物理学报 Acta Physica Sinica

自辐射场下 UN_2 分子的光谱研究

谢安东 谢晶 周玲玲 伍冬兰 阮文 罗文浪

Spectrum of UN₂ under inner radiation fields

Xie An-Dong Xie Jing Zhou Ling-Ling Wu Dong-Lan Ruan Wen Luo Wen-Lang

引用信息 Citation: Acta Physica Sinica, 64, 063301 (2015) DOI: 10.7498/aps.64.063301 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.063301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I6

您可能感兴趣的其他文章 Articles you may be interested in

Voigt线形函数二阶导数研究

Second derivative of Voigt function 物理学报.2014, 63(22): 223301 http://dx.doi.org/10.7498/aps.63.223301

从头计算研究 BP 分子的势能曲线和光谱性质

Ab initio calculation of the potential energy curves and spectroscopic properties of BP molecule 物理学报.2014, 63(7): 073302 http://dx.doi.org/10.7498/aps.63.073302

多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质

Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS^+

物理学报.2013, 62(23): 233302 http://dx.doi.org/10.7498/aps.62.233302

超冷铯分子纯长程态转动常数的精密测量

Precise measurements of rotational constants of the pure long range state of ultracold cesium molecules 物理学报.2013, 62(22): 223301 http://dx.doi.org/10.7498/aps.62.223301

BP+基态和激发态的势能曲线和光谱性质的研究

Investigation on the potential energy curves and spectroscopic properties of the low-lying excited states of BP

物理学报.2013, 62(19): 193301 http://dx.doi.org/10.7498/aps.62.193301

自辐射场下 UN_2 分子的光谱研究*

谢安东1)† 谢晶2) 周玲玲1) 伍冬兰1) 阮文1) 罗文浪1)

(井冈山大学数理学院,吉安 343009)
 (西安科技大学电气与控制工程学院,西安 710054)
 (2014年9月26日收到;2014年10月26日收到修改稿)

对铀原子和氮原子分别使用相对论有效原子实势和 6-311+G(d) 基组,采用优选的密度泛函 B3P86 方法,研究了铀本身产生自辐射场 (-0.005—0.005 a.u.) 作用下 UN₂ 基态分子的能隙 E_g 和谐振频率 ν . 结果表明: UN₂分子在自辐射场中反对称伸缩振动频率 $\nu_3(\sigma_g)$ 和对称伸缩振动频率 $\nu_1(\sigma_g)$ 与实验值 1051.1 cm⁻¹和 1008.3 cm⁻¹基本符合; E_g 随自辐射场场强的增大而趋于减少,占据轨道的电子容易被激发至空轨道而形成激发态; UN₂分子在自辐射场中趋于不稳定, N₂, O₂等更容易扩散到表面内层而腐蚀铀表面,加剧了铀在自辐射场中的腐蚀.

关键词: UN₂, 自辐射场, 光谱 **PACS:** 33.20.-t, 31.15.ee

1引言

铀主要用于武器和能源材料中. 铀极易与O₂, H₂, H₂O, N₂和CO₂等物质发生反应, UN₂分子是 金属铀表面腐蚀的基本产物之一,并测定了部分光 谱数据^[1]. 通过实验获得UN₂分子光谱等更多的 数据有相当大的困难,其原因是铀的剧毒和高放射 性,且实验也难以得到单一稳定的UN₂分子. 然而, 这些数据对于铀材料的理论及防腐蚀都极其重要. 关于UN₂分子在自辐射场作用下的光谱研究未见 报道,研究自辐射场作用下UN₂分子的光谱对铀表 面的抗腐蚀性能研究有重要参考价值.

2 理论与计算方法

电场作用下分子体系哈密顿量 H 为

$$H = H_0 + H_{\text{int}},\tag{1}$$

其中, H₀为无电场时的哈密顿; H_{int} 为场与分子体系的相互作用哈密顿量.在偶极近似下, 分子体系

DOI: 10.7498/aps.64.063301

与电场 F 的相互作用能为

$$H_{\rm int} = -\mu \cdot F,\tag{2}$$

其中μ为分子偶极矩.

铀本身辐射 α , γ 等粒子,称自辐射.辐射场由 电场和磁场组成,电场占辐射场的94%,电场是磁 场的约100倍.因此可用电场模拟铀本身产生的自 辐射场^[2].

对铀化合物的理论研究表明,其价轨道的能量接近,电子数目多,交换作用比较复杂;相对论效应明显.基于相对论有效原子实势(relativistic effective core potential, RECP)近似下,用密度泛函理论方法可给出合理的结果,与实验结果符合甚好^[3].

UN₂分子为 $D_{\infty_h}(\tilde{X}^3\Sigma_u)$ 基态,按其标准坐标,U和N原子位于yz平面,沿z轴方向加上 一系列有限的辐射场(-0.005—0.005 a.u.,约 -2.5—2.5×10⁸ V·M⁻¹)(图1).本文采用优选的 B3P86 密度泛函方法,对U原子采用Hay和Martin提出78个中心电子的RECP^[3],N原子使用

* 国家自然科学基金(批准号: 11264020, 11364023)和江西省教育厅科技项目(批准号: GJJ11540)资助的课题.

© 2015 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: xieandongzhou@163.com

6-311+G(d) 全电子基函数, 研究自辐射场对 UN₂ 分子的光谱影响.

图1 无辐射场下优化的 UN₂ 基态 $D_{\infty h}(\widetilde{\mathbf{X}}^{3}\Sigma_{\mathbf{u}})$ 的分 子结构

3 结果与讨论

3.1 UN₂分子基态的稳定构型

以U原子的RECP(78电子)为基函数,N原 子为6-311+G(d)全电子基函数,分别选用HF, B3LYP,B3P86,B3PW91和MPW1PW91等方法 对UN₂基态分子进行优化计算,优化的平衡核间距 *R*₁,*R*₂,键角A,谐振频率*ν*与能量*E*列于表1. 从表1可以看出,B3P86方法优化出的 基态能量-161.545 a.u.为最低,平衡核间距 0.177 nm,键角180°;振动频率114.753,871.660 和926.429 cm⁻¹与实验值最为接近^[1].计算结果 表明 RECP和B3P86方法得到的理论结果符合实 验数据,其结果比较可信.因此,以下的计算选用 最佳方法B3P86/RECP/6-311+G(d)进行.

3.2 自辐射场对UN₂分子的能级和谐振频 率的影响

选用最佳方法B3P86/RECP/6-311+G(d), 沿 Z轴方向加上辐射场强度分别为: -0.005, -0.004, -0.003, -0.002, -0.001, 0, 0.001, 0.002, 0.003, 0.004 ± 0.005 a.u., 计算 UN₂ 分子的能隙 E_g 和谐 振频率 ν , 列于表2. UN₂分子在不同自辐射场下 的能隙 E_g 和谐振频率 ν 随自辐射场变化的规律如 图 2 和图 3 所示.

表1 不同方法优化 UN2 基态分子的结构参数和谐振频率

	$_{ m HF}$	B3LYP	B3P86	B3PW91	MPW1PW91	Exp. ^[1]
R_1/nm	0.173	0.179	0.177	0.177	0.177	—
R_2/nm	0.173	0.179	0.177	0.177	0.177	—
$A/(^{\circ})$	180.0	180.0	180.0	180.0	180.0	
$\nu_2(\pi_u)/cm^{-1}$	-1207.013	123.708	114.753	112.966	119.800	—
$\nu_1(\sigma_g)/cm^{-1}$	182.635	826.777	871.660	872.590	883.929	1008.3
$\nu_3(\sigma_g)/cm^{-1}$	1050.505	884.579	926.429	923.669	948.156	1051.1
$E/\mathrm{a.u.}$	-159.425	-160.978	-161.545	-160.979	-160.950	

表2 不同自辐射场下 UN₂ 分子基态最高占据轨道能级 $(E_{\rm H})$ 、最低空轨道能级 $(E_{\rm L})$ 、能隙和谐振频率

$F/\mathrm{a.u.}$	$E_{\rm H}/{\rm a.u.}$	$E_{\rm L}/{\rm a.u.}$	$E_{\rm g}/{\rm eV}$	$\nu_2(\pi_u)/cm^{-1}$	$\nu_1(\sigma_g)/cm^{-1}$	$\nu_3(\sigma_g)/cm^{-1}$
-0.005	-0.26950	-0.10319	4.5256	110.219	867.392	926.396
-0.004	-0.26950	-0.10314	4.5269	108.901	868.767	925.888
-0.003	-0.26950	-0.10310	4.5280	104.700	870.034	926.189
-0.002	-0.26950	-0.10307	4.5288	104.329	870.827	926.154
-0.001	-0.26949	-0.10305	4.5291	107.738	871.152	925.766
0	-0.26947	-0.10303	4.5291	114.753	871.660	926.429
0.001	-0.26949	-0.10303	4.5296	108.315	871.239	926.314
0.002	-0.26949	-0.10307	4.5286	108.978	870.643	925.799
0.003	-0.26950	-0.10308	4.5286	108.998	869.907	926.327
0.004	-0.26950	-0.10314	4.5269	109.019	868.787	925.888
0.005	-0.26950	-0.10319	4.5256	108.118	867.346	925.923
Exp. ^[1]	—	—	—	_	1008.3	1051.1

能隙 *E*g 的大小反映电子从占据轨道向空轨道 发生跃迁的能力,在一定程度上代表分子参与化学 反应的能力^[4,5].从表2和图2中可以看出,*E*g 随 自辐射场场强的增大而趋于减少,占据轨道的电子 容易被激发至空轨道而形成激发态.UN₂分子在 自辐射场中趋于不稳定,N₂,O₂等更容易扩散到 表面内层而腐蚀铀表面,加剧了铀在自辐射场中的 腐蚀.

图 3 谐振频率在自辐射场作用下的变化

从表2和图3中可以看出: 对弯曲振动频率 ν₂(π_u) 随场强的增强而减少, 对反对称伸缩振动频 率 $\nu_3(\sigma_g)$ 和对称伸缩振动频率 $\nu_1(\sigma_g)$ 随场强的增强而增大. UN₂分子在自辐射场中反对称伸缩振动频率 $\nu_3(\sigma_g)$ 和对称伸缩振动频率 $\nu_1(\sigma_g)$ 与实验值1051, 1008 cm⁻¹随场强的增大趋于符合.

4 结 论

本文采用优选的B3P86/RECP/6-311+G(d) 方法,得到了用电场模拟铀本身产生自辐射场 (-0.005—0.005 a.u.)作用下UN₂分子的能隙 E_g 和 谐振频率 ν .得到如下结论:

1) UN₂分子在自辐射场中反对称伸缩振动 频率 $\nu_3(\sigma_g)$ 和对称伸缩振动频率 $\nu_1(\sigma_g)$ 与实验值 1051 cm⁻¹和1008 cm⁻¹随场强的增大趋于符合, 说明采用优选的方法可信度大,以此方法计算UN₂ 分子在自辐射场中的其他参数有参考价值;

2) Eg随自辐射场场强的增大而趋于减少,占据轨道的电子容易被激发至空轨道而形成激发态, UN2分子在自辐射场中趋于不稳定,N2,O2等更容易扩散到表面内层而腐蚀铀表面,加剧了铀在自辐射场中的腐蚀.

参考文献

- Rodney D H, Jason T Y, Lester A 1993 J. Chem. Phys. 98 6070
- [2] Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L
 2014 J. At. Mol. Phys. 31 521 (in Chinese) [谢安东, 谢
 晶,周玲玲, 伍冬兰, 阮文, 罗文浪 2014 原子与分子物理学
 报 31 521]
- [3] Hay P J, Martin R L 1998 J. Chem. Phys. 109 3875
- [4] Xu G L, Liu Y F, Sun J F, Zhang X Z, Zhu Z H 2007 *Acta Phys. Sin.* 56 5704 (in Chinese) [徐国亮, 刘玉芳, 孙金锋, 张现周, 朱正和 2007 物理学报 56 5704]
- [5] Li P, Jia T T, Gao T, Li G 2012 Chin. Phys. B 21 043301

Spectrum of UN_2 under inner radiation fields^{*}

Xie An-Dong^{1)†} Xie Jing²⁾ Zhou Ling-Ling¹⁾ Wu Dong-Lan¹⁾ Ruan Wen¹⁾ Luo Wen-Lang¹⁾

1) (School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China)

2) (School of Electrical and Control Engineering, Xi'an University of Science and Technology, Xi'an 710054, China)

(Received 26 September 2014; revised manuscript received 26 October 2014)

Abstract

A density functional method DFT/B3P86 with relativistic effective core potential basis for U and 6-311+G(d) basis for N is used to study the energy gap and harmonic frequency of UN₂ ground state molecule under the action of the uranium-produced spontaneous radiation fields ranging from -0.005 to 0.005 a.u.. The results show that UN₂ has an anti-symmetry expansion vibrational frequency ν_3 (σ_g) that is close to experimental value 1051.1 cm⁻¹ under the action of different spontaneous radiation fields, and a symmetrical expansion vibrational frequency $\nu_1(\sigma_g)$ that is close experimental value 1008.3 cm⁻¹. The energy gap is found to decrease with increasing the spontaneous radiation field. The electron which occupies an orbital is easy to excite to empty orbital and transform into an excited state. The UN₂ molecule turns unstable in the spontaneous radiation field; N₂, O₂ and others more easily diffuse into the surface interior, thus corroding the uranium surface and aggravating the corrosion of uranium in the spontaneous radiation field.

Keywords: UN₂, inner radiation fields, spectrum **PACS:** 33.20.–t, 31.15.ee

DOI: 10.7498/aps.64.063301

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11264020, 11364023), and the Scientific Research Program of the Education Bureau of Jiangxi Province, China (Grant No. GJJ11540).

[†] Corresponding author. E-mail: xieandongzhou@163.com