物理学报 Acta Physica Sinica

溶剂对钙钛矿薄膜形貌和结晶性的影响研究

王栋 朱慧敏 周忠敏 王在伟 吕思刘 逢淑平 崔光磊

Effect of solvent on the perovskite thin film morphology and crystallinity

Wang Dong Zhu Hui-Min Zhou Zhong-Min Wang Zai-Wei Lü Si-Liu Pang Shu-Ping Cui Guang-Lei

引用信息 Citation: Acta Physica Sinica, 64, 038403 (2015) DOI: 10.7498/aps.64.038403 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.038403 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I3

您可能感兴趣的其他文章 Articles you may be interested in

有机无机杂化固态太阳能电池的研究进展

Recent progress in research on solid organicinorganic hybrid solar cells 物理学报.2015, 64(3): 038405 http://dx.doi.org/10.7498/aps.64.038405

钙钛矿太阳能电池中S形伏安特性研究

S-shaped current-voltage characteristics in the perovskite solar cell 物理学报.2015, 64(3): 038402 http://dx.doi.org/10.7498/aps.64.038402

平面异质结有机-无机杂化钙钛矿太阳电池研究进展

Recent advances in planar heterojunction organic-inorganic hybrid perovskite solar cells 物理学报.2015, 64(3): 038401 http://dx.doi.org/10.7498/aps.64.038401

胆甾液晶掺杂活性层对有机太阳能电池性能的影响

Efficiency improvement in organic solar cells by doping cholesteric liquid crystal 物理学报.2014, 63(24): 248403 http://dx.doi.org/10.7498/aps.63.248403

光伏电池组件隐式、显式单二极管模型准确性对比研究

Accuracy comparison between implicit and explicit single-diode models of photovoltaic cells and modules 物理学报.2014, 63(17): 178401 http://dx.doi.org/10.7498/aps.63.178401

专题: 新型太阳能电池专题

溶剂对钙钛矿薄膜形貌和结晶性的影响研究*

1) (中国科学院大学,北京 100049)

2) (中国科学院青岛生物能源与过程研究所,青岛 266000)

(2014年10月20日收到;2014年11月23日收到修改稿)

溶剂对钙钛矿太阳能电池器件有着至关重要的影响.基于目前常用的 N, N-二甲基甲酰胺 (DMF) 和丁 内酯 (GBL) 溶剂,一步溶液旋涂技术和介孔电池结构,制备的钙钛矿薄膜的形貌、结晶性,以及最终的器件光 电转化效率存在较大的差异,利用 DMF 作为溶剂,效率仅为 2.8%,而基于 GBL 的电池效率可以达到 10.1%.结合 SEM, HRTEM, XRD 和 UV 等表征手段,分析了钙钛矿从 DMF 溶液和 GBL 溶液中结晶析出的不同机 理,明确了溶剂跟 PbI₂ 的配位作用对钙钛矿的溶解、析出过程的制约作用,揭示了造成器件效率差异的本质 原因.

关键词:钙钛矿太阳能电池,溶剂,配位作用 PACS: 84.60.Jt, 85.30.-z, 61.46.-w, 81.07.Bc

1引言

有机-无机混合钙钛矿材料具有高效率和价格低廉的特点,在太阳能电池中有广泛的应用前景^[1].近五年来,基于卤化铅钙钛矿的全固态薄膜太阳能电池效率从3.8%迅速的增长到19.3%^[2,3]. 卤化铅钙钛矿 (CH₃NH₃PbX₃, X = Cl, I, Br) 是一种直接带隙材料并在整个可见光波段中展现出了强吸光能力^[4].该类材料是双极性的,可同时传输电子和空穴,因而可以用于全固态的太阳能电池中^[5-7].薄膜钙钛矿电池效率主要决定于钙钛矿层,空穴传输层(HTL),电子传输层(ETL)的性质.其中,空穴传输层通常采用宽带隙的材料,如spiro-MeOTAD,P3HT等,这类材料具有高空穴迁移率^[8-11].电子传输层需要与钙钛矿能级匹配且具有良好的电子传输性能,如TiO₂, ZnO等^[12-14].

DOI: 10.7498/aps.64.038403

钙钛矿层的形貌和结晶性直接影响到电荷的传输 与复合,进而影响电池光电转换效率^[15,16].

目前已报道有多种薄膜制备工艺技术, 宏观上 可分为一步法, 两步法等^[17-24]. 一步法主要有一 步溶液旋涂法、共蒸发法等; 两步法主要有浸泡法、 两步旋涂法、连续蒸发法等. 蒸发法是指将钙钛矿 前驱体 PbI₂和 CH₃NH₃I(MAI)蒸镀到基底上, 然 后两者固相反应生成钙钛矿薄膜^[20]. 这种方法所 成薄膜均匀性和结晶性都非常高. 但是由于该方法 对仪器要求较高, 且参数要求控制精确. 两步旋涂 和浸泡法同样存在工艺上的复杂性, 需要控制的因 素较多. 而相对而言, 一步溶液法成本较低, 操作 简单, 有利于用于大规模制备^[25], 这也是目前应用 最多的成膜技术. 但目前所制备的钙钛矿薄膜的形 貌和结晶性受溶剂影响较大^[26,27], 而钙钛矿的形 貌和结晶性是制约光生载流子在钙钛矿材料中的 分离和传输的关键^[28-30]. 因此, 深入探讨钙钛矿

^{*} 国家自然科学基金(批准号: 51202266),山东省自然科学基金(批准号: ZR2013FZ001)和青岛市应用基础研究基金(批准号: 14-2-4-8-jch)资助的课题.

[†]通信作者. E-mail: pangsp@qibebt.ac.cn

[‡]通信作者. E-mail: cuigl@qibebt.ac.cn

^{© 2015} 中国物理学会 Chinese Physical Society

从不同溶剂中结晶的机理,有助于揭示溶剂在钙钛 矿成膜过程中的作用,这将为进一步优化一步溶液 法成膜工艺提供必要的理论指导.

本文选用*N*, *N*-二甲基甲酰胺(DMF)和丁 内酯(GBL)两种不同溶剂,配制了甲胺铅碘 (CH₃NH₃PbI₃)钙钛矿溶液,分别利用一步溶液 法制备了介孔钙钛矿太阳能电池器件,分别得到了 2.8%和10.1%的光电转换效率.使用扫描电子显 微镜(SEM)和高分辨透射电子显微镜(HRTEM) 深入研究了溶剂对其成膜性和结晶性的影响.结合 X射线衍射(XRD)和紫外可见吸收光谱(UV)测 试,分析了溶剂分子跟Pb²⁺离子的配位作用在钙 钛矿的溶解、析出过程中的作用.

2 实验部分

2.1 碘化甲胺 (MAI) 的合成

碘化甲胺使用甲胺水溶液和氢碘酸反应制得. 在量筒中量取甲胺醇溶液15 mL(27%,0.078 mol), 量取氢碘酸12.5 mL(45%,0.066 mol),甲胺醇溶液 稍过量是为了保证氢碘酸完全反应.将三口烧瓶置 于冰浴中,使用注射器依次将甲胺醇溶液和氢碘酸 溶液注入三口烧瓶内并持续搅拌半小时.反应过 程中持续通入N2气以保证瓶内的惰性气氛.反应 完全后,溶液呈淡黄色.将溶液转移至旋转蒸发仪, 使用60°C水浴旋蒸.旋蒸过程中会析出白色晶体, 持续旋蒸至瓶内有大量黄白色晶体生成.可在瓶内 加入少量的无水乙醇,以加快溶剂挥发速度.产物 不可完全蒸干,当瓶内有极少量溶剂残余时,应结 束旋蒸.使用大量的无水乙醚抽滤清洗旋蒸产物, 至黄白色产物变成白色.将白色产物放入60°C真 空烘箱烘干12 h,得到白色粉末,即碘化甲胺.

2.2 甲胺铅碘钙钛矿的合成

称取等摩尔比的 PbI₂ 和 MAI, 加入 DMF 溶液 并搅拌 1 h, 获得 40 wt% 的钙钛矿 DMF 溶液. 称取 等摩尔比的 PbI₂和 MAI, 加入 GBL 溶液, 加热至 60 °C 并搅拌 1 h, 获得 40 wt% 的钙钛矿 GBL 溶液.

2.3 器件制备

甲胺铅碘钙钛矿电池在 FTO 玻璃基底上制备. 基底使用锌粉和 3% 的盐酸水溶液刻蚀, 然后依次 使用去离子水,丙酮和无水乙醇超声清洗并干燥. 约30 nm 厚的 TiO2 致密层由 TiO2 凝胶在 550 °C 空气中煅烧0.5 h制得. TiO2 凝胶的制备采用报道 过的方法^[31].在致密层上旋涂稀释的商业TiO₂浆 料(用无水乙醇稀释2.5倍),在550°C空气中煅烧 半小时制得约500 nm 厚的 TiO₂ 介孔层.在 TiO₂ 介孔层上使用 4000 r/min 旋涂甲胺铅碘的 DMF 溶 液,并在手套箱内100°C加热0.5h得到黑色的钙 钛矿薄膜.在TiO2介孔层上使用4000 r/min旋涂 加热的甲胺铅碘的GBL溶液(60°C),并在手套箱 内100°C加热1h得到黑色的钙钛矿薄膜.得到 的薄膜一部分进行 XRD, SEM, HRTEM 和 UV 测 试. 另一部分组装成完整的电池, 空穴传输层采用 了 spiro-MeOTAD 的氯苯溶液 (掺杂了叔丁基吡啶 tBP 和二(三氟甲基磺酰)锂 Li-TFSI), 3000 r/min 旋涂后在空气中暴露氧化12 h. 之后在空穴传输层 上蒸镀约100 nm 厚的 Ag 电极.

2.4 测试及表征

XRD图谱在室温下使用Bruker-AXS衍射仪 进行测试. UV测试使用Hitachi U-4100测试仪. SEM图像使用Hitachi S-4800扫描电镜获得. *J-V* 特性曲线使用Keithley 2400系列测试仪测试,太 阳光模拟器使用AM 1.5G滤光片,采用光功率计 标定光强为100 mW/cm². 钙钛矿电池的标准面积 是 0.16 cm². 钙钛矿层的制备及退火是在手套箱内 完成的,后续操作在空气中进行,相对湿度控制在 40%以下.

3 结果与讨论

3.1 钙钛矿层的形貌及电池效率

钙钛矿溶液在介孔层上成膜的形貌如图1所示.图1(a)是钙钛矿DMF溶液4000 r/min 旋涂 并在手套箱中100°C退火30 min后的表面形貌. 钙钛矿在介孔层表面形成了一层非常不均匀的 覆盖(capping)层,该层由许多长度3—5 µm,宽度 0.5—1 µm的针状晶体组成,介孔层有大量的裸露. 在更大的放大倍数下(图1(b))可以看到,针状晶体 的分布无序,且长度和宽度有明显的差异.而且晶 体的表面粗糙,尖端有明显劈裂的现象.视野中裸 露的介孔层可以清晰的看出TiO₂颗粒.进一步从 截面(图1(c))中可以看出,针状晶体的厚度约200 nm,其实际上是一种带状结构.而且部分晶体处于 悬空状态.在介孔层中,TiO₂颗粒之间有明显的缝 隙,说明大部分区域没有钙钛矿的填充.因而总体 来讲钙钛矿 DMF 溶液在介孔层上成膜的均匀性和 对介孔层的填充较差,这不利于载流子在其内部长 距离传输^[32].

图1(d), (e) 是不同放大倍数下钙钛矿 GBL 溶 液 4000 r/min 旋涂并在手套箱中100°C 退火30 min 后的表面形貌.介孔层表面的 capping 层由一 系列独立的岛状钙钛矿晶体组成,岛中间区域颜色 明显较边缘更深,说明表面中间区域的厚度更厚. 岛之间是 TiO₂介孔层结构,TiO₂颗粒之间被钙钛 矿完全填充,没有明显的缝隙结构.岛状的钙钛矿 capping 层分布均匀,表面相对平滑,其表面在高倍 图像中能清晰的观察到台阶状结构,表明其具有良 好的结晶性.从截面(图1(f))中进一步观察到,其 在介孔层上形成了厚度均匀的 capping 层,厚度约 200 nm.在TiO₂介孔层的内部,钙钛矿填充密实, 钙钛矿和TiO₂颗粒接触良好.

除了钙钛矿的形貌,其结晶性是影响载流子传

输路径的另一关键因素,有序规则的晶格排列必然 有利于载流子长距离的传输而不被复合. 我们发 现,不同的溶剂体系在影响钙钛矿形貌的同时,也 决定着钙钛矿的结晶性.为了减小制样过程中水汽 的影响,采用直接在铜网表面制备钙钛矿薄膜的技 术. 首先将钙钛矿 DMF 溶液和 GBL 溶液分别滴加 到铜网上, 快速旋干. 然后转移到烘箱中100°C加 热半小时.这样尽量模拟钙钛矿在介孔TiO2上成 膜的过程,尽可能的保证了所得图像能够真实的反 应电池中钙钛矿层的信息. 图2为不同溶剂制备的 钙钛矿薄膜的高分辨图像.图2(a)是钙钛矿DMF 溶液成膜的高分辨图像.视野中可以看到相对一 致、有序的晶向,表明薄膜结晶性较好,但是从图中 可以明显的观察到位错缺陷的存在,这些缺陷的产 生可能跟图1中劈裂现象的成因一致,这种缺陷的 存在将不利于载流子的传输并增大电子和空穴的 复合概率. 图2(b)是钙钛矿GBL溶液所成薄膜的 高分辨图像. 其结晶性也很高, 且视野中没有明显 的缺陷. 表明GBL溶液成膜的缺陷浓度明显低于 DMF 溶液.

图 1 钙钛矿 DMF 溶液 (a), (b), (c) 和钙钛矿 GBL 溶液 (d), (e), (f) 在介孔层上旋涂的表面和截面形貌

图 2 钙钛矿 DMF 溶液 (a) 和钙钛矿 GBL 溶液 (b) 成膜的高分辨图像

038403-3

在上述钙钛矿薄膜的基础上,旋涂spiro-MeOTAD, 并蒸镀Ag电极, 组装成电池. 具体操 作步骤如实验部分所描述. 电池 J-V 曲线如图 3 所 示. 使用GBL溶剂制备的电池效率高达10.1%. 开路电压 (V_{OC}) 为 0.85 V, 短路电流 (I_{sc}) 为 20.5 mA/cm²,填充因子(FF)为0.58(图3红线),而使用 DMF 溶剂制备的电池效率仅有 2.8%, Voc 为 0.75 V, I_{sc}为10.3 mA/cm², FF为0.37(图3黑线). 这 充分体现了钙钛矿薄膜均匀性和结晶性对电池效 率的重要影响,钙钛矿的GBL溶液制备的薄膜均 匀性高,裸露的介孔TiO2较少,从而防止ETL和 HTL直接接触造成的电荷复合^[15],所以使用GBL 溶液制备的电池开路电压明显高于使用 DMF 溶液 制备的电池, 高的薄膜均匀性也可以减少孔洞结 构存在导致的散射和透光问题,提高薄膜的吸光 率,进而提高电池的 I.e.. 使用 GBL 溶剂制备的钙 钛矿薄膜缺陷浓度低,可以提高电荷在薄膜中的 传输效率,也能起到减少电荷复合的作用.钙钛矿 GBL溶液所成薄膜在介孔TiO2中的填充性较好, 有利于光生电子快速的被收集并传输到电极处 [9], 从而降低了电荷复合及接触电阻[33],这也是使 用GBL溶剂制备的电池的Voc, Isc 及FF 较高的 原因之一.

图 3 介孔结构钙钛矿薄膜电池的电流-电压曲线 (红线是 使用 GBL 溶剂制备的电池, 黑线是使用 DMF 溶剂制备 的电池)

3.2 钙钛矿在不同溶液中的析出过程研究

基于对使用不同溶剂的钙钛矿溶液的成膜性 研究,我们认为钙钛矿的DMF溶液成膜的形貌和 结晶性与钙钛矿GBL溶液有着显著差异,这是由 于甲胺铅碘钙钛矿从两种溶剂中结晶析出的过程 不同所造成的.

为了研究不同溶剂中,加热对钙钛矿结晶的

影响,首先研究了钙钛矿前驱体在DMF,GBL中 的溶解和析出特性.分别配置了钙钛矿DMF溶液 和钙钛矿GBL溶液.在常温下,钙钛矿DMF溶液 液(40 wt%)是黄色悬浊液,有白色的不溶物悬浮 (图4(a)左),当将样品瓶放入烘箱中加热至80°C 时,黄色悬浊液变成棕黄色溶液(图4(a)右).钙钛 矿GBL溶液在常温下有大量白色沉淀,但烘箱加 热至60°C后沉淀消失,变成黄色澄清溶液,继续 加热至80°C后,溶液中有黑色沉淀析出(图4(b) 右).黑色沉淀是钙钛矿单晶.

图 4 钙钛矿 DMF 溶液 (a) 和钙钛矿 GBL 溶液 (b) 加热 前后对比图

钙钛矿前驱体在溶液中的溶解是一个复杂的 过程,具体机理尚未有明确解释.总体上,钙钛 矿溶解度大小跟Pb²⁺离子与溶剂分子、MAI的配 位作用强弱密切相关.实验表明,常温下PbI₂在 DMF 溶剂中可以溶解,而加热至 60°C时,PbI₂在 DMF 中的溶解度最高可达 30 wt% 左右.而无论是 否加热,GBL 溶剂都不能单独的溶解 PbI₂.这充 分证明了 Pb²⁺离子与 DMF 分子的配位作用远高 于 GBL 分子.加热温度达到 80°C时,PbI₂,MAI 的 DMF 溶液没有太大变化,而在 GBL 溶剂中,黑 色 MAPbI₃ 晶体析出,说明在高温下,由于 MAI 跟 PbI₂ 的相互作用加强,使溶剂 GBL 分子从 Pb²⁺ 离子上脱离,最终形成 MAI 跟 PbI₂ 组成的钙钛矿 结构.

钙钛矿薄膜在空气中很不稳定, 受空气中H₂O 和O₂的影响容易分解, 使得 XRD 图谱中出现一些杂质的峰.为了尽量减少空气对薄膜的影响, XRD 样品和 UV 样品全部在手套箱中制备, 之后放入石 英盒中密封测试.同时, 保证测试环境的相对湿度 小于 40, 且样品在制备完成后 10 min 内即完成测试, 以确保所得结果的准确性.

钙钛矿 DMF 溶液旋涂薄膜, 经过 30 s 的旋涂, 游离态 DMF 溶剂分子基本可完全挥发, 然而薄膜 颜色较浅, 这表明薄膜中并没有钙钛矿晶体或钙钛

图 5 钙钛矿 DMF 溶液 (a, b) 和钙钛矿 GBL 溶液 (c, d) 在介孔 TiO₂ 基底上旋涂薄膜的 XRD 图谱及紫外吸收图 谱 (钙钛矿晶体的峰用虚线标出)

矿含量很低.图5(a)中黑色图谱是钙钛矿DMF溶 液旋涂后未加热的XRD图谱,红色图谱是旋涂完 后在手套箱中100°C加热0.5h后的钙钛矿薄膜的 XRD 图谱. 位于14.17°, 28.49°和43.27°的峰分别 对应(110),(220)和(330)晶面,这三个峰的存在表 明了钙钛矿结构的存在^[34].而其相对强弱则可以 从一定程度上反映出薄膜中钙钛矿结构的含量.对 比发现, 未加热的薄膜中属于钙钛矿结构的峰很 弱,说明薄膜中没有钙钛矿或者已经转化的钙钛矿 仅占很小一部分. 图谱中10°之前有三个较强的 峰, 推测是PbI₂, MAI和残余DMF分子的三元体 系,该膜的红外光谱也显示确有DMF的存在.这 说明三者存在较强的相互作用,形成层状的金属有 机框架(MOF)结构,造成骨架结构的面间距较大. 实验证明, 薄膜在手套箱中放置较长时间 (3-5 h) 后,颜色会逐渐加深,这表明在常温情况下,这种 MOF结构是不稳定的, 会逐渐的向钙钛矿结构转 变. 经过100°C加热退火, 薄膜的颜色迅速的由红 棕色变成黑色. 加热过程中包含了残余溶剂分子挥 发和形成钙钛矿晶体两个过程. XRD 图谱(图5(a) 红线)10°之前的三个峰消失,代表钙钛矿结构的峰 则均有不同程度的加强,这表明经过退火处理,溶 剂分子完全挥发, MOF结构均转化成钙钛矿结构. 紫外吸收图谱(图5(b))的结果与XRD结果可以很 好地对应. 黑线是没有加热的薄膜的紫外吸收, 红

线是在手套箱中经过100°C加热0.5h后的紫外吸收.加热后的薄膜的吸收光谱从770nm开始吸收明显变强,这与文献报道的钙钛矿紫外吸收谱一致^[35],说明加热后薄膜完全转化成钙钛矿.而黑线光谱在770nm处没有明显的台阶,表明未经过退火处理的薄膜中没有钙钛矿结构或钙钛矿结构含量过少.

图 5 (c) 是钙钛矿 GBL 溶液旋涂薄膜经过退火的 XRD 图谱. 图谱中峰的位置和相对强度都表明 薄膜完全转化成钙钛矿. 而紫外吸收图谱 (图 5 (d)) 也证明钙钛矿的存在. 钙钛矿 GBL 溶液并没有类 似 DMF 溶液的中间过程, 是因为当 GBL 溶剂挥发 完全时, 钙钛矿相直接析出结晶.

3.3 机理解释

基于上述实验现象,我们提出了如下机理来 解释钙钛矿在DMF溶液和GBL溶液中的不同结 晶行为.如图6所示,整个过程可以分成三个步 骤.初始状态(图6(a)),等摩尔比的PbI₂和MAI 无序的分散在DMF或者GBL中,溶液呈黄色.对 于DMF而言,室温下旋涂结束后(图6(b)),绝大部 分溶剂分子挥发到了周围气氛中.PbI₂组成共边 的[PbI₆]⁴⁻八面体层.层间分布着MAI和残余的 DMF分子.三者共同作用形成PbI₂·MAI·DMF层 状MOF结构.由于PbI₂与DMF分子间配位作用 较强,所以DMF分子的存在阻止了PbI₂和MAI 反应生成钙钛矿,因而此时薄膜颜色较浅.经 过100°C退火处理0.5h(图6(c)),DMF分子从 层间逸出导致MOF结构坍塌,PbI₂和MAI生成 MAPbI₃钙钛矿.DMF分子的逸出必然导致了原 有结构的体积收缩,使得最终形成的钙钛矿晶体 在介孔TiO₂中的填充度较低.而电镜图片中观察 到的带状晶体表面粗糙(图1(b))以及错位、劈裂 (图1(b)、图2(a))等缺陷,也是在DMF的逸出过 程中产生的.

对于GBL而言,由于GBL沸点较高,室温旋 涂钙钛矿GBL溶液无法旋干(图6(d)).薄膜中含 有大量的GBL分子, PbI₂和MAI在其中无序分布, 与在溶液中的分布类似.在100°C退火过程中,由 于GBL跟PbI₂之间的配位作用相对较弱,在高温 下PbI₂和MAI的相互作用占主导,两者直接生成 钙钛矿结构,因而从溶液中逐渐析出并反应生成钙 钛矿晶体(图6(e)).钙钛矿从GBL溶液中析出时 晶体结构受溶剂的作用较小,因此钙钛矿的结晶性 较高.析出的钙钛矿晶体位置随机,其可以充当形 核中心,后续的晶体将围绕这个中心逐渐向四周生 长,形成图1(d)中所示的中间厚四周薄的圆形岛 状结构.钙钛矿晶体在逐渐生长的过程中可以实现 对介孔TiO₂的有效填充,并使得最终形成的薄膜 中缺陷浓度较低.

图 6 钙钛矿在 DMF 溶液和 GBL 溶液中结晶过程的机理图

4 结 论

本文选择了最有代表性的DMF和GBL两种 溶剂,来研究钙钛矿从不同溶剂中析出结晶行 为.在介孔TiO₂上旋涂了钙钛矿薄膜,利用电镜 分析、对比了两种不同溶液所成薄膜均匀性和 结晶性的差异.使用致密TiO₂/介孔TiO₂/钙钛 矿/spiro-MeOTAD/Ag结构组装电池,分别获得 了2.8%(DMF)和10.1%(GBL)的电池效率.结合 XRD和UV图谱,详细说明了钙钛矿在旋涂和退火 工序中的转化过程.最终,提出了钙钛矿在DMF 和GBL两种溶液中不同的结晶过程机理.这种机 理很好的契合了实验现象,解释了利用DMF溶剂 和GBL溶剂旋涂的钙钛矿薄膜在形貌和结晶性上 的巨大差异.

参考文献

- [1] Hodes G, Cahen D 2014 Nature Photon. 8 87
- [2] Akihiro Kojima K T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050
- [3] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542
- [4] Singh S P, Nagarjuna P 2014 Dalton Trans.43 5247
- [5] Chung I, Lee B, He J, Chang R P, Kanatzidis M G 2012 Nature 485 486
- [6] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651
- [7] Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901
- [8] Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B, Spiccia L 2014 Angew. Chem. Int. Ed. 26 1
- [9] Juarez-Perez E J, Wu ler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680

- [10] Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277
- [11] Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q, Li X 2014 Chem. Commun. 50 6931
- [12] Lindblad R, Bi D, Park B, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J, Rensmo H 2014 J. Phys. Chem. Lett. 5 648
- [13] Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089
- [14] Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396
- [15] Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151
- [16] Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250
- [17] Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. 49 7893
- [18] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316
- [19] Chen Q, Zhou H, Hong Z, Luo S, Duan H, Wang H H, Liu Y, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622
- [20] Liu M, Johnston M B, Snaith H J 2013 Nature 501 395
- [21] Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interfaces 6 9711
- [22] Lv S, Pang S, Zhou Y, Padture N P, Hu H, Wang L, Zhou X, Zhu H, Zhang L, Huang C, Cui G 2014 *Phys. Chem. Chem.* **Phys.16** 19206

- [23] Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P, Cui G 2014 RSC Adv. 4 28964
- $[24]\,$ Zhao Y, Zhu K2014 J. Phys. Chem. C $\mathbf{118}$ 9412
- [25] Matteocci F, Razza S, Di Giacomo F, Casaluci S, Mincuzzi G, Brown T M, D'Epifanio A, Licoccia S, Di Carlo A 2014 Phys. Chem. Chem. Phys. 16 3918
- [26] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nature Mater. 13 897
- [27] Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727
- [28] Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J-E 2014 Nature Photon. 8 250
- [29] Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 *Nature Commun.* 4 2242
- [30] Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S, Barea E M, Fabregat-Santiago F, Mora-Sero I, Bisquert J 2014 Nano lett. 14 888
- [31] Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu
 H, Liu Z, Cui G 2014 *Chem. Mater.* 26 1485
- [32] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
- [33] Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin M K, Grätzel M 2014 J. Am. Chem. Soc. 8 362
- [34] Conings B, Baeten L, De Dobbelaere C, D' Haen J, Manca J, Boyen H G 2013 Adv. Mater. 26 2041
- [35] Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S 2014 Angew. Chem. 53 2812

SPECIAL ISSUE—New generation solar cell

Effect of solvent on the perovskite thin film morphology and crystallinity^{*}

Wang Dong¹⁾²⁾ Zhu Hui-Min²⁾ Zhou Zhong-Min²⁾ Wang Zai-Wei¹⁾²⁾ Lü Si-Liu²⁾ Pang Shu-Ping^{2)†} Cui Guang-Lei^{2)‡}

1) (University of Chinese Acadmy of Sciences, Beijing 100049, China)

2) (Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Acadmy of Sciences, Qingdao 266000, China)
 (Received 20 October 2014; revised manuscript received 23 November 2014)

Abstract

Due to their high efficiency and low cost, organic-inorganic hybrid perovskite solar cells are attracting growing interest recently. For the most commonly studied perovskite CH₃NH₃PbI₃, optimization of the morphology and crystallinity of CH₃NH₃PbI₃ thin films can greatly improve the efficiency of perovskite solar cells. A homogenous and uniform perovskite film can prevent direct contact between the hole transport layer and the electron transport layer, and thus can significantly reduce charge recombination. And the high crystallinity perovskite film facilitates fast charge transportation and injection. Various studies have proved that solvent has a critical influence on both the morphology and the crystallinity of perovskite thin films. In this work, we thoroughly studied the influence of the normally used N, N-Dimethylformamide (DMF) and r-butyrolactone (GBL) solvents on perovskite morphology, crystallinity, as well as the solar cells efficiency. When using DMF as the solvent, the efficiency is only 2.8%, while the efficiency of the cell obtained based on GBL can reach 10.1%. SEM and HRTEM are employed to study the morphology and crystallinity of these two kinds of perovskite films. The perovskite film prepared using solvent DMF shows a rough capping layer consisting of strip-like perovskite crystals, and the filling of meso- TiO_2 is poor. Compared with DMF, the GBL perovskite film shows a better capping layer structure consisting of large perovskite domains, and the filling of meso- TiO_2 is improved as well. This great difference in capping layer morphology and meso- TiO_2 filling is one reason for the different performance. Besides morphology, different defect concentrations in these two kinds of perovskite films are another crucial issue. By Combined XRD and UV techniques, the mechanisms how perovskite precipitats from DMF and GBL solutions can be disclosed. In DMF, because of its low spoiling point of 153 °C, most of DMF solvent volatilize by spin-coating, and an intermediate MOF structure of PbI₂: MAI: xDMF is formed. During thermal annealing, the unstable MOF structure breaks down and a large amount of dislocations form in perovskite films, which highly restrict the charge transport. However, the spoil point of GBL (206 °C) is higher than that of DMF, which makes it hard to be fully volatilized by spin-coating. During the following thermal treatment, the solubility of perovskite is lowered with increasing temperature. So perovskite crystallites precipitate from the GBL first and then gradually grow up with the volatilization of the excess solvent. We finally find that coordination between the solvent and the PbI_2 plays a big role on the morphology and the crystallinity of the solution-processed perovskite film, and this is responsible for the difference of the device performance.

Keywords: perovskite solar cells, solvent, coordination

PACS: 84.60.Jt, 85.30.-z, 61.46.-w, 81.07.Bc

DOI: 10.7498/aps.64.038403

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51202266), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FZ001), and the applied fundamental research Program of Qingdao, China (Grant No. 14-2-4-8-jch).

[†] Corresponding author. E-mail: pangsp@qibebt.ac.cn

[‡] Corresponding author. E-mail: cuigl@qibebt.ac.cn