的生长,晶粒 尺寸明显增大,这一结论在XRD图谱及表1中已 经得到证实. 被拉伸^[18-20,24],两个氧八面体围绕[111]极化方向改变旋转角度以便减少晶格压力^[18-20,24],导致 BiFeO₃晶体结构由原来扭曲的三角结构逐渐转变 为立方结构,使Fe³⁺位移极化减小,宏观表现在 ε_r 减小.

图 3 Bi_{1-x}Ca_xFeO₃样品 ε_r 随 f 的变化关系 (插图表示在 1, 10, 100 kHz 和 1 MHz 不同频率下, 介电常数随 掺杂量 x 的变化关系)

Fig. 3. Dielectric constant (ε_r) vs frequency curves for all samples (the inset shows the dielectric constant of $Bi_{1-x}Ca_xFeO_3$ as a function of Ca concentration x at 1 kHz, 10 kHz, 100 kHz, 1 MHz).

图 4 Bi_{1-x}Ca_xFeO₃ 样品 tan σ 随 f 的变化 (插图表示 在 1, 10, 100 kHz 和 1 MHz 不同频率下, 介电损耗随掺 杂量 x 的变化)

Fig. 4. Dielectric loss $(\tan \sigma)$ vs frequency curves for all samples (the inset shows the dielectric loss of $Bi_{1-x}Ca_xFeO_3$ as a function of Ca concentration x at 1 kHz, 10 kHz, 10 kHz, 1 MHz).

其次,空间电荷的存在也会对介电常数有显著 的影响^[12,19].由于Ca²⁺掺杂,导致BiFeO₃晶格中 产生较多带有等价正电荷的氧空位,氧空位能俘获 自由电子而形成空间电荷,空间电荷在较低的电场 作用下不能参与长程迁移而形成电流.因此,氧空 位浓度较大的样品中形成较多的空间电荷,在外加 电场的作用下形成空间限制电流密度,空间限制电 流密度与其介电常数之间的关系,公式如下:

$$j_{\rm s} = \frac{9\varepsilon_0\varepsilon_{\rm r}\mu V^2}{8d^3},\tag{5}$$

其中 ε_0 和 ε_r 分别是真空介电常数与介质的相对介 电常数, μ 是电荷的迁移率, d是样品厚度. 当测试 电压为定值时, 空间限制电流密度与其介电常数成 正比. 在BiFeO₃样品中, 氧空位数量相对较少, 形 成的空间电荷较少, 大部分自由电荷如电极注入的 自由电子可以参加长程迁移形成电流, j_s 相对较 大, 因而对应的介电常数较大; 随着 Ca²⁺的引入, 样品中氧空位浓度增大, 部分自由电子被氧空位 俘获不能参与长程迁移形成电流而形成空间电荷, j_s 相对较小, 所对应的介电常数较小. 因此, 对于 Bi_{1-x}Ca_xFeO₃样品在相对较低频率下所表现的介 电特性是偶极子的取向极化和空间电荷限制电流 两种机理共同作用的结果^[12,18,19].

从图4可知, BiFeO₃样品介电损耗 $\tan\sigma$ 随掺 杂量 x 增加先增大而后减小. 当 x ≤0.1 时, 样品的 $\tan \sigma$ 逐渐增大且存在共振峰,其共振频率分别在 10^5 和 10^4 Hz. 当 $x \ge 0.15$ 时,样品的 $\tan \sigma$ 随f的 变化趋于平稳,其共振峰消失. $Bi_{1-x}Ca_xFeO_3$ 的 $\tan \sigma = x$ 之间的变化主要是电导电流和空间电荷 限制电流形成介电损耗的结果. 首先, 电导电流产 生的损耗起主导作用.因Ca²⁺掺杂在BiFeO3晶体 内部形成氧空位,导致 Fe³⁺的波动 (Fe³⁺ \rightarrow Fe²⁺) 产生较大的漏导电流^[16],其tanσ增大.其次,当 x = 0.15, 0.2时,因BiFeO3晶格结构由原来的斜 方体结构逐渐转化为立方结构, Fe³⁺沿着[111]方 向位移极化减小而使其损耗减小.再次,空间电荷 限制电流也形成一定的介电损耗. 根据(4)式可知, BiFeO₃样品中的*i*_s相对较大,而Bi_{1-x}Ca_xFeO₃样 品的 js 将逐渐减小, 空间电荷限制电流叠加在介质 的微弱电导电流上并使介电损耗增加, 三者共同作 用的结果如图4所示.

3.4 铁磁特性

为了探讨 Ca²⁺ 掺杂对 BiFeO₃ 铁磁特性的影响,分别测量在 50,100,300 K温度下,外加磁场 为-3---3 T所有样品的磁滞回线 (*M*-*H*),结果如 图 5 所示. 从图 5 (a) 可知: BiFeO₃ 样品的*M*-*H* 呈 线性,图5(a)中的插图是BiFeO3的*M*-*H*局部放 大图,表明BiFeO3磁滞回线几乎共线,其剩余磁 化强度(M_r)为0.00267 emu/g,说明BiFeO3样品 表现较弱的铁磁性.随着*x*的增加,Bi_{1-x}Ca_xFeO3 样品的*M*-*H*趋向饱和并具有较好的对称性,样品 的 M_r 和 M_s 有较大幅度的增加.从图5中可见: 当x = 0.1时,样品的 M_r , M_s 最大,分别为0.109,

图 5 Bi_{1-x}Ca_xFeO₃样品在不同温度下的磁滞回线 (*M*-H) (a) 300 K; (b) 100 K; (c) 50 K

0.3325 emu/g; 当x = 0.15, 0.2, 样品 M_r , M_s 反而有所减小, 分别为0.0258, 0.0304, 0.2126和 0.217 emu/g. 这说明Ca²⁺掺杂能提高BiFeO₃的 铁磁特性. 对于Bi_{1-x}Ca_xFeO₃样品所呈现的铁磁 性可从四个方面给予解释.

1)本文BiFeO₃样品呈现极弱的铁磁性,其原因是采用溶胶-凝胶法制备BiFeO₃样品,退火温度(650°C)远低于固相反应法的烧结温度(810°C). 在制备过程中,Bi³⁺挥发相对较少,产生较少的 氧空位.因此,BiFeO₃样品呈现弱的铁磁性,如 图5(a)所示.

2) 随着 Ca²⁺ 的引入, BiFeO₃ 样品铁磁性大幅 度增加,这主要是 Ca²⁺ 替代 Bi³⁺ 导致 BiFeO₃ 晶 体内部形成较多的氧空位,使 Fe³⁺ 的价位产生波 动 (Fe³⁺ \rightarrow Fe²⁺),形成另一种磁交换方式 Fe³⁺-O²⁻-Fe²⁺.Fe²⁺的离子半径 ($R_{Fe^{2+}} = 0.074$ nm) 较 Fe³⁺ 的离子半径 ($R_{Fe^{3+}} = 0.064$ nm)大将近 15%, Fe²⁺ 的存在使 BiFeO₃ 晶格结构发生扭曲, 导致 (111) 面内共线的自旋排列发生倾斜,从而产 生不为零的净磁矩,可显著增强 BiFeO₃ 样品的磁 性能,宏观表现为较强的铁磁特性 ^[16,19–23].

3) $M_r 和 M_s$ 值与x之间的变化见图 5 (b)的插 图,具体数据见表1. 当x = 0.1时, Bi_{0.9}Ca_{0.1}FeO₃ 样品的 M_r , M_s 最大; 当x = 0.15, 0.2, 样品 M_r , M_s 反而有所减小. 这主要是在Bi_{1-x}Ca_xFeO₃样品中 的晶体结构由原来的斜六面体转变为正方晶体^[14], 这一结论 XRD 图谱中已经得到证实.

4) Ca²⁺掺杂提高BiFeO₃铁磁特性与文献 报道的稀土元素(*R*)或者过渡金属(*M*)掺杂或 者稀土和过渡金属元素共同掺杂的结果基本一 致^[16,19,20],但是,两者之间作用的机理不同.前 者主要是增加BiFeO₃晶格中的氧空位浓度,形成 较多的Fe²⁺,产生不为零的净磁矩;而后者主要 是R的4f电子与Fe³⁺的3d电子自旋相互作用,*M* 可能与BiFeO₃中的Fe³⁺形成Fe³⁺-O-*M*³⁺耦合作 用,从而大幅度提高BiFeO₃的铁磁特性^[5,23].

如 Kumar 等^[27]对 Bi_{0.95}La_{0.05}Fe_{1-x}Zr_xO₃材 料进行低温下的磁性研究发现 La 和 Zr 共掺杂导 致 BiFeO₃的 Fe—O—Fe 键的键角增大改变 Fe—O 键键长,提高其铁磁性. 宋桂林等^[3,20,24]采用稀 土元素 (Dy, Gd)和过度元素 (Co)对 BiFeO₃进行 A 位、B 位共掺杂的方法对其进行研究,发现 Dy³⁺ 和 Gd³⁺的 4f 电子与 Fe³⁺或 Co³⁺的 3d 电子自旋 相互作用,由原来平行状态变为不平衡状态,Co³⁺ 掺杂可能破坏BiFeO₃样品中原有的反铁磁磁性结构,形成一种新的亚铁磁结构,三方面相互作用的 结果导致BiFeO₃的磁性增强.

为了证实Ca²⁺掺杂产生较多的Fe²⁺,加大 Fe^{2+}/Fe^{3+} 的比例,提高BiFeO₃铁磁特性这一结 论,采用XPS对所有样品进行测量,结果如图6所 示. 根据原子轨道旋转理论, Fe元素的2p能级由 2p_{1/2}和2p_{3/2}两个能态构成. 从图6可知: Fe²⁺ 和 Fe^{3+} 的 $2p_{1/2}$ 能态都出现在724.3 eV, Fe^{2+} 的 2 p_{3/2} 能态峰出现在 709.4 eV, 而 Fe³⁺ 的 2p_{3/2} 能 态峰则出现在710.8 eV,表明Fe²⁺和Fe³⁺共存 于Bi_{1-x}Ca_xFeO₃样品中^[28-30]. 根据XPS图谱中 光电子谱线强度和分析软件可以计算出样品中 Fe²⁺/Fe³⁺的比例,具体数据见表1. 从表1可知: 随着x的增加,样品中Fe²⁺/Fe³⁺的比例逐渐增大, 这也说明 $BiFeO_3$ 样品中存在少量 Fe^{2+} 而呈现较 弱的铁磁特性. 随着x的增大, Fe^{2+}/Fe^{3+} 比例 增大,在样品中形成Fe³⁺-O²⁻-Fe²⁺和Fe³⁺-O²⁻-Fe³⁺两种超交换相互作用, Fe³⁺-O²⁻-Fe³⁺ 电子自 旋超交换呈现反铁磁性, Fe³⁺-O²⁻-Fe²⁺电子自旋 超交换作用导致(111)面内共线的自旋排列发生 倾斜产生不为零的净磁矩, 宏观表现为铁磁性, 这 就解释了无磁性Ca²⁺掺杂可提高BiFeO₃的铁磁 特性.

图 6 $Bi_{1-x}Ca_xFeO_3$ 样品的 XPS 图谱 Fig. 6. The XPS spectrum of the Fe ion in the $Bi_{1-x}Ca_xFeO_3$ samples.

3.5 高温铁磁相变

为了进一步探讨 Ca²⁺ 掺杂对 BiFeO₃ 在高温 下铁磁特性的影响,在 300—900 K 温度范围,外 加磁场为5 kOe条件下,测量所有样品磁矩(*M*) 随温度 (T) 的变化关系, 结果如图 7 所示. 从图 7 可 知, Bi_{1-x}Ca_xFeO₃样品的 M 均随 T 的升高而减小, BiFeO₃ 样品的 M 在 644 K 附近发生反铁磁相变, 即奈尔温度 T_N 为 648 K, 这与文献 [1, 26—30] 报道 相符合. 随着 Ca²⁺ 掺杂, Bi_{1-x}Ca_xFeO₃ 样品的磁 矩 (M) 有明显提高, 而反铁磁相变温度 T_N 没有明 显变化. 样品在 878 K 附近再次发生铁磁相变, 即 样品的磁相变温度 $T_M = 878$ K. 到目前为止, 实验 上利用高温磁性来探测 BiFeO₃ 磁相变温度 T_M 的 报道相对较少 [7-9,21-24].

图 7 Bi_{1-x}Ca_xFeO₃样品外加磁场 5000 Oe 条件下的 *M-T* 曲线的变化

Fig. 7. *M-T* curves for $Bi_{1-x}Ca_xFeO_3$ samples from 300 K to 900 K in 5000 Oe field.

对于 BiFeO₃ 而言, Ca²⁺ 掺杂使 BiFeO₃ 样品 的 T_N 略有变化而 T_M 基本没有变化的主要原因是 磁结构的稳定性. 众所周知, BiFeO₃ 中 Fe³⁺ 的磁 运动在赝立方相的 (111) 面内是铁磁耦合, 而相邻 两个 (111) 面内的磁矩排列却是反平行的, 构成反 铁磁耦合, 相邻两个 Fe³⁺ 之间总是反铁磁排列, 这 种磁性有序也称为G型反铁磁有序且磁性结构比 较稳定 [1,3,4]. 实验证明 BiFeO₃ 的奈尔温度 T_N , 居 里温度 T_C 分别为 648, 1107 K, 而没有观察到在 878 K 附近发生铁磁相变.

当x = 0.05, 0.1 时, 因 Ca²⁺ 的半径小于 Bi³⁺ 的半径, 引起 BiFeO₃ 晶胞体积收缩, 晶格扭曲变 形, 改变 Fe³⁺—O^{2−}—Fe³⁺ 键的键角, 引起自旋 倾斜. Ca²⁺ 掺杂也形成较多 Fe³⁺-O^{2−}-Fe²⁺之间 的超交换作用^[14], 又因为 Fe²⁺ 的半径 ($R_{Fe^{2+}} =$ 0.074 nm) 较 Fe³⁺ 的半径 ($R_{Fe^{3+}} = 0.064$ nm) 大将 近 15%, 导致 BiFeO₃ 的磁结构不稳定. 当 $x \leq 0.1$ 时, Bi_{1−x}Ca_xFeO₃ 样品的高温磁性就表现出具 有较大的磁矩和略低于 648 K 的反铁磁相变温 度 (T_N). 当 $x \ge 0.15$ 时, 由晶体结构讨论可知, BiFeO₃样品主衍射峰 (104) 与 (110) 完全重叠, 即 样品的晶体结构由原来的斜六面体转变为正方 晶体 ^[14],这种正方晶体磁结构比较稳定,也形成 Fe³⁺-O²⁻-Fe²⁻ 超交换作用,导致 Bi_{1-x}Ca_xFeO₃ (x = 0.15, 0.2)样品与BiFeO₃具有相同的反铁磁 相变温度 ($T_{\rm N}$).

对于BiFeO₃而言,其高温磁相变温度 $T_{\rm M}$ 主 要来源于较强的Fe³⁺-O²⁻-Fe³⁺反铁磁超交换 作用和磁结构的稳定性^[19,20,27]. 这与文献报 道的稀土元素(Re)掺杂对 $T_{\rm N}$, $T_{\rm M}$ 有所不同,在 Bi_{1-x}Ca_xFeO₃材料的 $T_{\rm N}$, $T_{\rm M}$ 除了Fe³⁺-O²⁻-Fe³⁺ 超交换作用和磁结构的稳定性以外,不需要 考虑其他因素相互作用对 $T_{\rm M}$ 的影响. 而在 Bi_{1-x}Re_xFeO₃(*R*-*T*)化合物中,不仅要考虑Fe³⁺-Fe³⁺之间的相互作用,还要考虑和R³⁺-Fe³⁺之间 相互作用对 $T_{\rm N}$, $T_{\rm M}$ 的影响.

综上所述, Ca掺杂导致BiFeO₃样品 T_N , T_M 变化主要取决于Fe-O-Fe反铁磁超交换作用的强弱和磁结构的相对稳定性.

3.6 热重扫描分析 (DSC)

为了进一步验证 BiFeO₃和 Bi_{1-x}Ca_xFeO₃样 品在878 K附近存在铁磁相变,我们对所有样 品做了 DSC 测试,结果如图 8 所示. 从图 8 可知: 所有样品分别在645,878及1103 K均发生变化. BiFeO₃在645 K发生反铁磁相变,其相变温度 $T_{\rm N} = 645$ K,这与相关文献报道一致^[1-5].

由于受实验条件的限制,没有观察到BiFeO₃ 样品在1103 K的居里相变温度.而在本实验中, 我们再次发现BiFeO₃样品在878 K的发生相变 ($T_{\rm M} = 878$ K),结合M-T测试结果,认为是BiFeO₃ 在878 K发生铁磁相变.关于BiFeO₃样品高温磁 相变的有关报道较少,在文献[7, 19, 20]中发现 BiFeO₃样品磁矩在870 K存在铁磁相变,但是没 有其他相关的实验数据给予证明,本文通过DSC 实验再次证明BiFeO₃样品在878 K存在铁磁相变. 这就充分说明BiFeO₃ 材料在878 K附近存在铁磁 相变.

4 结 论

采用溶胶凝胶法制备 $Bi_{1-x}Ca_xFeO_3(x = 0, 0.05, 0.1, 0.15, 0.2)$ 样品,分别对样品的结构、形貌、 介电特性、铁磁特性和高温铁磁相变进行了测量与 分析.结论如下:

1) XRD 图谱表明所有样品的主衍射峰均与 纯相 BiFeO₃ 相符合且具有良好的晶体结构,随着 Ca^{2+} 掺杂量的增大, $Bi_{1-x}Ca_xFeO_3$ 样品的主衍射 峰由双峰 (104) 与 (110) 逐渐重叠为单峰 (110),当 掺杂量 $x \ge 0.15$ 时,样品呈现正方晶系结构;

2) SEM 形貌分析可知, Bi_{1-x}Ca_xFeO₃ 样品晶 粒形状由立方块逐渐形成椭圆石头状, 且晶粒尺寸 逐渐增大, 由原来的 0.5 μm 逐渐增大到 2 μm;

3) 随着 x 的增加, $Bi_{1-x}Ca_xFeO_3$ 介电常数和 介电损耗均先增大而后减小, 当f = 1 kHz, $Bi_{0.9}Ca_{0.1}FeO_3$ 的 ε_r 达到最大值, 是BiFeO_3 的7.5 倍,而 $Bi_{0.8}Ca_{0.2}FeO_3$ 的 ε_r 达到最小值是BiFeO_3 的1/10,其介电特性是由偶极子的取向极化和空间 电荷限制电流两种极化机理共同作用的结果;

4) 室温下, BiFeO₃ 样品表现出较弱的铁磁性, 随着 Ca²⁺ 引入, BiFeO₃ 样品的铁磁性显著提高, 在外加磁场为30 kOe 的作用下, Bi_{1-x}Ca_xFeO₃ 的 M_r 分别为0.00267, 0.03445, 0.109, 0.0258, 0.0304 emu/g; M_s 分别为0.199, 0.2832, 0.3325, 0.2126, 0.217 emu/g; XPS 图谱表明 Fe²⁺和 Fe³⁺ 共存于 Bi_{1-x}Ca_xFeO₃ 样品, Fe²⁺/Fe³⁺ 的比例分 别为21/79, 23/77, 27/73, 32/68, 32/68, 证明 Ca²⁺ 掺杂主要是提高 Fe²⁺/Fe³⁺ 的比例, 增强 BiFeO₃ 的铁磁特性;

5) 高 温 磁 性 M-T 和 热 重 扫 描 DSC 观 察 到 BiFeO₃ 样品在 878 K 附近存在的铁磁相变, Ca²⁺ 掺杂使 BiFeO₃ 样品的 T_N 略有变化而 T_M 基本没有 变化,其主要原因是 Fe-O-Fe 反铁磁超交换作用的 强弱和磁结构的相对稳定性.

参考文献

- Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 342 63
- [2] Yang C H, Seidel J, Kim S Y, Rossen P B, Yu P, Gajek M, Chu Y H, Martin L W, Holcomb M B, He Q, Maksymovych P, Balke N, Kalinin S V, Baddorf A P, Basu S R, Scullin M L, Ramesh R 2009 Nature Mater. 8 485
- [3] Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177501 (in Chinese) [宋桂林,周晓辉,苏健,杨海刚,王天兴,常方高 2012 物理学报 61 177501]
- [4] Neaton J B, Ederer C, Waghaaren U V 2005 Phys. Rev. B 71 014113
- [5] Wang Q J, Tan Q H, Liu Y K 2015 Comput. Mater. Sci. 105 1
- [6] Kornev Igor A, Lisenkov S, Haumont R, Dkhil B, Bellaichel L 2007 Phys. Rev. Lett. 99 227602
- [7] Zhang N, Su J, Liu Z Y, Fu Z M, Wang X W, Song G
 L, Chang F G 2014 J. Appl. Phys. 115 133912
- [8] Khomchenko V A, Kiselev D A, Selezneva E K, Vieira J M, Lopes A M L, Pogorelov Y G, Araujo J P, Kholkin A L 2008 Mater. Lett. 62 1927
- [9] Wen X Li, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Dong X L, Chen C L 2014 Chin. Phys. B 23 117703
- [10] He S M, Liu G L, Zhu D P, Kang S S, Chen Y X, Yan S S, Mei L M 2014 *Chin. Phys. B* 23 117703
- [11] Perejón A, Pedro E, Jiménez S, Poyato R, Masó N, Anthony R 2015 J. Eur. Ceram. Soc. 35 2283
- [12] Gaur A, Singh P, Choudhary N, Kumar D, Shariq M, Singh K, Kaur N, Kaur D 2011 Physica B 406 1877
- [13] Sharma P, Verma V 2015 J. Magn. Magn. Mat. 374 18
- [14] Arora M, Chauhan S, Sati P C, Kumarn M, Chhoker S 2014 Ceram Int. 40 13347

- [15] Nalwa K S, Garg A, Upadhyay A 2008 Mater. Lett. 62 878
- [16] Lazenka V V, Lorenz M, Modarresi H, Brachwitz K, Schwinkendorf P, Vanacken J, Ziese M, Grundmann M, Moshchalkov V V 2013 J. Phys. D: Appl. Phys. 46 175006
- [17] Puli V S, Pradhan D K, Katiyar R K, Coondoo I, Panwar N, Misra P, Chrisey D B, Scott J F, Katiyar R S 2014 J. Phys. D: Appl. Phys. 47 075502
- [18] Yang C, Liu C Z, Wang C M, Zhang W G, Jiang J S 2012 J. Magn. Magn. Mat. **324** 1483
- [19] Song G L, Zhang H X, Wang T X, Yang H G, Chang F G 2012 J. Magn. Magn. Mat. **324** 2121
- [20] Song G L, Luo Y P, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177501 (in Chinese) [宋桂林, 罗艳萍, 苏健, 杨海刚, 王天兴, 常方高 2012 物理学报 61 177501]
- [21] Tirupathi P, Chandra A 2013 J. Alloys. Compd. 564 151
- [22] Su J, Zhang N, Zhou X H, Song G L, Chang F G 2013
 J. Chin. Ceram. Soc. 41 1185 (in Chinese) [苏建, 张娜,
 周晓辉, 宋桂林, 常方高 2013 硅酸盐学报 41 1185]
- [23] Song G L, Ma G J, Su J, Wang T X, Yang H G, Chang F G 2014 Ceram. Int. 40 3579
- [24] Song G L, Su J, Ma G J, Wang T X, Yang H G, Chang F G 2014 Mater. Sci. Semicond. Proc. 27 899
- [25] Yuan G L, Siu W 2006 J. Appl. Phys. 100 024109
- [26] Jaiparkash, Kumar Y, Chauhan R S, Kumar R 2011 Solid State Sci. 13 1869
- [27] Kumar A, Yadav K L, Rani J Y, Macromol A 2012 Chem. Phys. 134 430
- [28] Hu Y C, Jiang Z Z, Cao K G, Cheng G F, Ge J J, Lü X M, Wu X S 2012 Chem. Phys. Lett. 509 5908
- [29] Wang Y P, Zhang M F, Lü M J 2004 Appl. Phys. Lett. 84 1731
- [30] Das R, Mandal K 2012 J. Magn. Magn. Mat. 324 1913

Dielectric properties and high temperature magnetic behavior on multiferroics $Bi_{1-x}Ca_xFeO_3$ ceramics^{*}

Song Gui-Lin Su Jian Zhang Na Chang Fang-Gao[†]

(Henan Key Laboratory of Photovoltail Materials, College of Physics and Electronic Engineering, Henan Normal University,

Xinxiang 453007, China)

(Received 27 June 2015; revised manuscript received 29 September 2015)

Abstract

Multiferroic $Bi_{1-x}Ca_xFeO_3$ (x = 0, 0.05, 0.1, 0.15, 0.2) ceramics are prepared by sol-gel method. The effects of Ca doping on the structure, delectrical, ferromagnetism properties and high temperature magnetic behavior of BiFeO₃ ceramics are studied. The structures of BiFeO₃ ceramics are characterized by X-ray diffraction (XRD). The results show that all the peaks for $Bi_{1-x}Fe_xO_3$ samples can be indexed according to the crystal structure of pure BiFeO₃. The characteristic diffraction peaks of $Bi_{1-x}Ca_xFeO_3$ samples become gradually wider and the (104) and (110) peaks of BiFeO₃ merge partially into a broadened peak (110) with Ca^{2+} doping increasing. XRD analysis reveals a phase transition in Ca-doped BiFeO₃ from rhombohedral to orthorhombic when x is larger than 0.15. The scan electron microscope images indicate that Ca^{2+} doping significantly increases the grain sizes of BiFeO₃ ceramic. The average grain sizes of $Bi_{1-x}Ca_xFeO_3$ samples range from 0.5 to 2 µm.

The dielectric behaviors of $\text{Bi}_{1-x}\text{Ca}_x\text{FeO}_3$ ceramics change with content x and frequency. The dielectric constant measured at 1 kHz reaches a maximum value of $\varepsilon_r = 4603.9$ when x = 0.1, seven times as big as that of pure BiFeO₃. With further increasing the Ca content (x = 0.15, 0.2), the value of the dielectric constant is back to the level of pure BiFeO₃. The dielectric constant of Bi_{0.8}Ca_{0.2}FeO₃ ($\varepsilon_r = 57$) is less than one-tenth that of BiFeO₃ ($\varepsilon_r = 629.9$). The dielectric losses of Bi_{1-x}Ca_xFeO₃ samples become smaller than that of BiFeO₃ ceramic. This dramatic change in the dielectric properties of Bi_{1-x}Ca_xFeO₃ samples can be understood in terms of orientational relaxation of dipoles and the space charge limited conduction associated with crystal defects at low frequency.

The magnetic measurements show that all samples possess strong ferromagnetism at room temperature expect BiFeO₃ which is weakly ferromagnetic. The X-ray photoelectron spectroscopy spectrum indicates the coexistence of Fe²⁺ and Fe³⁺ in Bi_{1-x}Ca_xFeO₃ samples. The ratios of Fe²⁺/Fe³⁺ are 21/79, 23/77, 27/73, 32/68, and 32/68, respectively. The ratio of Fe²⁺/Fe³⁺ increases with doping Ca content increasing, and the magnetic preparation of BiFeO₃ is enhanced.

It is evidenced that the ferromagnetic phase transitions of $\text{Bi}_{1-x}\text{Ca}_x\text{FeO}_3$ samples occur at 878 K from M-T curve and the phase transition of BiFeO₃ happens at 878 K by DSC measurement. The change in T_N of $\text{Bi}_{1-x}\text{Ca}_x\text{FeO}_3$ depends mainly on the Fe-O-Fe super-exchange strength and magnetic structure of relative stability.

Keywords: multiferroic, dielectric properties, magnetic hysteresis loops, magnetic phase transition temperature

PACS: 75.47.Lx, 76.50.+g, 75.60.Ej, 77.80.Dj

DOI: 10.7498/aps.64.247502

^{*} Project supported by the National Natural Science Foundation of China (Grant No. U1204111), the Key Scientific and Technological Research Projects in Henan Province, China (Grant No. 122102210191), and the Basic and Advanced Technology Research Project in Henan Province, China (Grant No. 122300410203).

 $[\]dagger$ Corresponding author. E-mail: chfg@htu.cn