物理学报 Acta Physica Sinica

利用N型半导体纳米材料抑制单量子点的荧光闪烁特性

王早 张国峰 李斌 陈瑞云 秦成兵 肖连团 贾锁堂

Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial

Wang Zao Zhang Guo-Feng Li Bin Chen Rui-Yun Qin Cheng-Bing Xiao Lian-Tuan Jia Suo-Tang

引用信息 Citation: Acta Physica Sinica, 64, 247803 (2015) DOI: 10.7498/aps.64.247803 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.247803 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I24

您可能感兴趣的其他文章 Articles you may be interested in

Rashba 自旋-轨道相互作用影响下量子盘中强耦合磁极化子性质的研究

Study of the properties of strong-coupling magnetopolaron in quantum disks induced by the Rashba spinorbit interaction

物理学报.2014, 63(17): 177803 http://dx.doi.org/10.7498/aps.63.177803

等离子体增强InAs单量子点荧光辐射的研究

Photoluminescence from plasmon-enhanced single InAs quantum dots 物理学报.2014, 63(2): 027801 http://dx.doi.org/10.7498/aps.63.027801

计及激子-双激子相干下半导体单量子点中的空间光孤子秖 Spatial optical soliton pairs in a quantum dot with exciton-biexciton coherence 物理学报.2013, 62(14): 147801 http://dx.doi.org/10.7498/aps.62.147801

电场调谐 InAs 量子点荷电激子光学跃迁 Optical transition of the charged excitons in InAs single quantum dots

物理学报.2013, 62(4): 047801 http://dx.doi.org/10.7498/aps.62.047801

CdTe/CdS 核壳结构量子点超快载流子动力学 Ultrafast carrier dynamics in CdTe/CdS Core/Shell quantum dots 物理学报.2012, 61(19): 197801 http://dx.doi.org/10.7498/aps.61.197801

利用N型半导体纳米材料抑制单量子点的 荧光闪烁特性*

王早 张国峰 李斌 陈瑞云 秦成兵 肖连团 贯锁堂

(山西大学激光光谱研究所,量子光学与光量子器件国家重点实验室,太原 030006)

(2015年7月25日收到;2015年9月8日收到修改稿)

利用N型半导体纳米材料氧化铟锡 (ITO) 作为单CdSe/ZnS量子点的基质来抑制单量子点的荧光闪烁特性.实验采用激光扫描共聚焦显微成像系统测量了单量子点荧光的亮、暗态持续时间的概率密度分布的指数截止的幂律特性,并与直接吸附在SiO2 玻片上的单CdSe/ZnS量子点的荧光特性进行比较.研究发现处于ITO中的单量子点比SiO2 玻片上的单量子点荧光亮态持续时间提高两个数量级,掺杂于ITO中的单量子点的荧光寿命约减小为SiO2 玻片上的单量子点的荧光寿命的41%,并且寿命分布宽度变小50%.

关键词:单量子点,半导体纳米材料,荧光闪烁,荧光寿命 PACS: 78.67.Hc, 73.40.-c, 78.56.Cd

DOI: 10.7498/aps.64.247803

1引言

量子点具有宽范围的吸收光谱、窄的发射光 谱和较高的荧光量子产率^[1],已经被广泛地应用于 发光二极管^[2]、太阳能电池^[3,4]和高分辨荧光成像 等^[5-7]方面.通常单量子点表现出较强的亮暗交 替的荧光闪烁行为^[8,9],这一特性为量子点的实际 应用带来了困扰.例如基于量子点的单光子源用于 量子保密通信时,量子点的荧光闪烁会降低传输的 码率^[10];在用于生物体生命活动过程的跟踪测量 时,量子点的荧光闪烁使得难以实时获得研究对象 的动力学演化过程^[6].

近年来,许多研究小组正在努力探寻各种有效 手段来调控量子点的荧光辐射特性,主要采取的技 术手段是通过改变量子点的界面环境来实现量子 点与周围环境的电荷转移以达到对量子点荧光辐 射特性的调控.例如在量子点外层覆盖更高带隙 的半导体层或聚合物来改善量子点的量子产率、光

漂白等光学特性[11,12];将量子点吸附在不同材料 的界面以调控量子点的荧光辐射特性[13,14]; 对量 子点吸附的基片掺杂不同浓度的金属元素来改变 量子点的荧光闪烁行为和俘获态的恢复率等[15,16]. 2015年,周小东等^[16]研究表明,镶嵌在SiO2玻片 中的Au纳米颗粒对吸附在玻片表面的CdTe量子 点的发光具有增强效应和猝灭效应,通过在含有量 子点的溶液中注入BME缓冲液来作为量子点外层 空穴的电子供体,从而有效地调控量子点的荧光闪 烁特性^[17]. 2011年, Schafer等^[18]通过原子力显微 技术注射电子来调制量子点的荧光特性,但其不利 于量子点的广泛应用. Chiba^[19]和LeBlanc 等^[20] 利用外电场控制量子点与周围环境的电荷转移来 达到对量子点荧光辐射特性的调控,但是该方法缺 乏长时间的稳定性. 2015年, 李颖等^[21]采用电化 学操控方式,通过给量子点周围添加氧化还原物质 同时施加电场来控制量子点与周围基质之间的电 子转移途径,从而达到控制量子点荧光闪烁的目

^{*} 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 11374196, 11174187, 10934004, 11204166, 11404200)、教育部长江学者和创新团队发展计划(批准号: IRT13076)、教育部博士点基金(批准号: 20121401120016)和山西省留学回国人员科技活动择优项目资助的课题.

[†]通信作者. E-mail: <u>xlt@sxu.edu.cn</u>

^{© 2015} 中国物理学会 Chinese Physical Society

的. 特别地, P型半导体材料已经被用于调控量子 点的荧光特性, 由于 P型半导体材料具有较强的吸 电子能力, 从而用来调控量子点荧光辐射的暗态持 续时间^[22]和增强量子点的存活时间等^[23].本文将 单壳层的 CdSe/ZnS 量子点掺杂于 N 型半导体纳米 粒子氧化铟锡 (indium tin oxide, ITO) 中, 研究 N 型半导体纳米材料界面对于单量子点的荧光闪烁 特性的影响.

2 实验部分

2.1 样品准备

取100 µL的CdSe/ZnS量子点原液 (Qdot® 800 ITKTM, Life Technologies), 分别加入300 µL 甲醇和100 µL异丙醇溶剂混合均匀后、以 3000 r/min的转速离心3 min后去除上清液,并 向其中加入适量的甲苯溶剂, 配制成浓度约 10⁻⁹ mol/L的量子点溶液. 取 200 µL 的 30 wt.% 的ITO 悬浮液 (Sigma-Aldrich) 于试剂瓶中, 室温 下自然挥发其中的异丙醇溶剂,待异丙醇完全挥发 之后在其中加入甲苯溶剂和约10⁻⁷ mol/L 的量子 点溶液,最终配制成含有约15 wt.% ITO 纳米粒子 和约10⁻⁹ mol/L的量子点的悬浮液,充分振荡摇 匀, 以3000 r/min的转速旋涂在洗净的SiO2 玻片 上. 将该样品放置于45°C的真空烘干箱中约3h, 待有机溶剂充分挥发后进行实验测量.同时将约 10⁻⁹ mol/L的100 µL的量子点溶液以2000 r/min 的转速旋涂在洗净的SiO2玻片上作为对照实验.

2.2 实验装置

实验采用激光扫描共聚焦显微系统测量单量 子点的荧光强度和荧光寿命.以皮秒脉冲二极管 激光器 (PDL808 PicoQuant) 作为激发光源,中心 波长为635 nm,输出脉冲宽度为50 ps,重复频率 为40 MHz,激发光通过 $\lambda/2$ 和 $\lambda/4$ 波片之后成为圆 偏振光后,经5倍的扩束进入一个倒置荧光显微镜 (Nikon TE2000),通过二向色镜 (Semrock)反射进 入显微镜物镜 (×100 oil, NA = 1.3, Nikon)聚焦 到三维纳米台 (Tritor 200/20)上的量子点样品上. 量子点荧光由相同的物镜收集后经过二向色镜、 陷波滤波器 (Semrock)、长通滤波器 (Semrock)及 直径为100 μm的针孔进行空间滤波之后,进入单 光子探测器 (SPCM-AQR-15)进行荧光探测.利用 LABVIEW 程序来控制三维纳米位移平台的三维 扫描并分析处理量子点的荧光信号.我们利用时间 幅度转换仪 (TAC, ORTEC)和多道分析仪 (MCA, ORTEC)来测量单量子点的荧光辐射的衰减曲线, 并对其进行指数拟合来获得量子点的荧光寿命.

3 实验结果与讨论

3.1 单量子点的荧光辐射特征

实验分别测量了约120个SiO2玻片上的单量 子点和掺杂在半导体ITO中的单量子点的荧光强 度轨迹. 图1(a)和图1(b)分别为SiO2玻片表面和 掺杂于ITO中的单量子点的典型的荧光强度轨迹 及其相应的强度分布,荧光强度轨迹的采样积分时 间为0.1 s. 从图中发现SiO2玻片上的单量子点在 高的荧光计数值(亮态)和低的荧光计数值(暗态) 之间具有非常强烈的荧光波动,这种强烈的荧光波 动即为量子点的荧光闪烁,强度分布柱状图显示量 子点的荧光辐射主要处于暗态. 而掺杂于ITO中 的单量子点的荧光闪烁显著减小并且其暗态的持 续时间也明显较小,强度分布柱状图显示量子点的 荧光主要处于亮态,处于ITO环境中的单量子点的 荧光闪烁被显著抑制.为了比较单量子点在不同界 面环境的荧光闪烁,我们统计了所有测量的单量子 点的荧光闪烁率,即在约500 s的荧光强度轨迹上, 计算平均每秒时间内荧光闪烁出现的次数,统计 结果如图1(c)所示. SiO2玻片表面上的单量子点 的荧光闪烁率柱状图的极大值对应的位置为0.45, ITO中的单量子点的荧光闪烁率柱状图的极大值 对应的位置为1.2. 表明ITO的界面环境能够减小 单量子点的荧光闪烁率.

3.2 单量子点荧光闪烁的幂律分布

为了进一步研究单量子点在不同界面环境下的荧光闪烁特性,我们计算了单量子点的亮态(on态)和暗态(off态)的概率密度.

这里用于区分荧光强度的on态和off态的阈值 荧光强度 *I*_{th} 定义为

$$I_{\rm th} = I_{\rm av} + 3\sigma, \tag{1}$$

图 1 (网刊彩色) SiO₂ 玻片表面和掺杂于 ITO 中的 CdSe/ZnS 单量子点的典型的荧光强度轨迹 (红色线为量子点 荧光强度,银灰色线为背景)和荧光强度分布及荧光闪烁率的统计分布 (a) CdSe/ZnS 单量子点在 SiO₂ 玻片表面 上的荧光强度轨迹 (左) 与荧光强度分布 (右); (b) 掺杂于 ITO 中的 CdSe/ZnS 单量子点的荧光强度轨迹 (左) 与荧 光强度分布 (右); (c) SiO₂ 玻片表面和掺杂于 ITO 中的 CdSe/ZnS 单量子点的荧光闪烁率的统计分布

Fig. 1. (color online) Typical fluorescence intensity trajectories (red line represents fluorescence intensity and silver-gray line represents background) and its histograms, and histograms of blinking rate for single QDs on SiO₂ cover glass and in ITO, respectively: (a) Typical fluorescence intensity trajectories (left) and histogram of the fluorescence intensity (right) for single QDs on SiO₂ cover glass; (b) typical fluorescence intensity trajectories (left) and histograms of blinking rate for single QDs on SiO₂ cover glass; (c) histograms of blinking rate for single QDs on SiO₂ cover glass and in ITO; (c) histograms of blinking rate for single QDs on SiO₂ cover glass and in ITO; (c) histograms of blinking rate for single QDs on SiO₂ cover glass and in ITO.

其中, *I*_{av} 为背景的平均荧光强度, σ是背景强度起 伏的标准偏差.大于阈值荧光强度的记为on态, 小 于阈值的则为off态.单量子点的亮、暗态的持续时 间概率密度则为^[24]

$$P_i(t) = \frac{N_i(t)}{N_{i,\text{total}}} \times \frac{1}{\Delta t_{i,\text{av}}} \quad (i = \text{on or off}), \quad (2)$$

其中 $N_i(t)$ 为持续时间为t的on态或off态出现的

次数, $N_{i,total}$ 为总的 on 态或 off 态出现次数, $\Delta t_{i,av}$ 为平均的时间间隔. 典型的单量子点在 SiO₂ 玻片 表面和掺杂于 ITO 中的 on 态和 off 态的归一化概 率密度 $P_{on}(t)$ 和 $P_{off}(t)$, 如图 2 所示. 单量子点的 $P_{on}(t)$ 和 $P_{off}(t)$ 在短时间尺度上服从幂律分布, 而 在长时间尺度上偏离了幂律分布并服从指数分布, 所以称为指数截止的幂律分布^[25]. $P_{on}(t)$ 和 $P_{off}(t)$

可以通过(3)式拟合,

$$P_i(t) = A_i t^{-\alpha_i} \exp(-\mu_i t) \quad (i = \text{on or off}), \quad (3)$$

其中 A 为常数, α 为幂律指数, μ 为饱和系数, 可用 于表示概率密度偏离幂律分布的程度. 从图 2 (a) 中可以看到, 单位时间内掺杂于 ITO 中的单量子点 荧光 on 态的概率密度比 SiO₂ 玻片表面上的单量子 点荧光on态的概率密度高两个数量级.分别对两 种界面环境下的约100个单量子点进行指数截止的 幂律拟合,所得到的拟合参数如表1所列.掺杂于 ITO中的单量子点比SiO₂玻片表面上的单量子点 具有更大的1/µon和更小的1/µoff,表明ITO中的 单量子点具有大的长on态的概率密度和小的长off 态的概率密度.

图 2 (网刊彩色) CdSe/ZnS 单量子点在玻片表面和掺杂于 ITO 中的亮态 ($P_{on}(t)$) 和暗态 ($P_{off}(t)$) 的归一化概率密度及 相应的指数截止的幂律拟合 (a) 单量子点在玻片表面和掺杂于 ITO 中的亮态归一化概率密度的指数截止的幂律拟合, 拟 合参数: 玻片上 $\alpha_{on} = 0.445$, $1/\mu_{on} = 0.162$; 掺杂于 ITO 中 $\alpha_{on} = 0.530$, $1/\mu_{on} = 1.640$; (b) 单量子点在玻片表面和 掺杂于 ITO 中的暗态概率密度的指数截止的幂律拟合, 拟合参数: 玻片上 $\alpha_{off} = 0.432$, $1/\mu_{off} = 1.174$; 掺杂于 ITO 中 $\alpha_{off} = 0.966$, $1/\mu_{on} = 0.264$

Fig. 2. (color online) Normalized probability density of on states $(P_{on}(t))$ and off states $(P_{off}(t))$ for single QDs on glass and in ITO. The solid lines are best fits by by a truncated power law Eq. (3): (a) Normalized probability density of on states for single QDs on glass and in ITO, fitting parameters: glass $\alpha_{on} = 0.445$, $1/\mu_{on} = 0.162$; ITO $\alpha_{on} = 0.530$, $1/\mu_{on} = 1.640$; (b) normalized probability density of off states $(P_{off}(t))$ for single QDs on glass and in ITO, fitting parameters: glass $\alpha_{on} = 0.445$, $1/\mu_{on} = 0.162$; ITO $\alpha_{on} = 0.530$, $1/\mu_{on} = 1.640$; (b) normalized probability density of off states $(P_{off}(t))$ for single QDs on glass and in ITO, fitting parameters: glass $\alpha_{off} = 0.432$, $1/\mu_{off} = 1.174$; ITO $\alpha_{off} = 0.966$, $1/\mu_{on} = 0.264$.

表 1 单量子点在玻片表面和掺杂于 ITO 中的亮态 (*P*on(*t*)) 及暗态 (*P*off(*t*)) 的概率密度的指数截止的幂律分布的 拟合参数

Table 1. Fitting parameters of normalized probability density of on states $(P_{on}(t))$ and off states $(P_{off}(t))$ for all measured single QDs on glass and in ITO, respectively.

	$lpha_{ m on}$	$1/\mu_{ m on}/{ m s}$	$lpha_{ m off}$	$1/\mu_{ m off}/ m s$
QDs(Glass)	$0.430{\pm}0.207$	$0.289{\pm}0.171$	$0.580 {\pm} 0.314$	$0.831 {\pm} 0.303$
QDs(ITO)	$0.549 {\pm} 0.194$	$2.320{\pm}1.320$	$1.003 {\pm} 0.632$	$0.239 {\pm} 0.125$

3.3 单量子点的荧光寿命特征

利用 TAC/MCA 技术测量了 SiO₂ 玻片表面和 掺杂于 ITO 中的单量子点的荧光辐射衰减曲线,并 对其进行指数拟合来获得单量子点的荧光寿命.单 量子点的荧光寿命直接关联着量子点的荧光辐射 特性 (荧光强度及荧光闪烁)和量子点所处的界面 环境的电子转移特性等.图3显示了典型的单量子 点荧光辐射衰减曲线,其中红色的散点轨迹为SiO₂ 玻片表面上的单量子点的荧光辐射衰减曲线,绿色 的散点轨迹为掺杂于 ITO 中的单量子点的荧光辐 射衰减曲线,蓝色的轨迹曲线为系统的仪器相应 函数,其半高全宽(FWHM)约为750 ps.我们利用 MATLAB程序对单量子点荧光辐射衰减曲线进行 反卷积和双指数函数拟合.这两种界面下的单量 子点的荧光辐射衰减曲线可以用如下双指数函数 拟合,

$$I(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right), \quad (4)$$

其中₇₁和₇₂为两个寿命值, A₁和A₂为对应的寿命 值的振幅, 两个寿命所占的振幅权重为

$$w_i = \left(\frac{A_i}{A_1 + A_2}\right) \times 100\% \quad (i = 1, 2).$$

由公式

$$\tau = \sum_{i} w_i \cdot \tau_i \quad (i = 1, 2)$$

可以获得量子点的振幅加权平均寿命.

图 3 中 SiO₂ 玻片表面上的单量子点的寿命拟 合参数为 $\tau_1 = 29.3$ ns, $w_1 = 83.3\%$, $\tau_2 = 0.86$ ns, $w_2 = 16.7\%$,振幅加权平均寿命为 $\tau = 24.55$ ns; 掺杂于 ITO 中的单量子点的寿命拟合参数为 $\tau_1 =$ 10.2 ns, $w_1 = 81.9\%$, $\tau_2 = 0.12$ ns, $w_2 = 18.1\%$,振 幅加权平均寿命为 $\tau = 8.38$ ns.其中在 SiO₂ 玻片 表面和掺杂于 ITO 中的单量子点荧光的相对较大 的寿命值 (τ_1) 29.3 和 10.2 ns 源于单量子点的单激 子辐射寿命 [^{13,26}],掺杂于 ITO 中的单量子点的单激 了辐射寿命减小 [^{13,26}], 掺杂于 ITO 中的单量子点的成 歇弛豫效应产生的非辐射弛豫过程使得其单激子 辐射寿命减小 [^{13,26}]. 受激发的单量子点的双激子 辐射寿命减小 [^{13,26}]. 受激发的单量子点的双激子 0.86和0.12 ns即为量子点的双激子态所产生的双 光子辐射的寿命,结果表明ITO半导体材料同时也 诱导着单量子点的双激子态的荧光寿命的减小,这 与文献[26]中的研究结果一致.

图 3 (网刊彩色) 玻片表面和掺杂于 ITO 中的单量子点 的荧光衰减曲线及双指数函数的拟合 (IRF 为系统的仪器 响应函数)

Fig. 3. (color online) Fluorescence decays and best biexponential fits of single QDs on glass and in ITO (IRF indicates instrument response function of system).

图4 (网刊彩色)单量子点在玻片表面和掺杂于 ITO 中的寿命值 τ_1, τ_2 与其对应的权重分布 (图中用虚线相连的两点表示 同一量子点的两个寿命值)以及振幅加权寿命统计柱状图 (a) 玻片表面上的单量子点的荧光寿命 τ_1, τ_2 与其对应的权重分 布; (b) 玻片表面上的单量子点的振幅加权寿命统计柱状图; (c) 掺杂于 ITO 中的单量子点的寿命值 τ_1, τ_2 与其对应的权重 分布; (d) 掺杂于 ITO 中的单量子点振幅加权寿命统计柱状图

Fig. 4. (color online) Distributions of lifetime τ_1 , τ_2 in contact with their weights (the values connected by dotted lines represent τ_1 and τ_2 of same QD) and histograms of the amplitude weighted average lifetimes for single QDs on glass and in ITO: (a) Distribution of lifetime τ_1 , τ_2 and their weights for single QDs on glass; (b) histogram of the amplitude weighted average lifetimes for single QDs on glass; (c) distribution of lifetime τ_1 , τ_2 and their weights for single QDs in ITO; (d) histogram of the amplitude weighted average lifetimes for single QDs in ITO.

图4(a)和图4(c)分别为单量子点在SiO₂玻 片表面和掺杂于ITO中的双指数函数拟合的寿命 值 τ_1, τ_2 及其相应的权重分布图. 从图 4(a) 中可以 看到, 玻片表面上的单量子点的两个寿命值主要 分布在 0.5 ns (权重较小)附近和 20 ns (权重较大) 附近. 从图4(c)中发现ITO中的单量子点的两个 寿命值主要分布在0.2 ns 附近(权重较小)和10 ns (权重较大)附近,比较这两种界面环境下单量子 点的较小寿命值的分布可以发现,在玻片表面上的 单量子点的权重值分布较为分散,说明SiO2玻片 表面上的单量子点的双激子态所产生的双光子辐 射的异构性较大. 掺杂于ITO中的单量子点的寿 命值比玻片表面的单量子点的寿命偏小,说明ITO 半导体纳米材料同时诱导单量子点的双激子态的 荧光寿命的减小^[26].图4(b)和图4(d)分别显示了 玻片表面上和掺杂于ITO中的单量子点的振幅加 权平均寿命分布,可以发现处于玻片上的量子点 的荧光寿命以17 ns为中心分布宽度(FWHM)为 27 ns;而ITO中的单量子点的荧光寿命以7 ns为 中心分布宽度(FWHM)为14 ns. 表明掺杂于ITO 中的单量子点的荧光寿命约减小为SiO2玻片上的 单量子点的荧光寿命的41%,并且寿命分布宽度 变小为50%.

3.4 量子点荧光闪烁抑制的理论模型

量子点与ITO组成的能级结构及其二者接触 后的电子转移方式如图5所示,量子点与N型ITO 半导体接触后电子可以从ITO流向量子点,在量子 点上的这些额外的电子可以改变单量子点的荧光 辐射. 量子点的壳层具有许多缺陷空穴, 可以俘获 处于激发态的电子,导致量子点的荧光闪烁. ITO 的费米能级高于量子点的费米能级, 当二者接触 时, ITO上的电子会流向量子点, 使得两者的费米 面保持平衡,所以最终导致量子点带负电.带负电 的量子点有利于量子点壳层缺陷空穴的填充,即激 发了空穴穿梭效应减小了空穴存活时间,从而抑制 了量子点的荧光闪烁^[29].另外,量子点被激发后 价带的电子吸收光子跃迁到导带后形成激子,由于 量子点的导带高于N型半导体ITO, 所以量子点导 带上的电子容易转移到ITO上,这有助于量子点的 无辐射跃迁概率的增大,从而使得量子点的荧光 寿命减小^[30].这种效应体现在在我们研究的单分 子/ITO系统中^[31].

图 5 (网刊彩色)单量子点和半导体 ITO 组成的系统的 能级结构及其之间的电子转移方式的原理图 (图中 ket 为 从量子点到 ITO 的界面电子转移率, E_F 为费米能级, T_r 为俘获态)

Fig. 5. (color online) Schematic of relevant energy levels for possible charge transfer pathways between QDs and ITO ($k_{\rm et}$, the electron transfer rate from QDs to ITO; $E_{\rm F}$, Fermi energy; $T_{\rm r}$, trap state).

4 结 论

我们采用N型半导体纳米粒子ITO作为单壳 层的CdSe/ZnS量子点的界面材料,利用N型半导体纳米粒子ITO作为理想的电子供体填补量子点 表面壳层上的俘获电子的缺陷空穴,从而抑制量子 点的荧光闪烁特性.实验研究CdSe/ZnS量子点在 SiO₂玻片表面和掺杂于N型半导体纳米粒子ITO 两种情况下的荧光闪烁行为及其荧光寿命,结果表 明ITO可以有效地抑制单壳层量子点的荧光闪烁, 同时减小了量子点荧光寿命.

参考文献

- Kloepfer J A, Bradforth S E, Nadeau J L 2005 J. Phys. Chem. B 109 9996
- [2] Sungwoo K, Hyuk Im S, Sang-Wook K 2013 Nanoscale 5 5205
- [3] Sambur J B, Novet T, Parkinson1 B A 2010 Science 330 63
- [4] Li W J, Zhong X H 2015 Acta Phys. Sin. 64 038806 (in Chinese) [李文杰, 钟新华 2015 物理学报 64 038806]
- [5] Bruchez Jr M, Moronne M, Gin P, Weiss S, Paul Alivisatos A 1998 Science 281 2013
- [6] Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G 2008 Nat. Methods 5 695
- [7] Dertinger T, Colyer R, Iyer G, Weiss R, Enderlein J 2009 Proc. Natl. Acad. Sci. 106 22287
- [8] Peterson J J, Nesbitt D J 2009 Nano Lett. 9 338
- [9] Galland C, Ghosh Y, Steinbrück A, Sykora M, Hollingsworth J A, Klimov V I, Htoon H 2011 Nature 479 203
- [10] Kiraz A, Atatüre M, Imamoğlu A 2004 Phys. Rev. A 69 032305

- [11] Aldana J, Wang Y A, Peng X G 2001 J. Am. Chem. Soc. 123 8844
- [12] Guo W Z, Li J J, Wang Y A, Peng X G 2003 J. Am. Chem. Soc. 125 3901
- [13]~ Jin S Y, Song N H, Lian T Q 2010 ACS Nano 4 1545
- [14] Wu J F, Zhang G F, Chen R Y, Qin C B, Xiao L T, Jia S T 2014 Acta Phys. Sin. 63 167302 (in Chinese) [吴建 芳, 张国峰, 陈瑞云, 秦成兵, 肖连团, 贾锁堂 2014 物理学 报 63 167302]
- [15] Nagao Y, Fujiwara H, Sasaki K 2014 J. Phys. Chem. C 118 20571
- [16] Zhou X D, Zhang S F, Zhou S H 2015 Acta Phys. Sin.
 64 167301 (in Chinese) [周小东, 张少锋, 周思华 2015 物 理学报 64 167301]
- [17] Hohng S, Ha T 2004 J. Am. Chem. Soc. 126 1324
- [18] Schafer S, Wang Z, Kipp T, Mews A 2011 Phys. Rev. Lett. 107 137403
- [19] Chiba T, Qi J, Fujiwara H, Sasaki K 2013 J. Phys. Chem. C 117 2507
- [20] LeBlanc S J, McClanahan M R, Moyer T, Jones M, Moyer P J 2014 Appl. Phys. 115 034306

- [21] Li Y, Liu R W, Ma L, Fan S N, Li H, Hu S X, Li M 2015 Chin. Phys. B 24 078202
- [22] Chang Y P, Tsai P Y, Lee H L, Lin K C 2013 Electroanalysis 25 1064
- [23] Wu X Y, Yeow E K L 2010 Chem. Commun. 46 4390
- [24] Kuno M, Fromm D P, Hamann H F, Gallagher A, Nesbitt D J 2000 J. Chem. Phys. 112 3117
- [25] Tang J, Marcus R A 2005 Phys. Rev. Lett. 95 107401
- [26] Cheng H W, Yuan C T, Wang J S, Lin T N, Shen J L, Hung Y L, Tang J, Tseng F G 2014 J. Phys. Chem. C 118 18126
- [27] Fisher B, Caruge J M, Zehnder D, Bawendi M G 2005 *Phys. Rev. Lett.* **94** 087403
- [28] Mangum B D, Ghosh Y, Hollingsworth J A, Htoon H 2013 Opt. Express 21 7419
- [29] Inamdar S N, Ingole P P, Haram S K 2008 Chem. Phys. Chem. 9 2574
- [30] Debnath T, Maity P, Banerjee T, Das A, Ghosh H N 2015 J. Phys. Chem. C 119 3522
- [31] Zhang G F, Xiao L T, Chen R Y, Gao Y, Jia S T 2011 *Phys. Chem. Chem. Phys.* **13** 13815

Suppression of the blinking of single QDs by using an N-type semiconductor nanomaterial^{*}

Wang Zao Zhang Guo-Feng Li Bin Chen Rui-Yun Qin Cheng-Bing Xiao Lian-Tuan[†] Jia Suo-Tang

(State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China)

(Received 25 July 2015; revised manuscript received 8 September 2015)

Abstract

Single quantum dots (QDs) always exhibit strong blinking in fluorescence intensity when they are on some inert substrates. The blinking activity is attributed to the photoinduced charging of QDs by electron transfer (ET) to trap states in QDs and the surrounding matrix, which has been considered as an undesirable property in many applications. Here, we use N-doped indium tin oxide (ITO) semiconductor nanoparticles to suppress fluorescence blinking activity of single CdSe/ZnS core/shell QDs. The fluorescence characteristics of single QDs in ITO and on SiO₂ cover glass are measured by a laser scanning confocal fluorescence microscopy, respectively. It is found that the on- and off-state probability densities of QDs on different substrates both can be fit by a truncated power law. Blinking rates for single QDs on glass and in ITO are also calculated. By contrast, single QDs doped in ITO show that their blinking rate and fluorescence lifetime both decrease. The on-state probability density of single QDs in ITO is approximately two orders of magnitude higher than that of QDs on SiO_2 cover glass. It means that single QDs doped in ITO have a longer time to be on-state. Because the Fermi level in QDs is lower than in ITO, when they are in contact, electrons in ITO will transfer to QDs. As a result, the equilibration of their Fermi levels leads to the formation of negatively charged QDs. These electrons fill in the holes of QDs shell and enhance the on-state probability of QDs. Fluorescence decays of single QDs on glass and in ITO are measured by TAC/MCA, and they can be fit by biexponential function. The two lifetime values correspond to the single exciton lifetime and biexciton lifetime of QDs, respectively. It is worth noting that the distribution of the amplitude weighted average lifetime for single QDs in ITO is approximately 41% of that for single QDs on SiO₂ cover glass and its full width at half maximum (FWHM) is changed to 50%. For the conduction band potential of QDs is higher than that of ITO, which contributes to photoinduced interfacial electron transfer from QDs to ITO and leads to the increase of nonradiative transition. These indicate that ITO can reduce single exciton and biexciton lifetime of QDs. The study demonstrates that ITO can effectively suppress the blinking activity of QDs.

Keywords: single quantum dot, semiconductor nanomaterials, fluorescence blinking, fluorescence lifetime PACS: 78.67.Hc, 73.40.-c, 78.56.Cd DOI: 10.7498/aps.64.247803

^{*} Project supported by the National Basic Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 11374196, 11174187, 10934004, 11204166, 11404200), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Doctoral Foundation of the Education Ministry of China (Grant No. 20121401120016), and the Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China.

[†] Corresponding author. E-mail: xlt@sxu.edu.cn