物理学报 Acta Physica Sinica

非简谐振动对石墨烯杨氏模量与声子频率的影响 程正富 郑瑞伦

Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene

Cheng Zheng-Fu Zheng Rui-Lun

引用信息 Citation: Acta Physica Sinica, 65, 104701 (2016) DOI: 10.7498/aps.65.104701 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.104701 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I10

您可能感兴趣的其他文章 Articles you may be interested in

高压下 γ' -Fe₄N晶态合金的声子稳定性与磁性

Phonon stability and magnetism of γ '-Fe₄N crystalline state alloys at high pressure 物理学报.2015, 64(15): 156301 http://dx.doi.org/10.7498/aps.64.156301

高压下有序晶态合金 Fe₃Pt的低能声子不稳定性及磁性反常

Low energy phonon instabilities and magnetic abnormalities in ordered crystalline state alloys of Fe₃Pt at high pressure 物理学报.2015, 64(14): 146301 http://dx.doi.org/10.7498/aps.64.146301

氘、氦及其混合物状态方程第一原理研究

Study of the equation of states for deuterium helium and their mixture 物理学报.2015, 64(9): 094702 http://dx.doi.org/10.7498/aps.64.094702

石墨烯的声子热学性质研究

Study on thermal characteristics of phonons in graphene 物理学报.2014, 63(15): 154704 http://dx.doi.org/10.7498/aps.63.154704

非简谐振动对石墨烯杨氏模量与声子频率的影响*

程正富 郑瑞伦

(重庆文理学院电子电气工程学院,重庆 402160)

(2016年1月5日收到; 2016年2月19日收到修改稿)

在哈里森键联轨道法框架下,考虑到原子的短程相互作用和原子的非简谐振动,应用固体物理理论和方法,得到了石墨烯的力常数、杨氏模量、扭曲模量、泊松系数以及声子频率随温度的变化关系,探讨了非简谐振动对它们的影响.结果表明:1)杨氏模量与声子频率等随温度变化并遵从一定的规律,其中力常数、杨氏模量、扭曲模量随温度升高而增大,但变化较小;声子频率随温度升高而增大但变化较快;泊松系数随温度升高而较快地减小;2)石墨烯原子具有沿键长方向的纵振动和垂直键长方向的横振动,但以纵振动为主,纵振动的非简谐效应远大于横振动,横振动的简谐系数 ε'_0 和第二非谐系数 ε'_2 均小于纵振动的相应值 $\varepsilon_0, \varepsilon_2$;比值为 $\varepsilon_0/\varepsilon'_0 \approx 8.477, \varepsilon_2/\varepsilon'_2 \approx 156;3)若不考虑非简谐振动项,则石墨烯的力常数、杨氏模量和扭曲模量、泊松系数、声子频率均为常量,与实验不符合;同时考虑到原子的第一、二非简谐振动项后,它们均随温度升高而变化,而且温度愈高,原子振动的非简谐效应愈显著.本文的结果与文献的实验结果符合较好.$

关键词:石墨烯,非简谐效应,杨氏模量,声子频率 **PACS:** 47.11.Mn, 63.20.-e, 63.22.Rc, 65.80.Ck

DOI: 10.7498/aps.65.104701

1引言

自2004年Novoselov等首次用机械剥离法得 到单原子厚的石墨烯以来,由于它具有优异的电 学、力学和热学性质以及广泛的应用前景,已成为 当今国际科技研究前沿之一,目前已有不少文献对 它的制备、性质等进行了研究^[1-3].文献[4]用化 学气相沉积制备了石墨烯并对电学性质进行了实 验研究.在理论上,文献[5]用分子动力学研究了 石墨烯的输运性质.文献[6]利用第一性原理,研 究了掺杂六角形石墨烯电子输运性质,发现负微分 电阻现象.文献[7]对SiC(0001)外延生长石墨烯的 调制掺杂和界面磁性进行了研究.文献[8]用分子 动力学方法,研究了不同堆积方式的多层石墨烯在 不同温度下的表面起伏.在吸附性能上,文献[9] 基于密度泛函理论的投影缀加波法研究了Au,Ag, Cu 吸附在缺陷石墨烯单侧和双侧体系的吸附能和 电子结构. 2011年 Davydov 和 Subinova^[10] 提出了 一种石墨烯态密度简化模型(简称M-模型), 2015 年他们又对无定形石墨烯的吸附和态密度做了论 述^[11]. 至今人们对石墨烯电学等性质研究较多, 而 对它的热力学性质研究较少,至于它的非简谐特征 则才开始研究. 对明显非简谐特征的热膨胀现象, 文献 [12-15] 在简谐近似下, 分别利用密度泛函理 论、蒙特卡罗方法、非平衡格林函数法、基于第一 性原理的分子动力学,对石墨烯的热膨胀现象进行 研究,求出线膨胀系数,理论结果与文献[16]给的 实验值有不同程度的误差.为使理论更接近实验, 2011年文献 [17] 采用哈里森键联轨道法, 在只计及 第一非简谐项和忽略短程原子互作用情况下,对石 墨烯的热膨胀系数作了计算,结果得到的线膨胀系 数不仅误差较大, 而且总为负值. 对另一个具有明 显非简谐特征而有重要应用价值的弹性模量, 文 献[17]的计算结果为常量.上述研究给出了在某温 度这些量的值,反映不出这些量随温度变化的规律

* 国家自然科学基金(批准号: 11574253)和重庆市基础与前沿研究项目(批准号: cstc2015jcyjA40054)资助的课题.

© 2016 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: zhengrui@swu.edu.cn

和原子振动的非简谐特征,而且对杨氏模量与声子 频率等这些具有重要理论和应用意义的量的变化 规律未涉及.鉴于石墨烯这些热力学量随温度变化 规律和原子振动非简谐效应的重要性,本文将在考 虑到短程原子互作用和原子振动的第一、二非简谐 项的情况下,研究石墨烯的力常数、杨氏模量和扭 曲模量以及声子频率随温度的变化规律,分析石墨 烯形变特性和原子振动的非简谐效应.

2 物理模型和简谐系数与非简谐系数

我们研究的石墨烯是由 N 个碳原子构成的二 维六角格子平面系统,设平面为OXY 平面, Z 轴 垂直向上,坐标系选取如图1. 文献 [17] 用哈里森 键连轨道法,求出未考虑短程相互作用情况下,一 个原子的平均相互作用能. 文献 [18] 进一步考虑到 原子短程相互作用,将相互作用能写为

$$\varphi = -V_2 \left[1 + \frac{9R}{V_2 d^{12}} + 5\beta_2 \left(\frac{V_1}{V_2}\right)^2 \right], \quad (1)$$

式中的 V_2 为两原子的 sp^2 轨道 σ 键的共价能,它与原子间距离d的平方成反比

$$V_2 = 3.26 \frac{\hbar^2}{md^2} = \frac{B}{d^2}$$

这里m为自由电子的质量; V_1 为金属化能, $R = 0.154 \times 10^4 [\hbar^2/(2m)] a_0^{10}$, a_0 为玻尔半径.

图1 石墨烯的结构示意图

Fig. 1. The structural diagram of the graphene.

将 $\varphi(d)$ 在平衡位置 d_0 附近展开,偏离 $\delta = d - d_0$ 很小时,有

$$\varphi(\delta) = \varphi(d_0) + \frac{1}{2}\varepsilon_0\delta^2 + \varepsilon_1\delta^3 + \varepsilon_2\delta^4 + \cdots, \quad (2)$$

其中, ε_0 , ε_1 , ε_2 分别是简谐系数、第一和第二非简 谐系数. 由(1)式求得:

$$\varepsilon_{0} = \frac{4}{d_{0}^{2}} V_{2} \left[1 - \frac{10}{3} \left(\frac{V_{1}}{V_{2}} \right)^{2} \right],$$

$$\varepsilon_{1} = -\frac{16V_{2}}{3d_{0}^{3}} \left[1 - \frac{5}{3} \left(\frac{V_{1}}{V_{2}} \right)^{2} \right],$$

$$\varepsilon_2 = \frac{20V_2}{3d_0^4} \left[1 - \frac{1}{3} \left(\frac{V_1}{V_2} \right)^2 \right].$$
 (3)

3 石墨烯的力常数

文献 [19] 在分析金刚石弹性势的基础上, 给出石墨烯的形变势 φ_{e} 为

$$\varphi_{e} = 3|\phi_{0}| + |\varphi_{0}| \sum_{i=1}^{3} F(\boldsymbol{R}_{i}) \sum_{i,j

$$F(\boldsymbol{R}_{i}) = e^{-2\gamma (R_{i}^{2} - d^{2})/d^{2}} - 2 e^{-\gamma (R_{i}^{2} - d^{2})/d^{2}},$$

$$f(\boldsymbol{R}_{i}\boldsymbol{R}_{j}) = \frac{1}{3} e^{-\eta (R_{i}R_{j}\cos\theta_{ij} + \frac{1}{2}d^{2})/d^{2}},$$
(4)$$

其中, φ_0 是未形变时石墨烯一个键的键能, $R_i 和 r_i$ 分别是已形变和未形变时离原子0最近邻的第i个 原子的位矢, θ_{ij} 是两键之夹角, $\gamma 和 \eta$ 为形变参量. 由力常数的定义并结合图1, 求得力常数为^[19]:

$$C_{11} = \frac{|\varphi_0|}{\sqrt{3}d^3} \left(12\gamma^2 + \eta + \frac{54\gamma^2\eta}{12\gamma^2 + \eta} \right),$$

$$C_{12} = \frac{|\varphi_0|}{\sqrt{3}d^3} \left(12\gamma^2 + \eta - \frac{54\gamma^2\eta}{12\gamma^2 + \eta} \right),$$

$$C_{44} = \frac{|\varphi_0|}{\sqrt{3}d^3} \left(\frac{54\gamma^2\eta}{12\gamma^2 + \eta} \right).$$
(5)

考虑到原子的非简谐振动后,原子间距离d将不再是常数 d_0 ,变为 $d = d_o + \bar{\varsigma}$.温度不太高时的平均位移 $\bar{\varsigma}$ 与温度的关系为^[20]

$$\bar{\varsigma} = -\frac{3\varepsilon_1 k_{\rm B} T}{\varepsilon_0^2} \left[1 + \frac{3\varepsilon_2 k_{\rm B} T}{\varepsilon_0^2} + \left(\frac{3\varepsilon_2 k_{\rm B} T}{\varepsilon_0^2}\right)^2 \right].$$
(6)

由(6)式可求得在温度不太低和不太高时的线膨胀 系数 α₁为

$$\alpha_{1} = \frac{1}{d_{0}} \left[\frac{3\varepsilon_{1}k_{\rm B}}{\varepsilon_{0}^{2} - 3\varepsilon_{2}k_{\rm B}T} - \frac{9\varepsilon_{1}\varepsilon_{2}k_{\rm B}^{2}T}{(\varepsilon_{0}^{2} - 3\varepsilon_{2}k_{\rm B}T)^{2}} \right].$$
(7)

4 石墨烯的杨氏模量和扭曲模量

文献 [17] 给出石墨烯的弹性模量 *B* 与原胞面 积 $\Omega = (\sqrt{3}/2)d^2$ 的关系为 $B = \varepsilon_0 d^2/\Omega$,其中原子 间距 $d = d_0(1 + \alpha_1 T)$,由此得到弹性模量随温度的 变化为

$$B(T) = \frac{\varepsilon_0}{\Omega} [d_0(1 + \alpha_1 T)]^2.$$
(8)

杨氏模量*E*、扭曲模量*D*、泊松系数σ与力常数*C*₁₁, *C*₄₄的关系由下式表示^[21,19]:

$$E = \frac{9BC_{44}}{3B + C_{44}},$$

104701-2

$$\sigma = \frac{1}{2} \frac{(3B - 2C_{44})}{(3B + C_{44})},$$
$$D = \frac{Eh^3}{12(1 - \sigma^2)},$$
(9)

式中的h为单层石墨烯的厚度,理想情况下等于碳 原子的直径 $2r_0$.将(5),(7),(8)式代入(9)式,得到 E, D, σ 随温度的变化关系.可看出:简谐近似下, ($\varepsilon_1 = \varepsilon_2 = 0$), $\alpha_l = 0$,弹性模量、杨氏模量、扭曲 模量均为常量,非简谐效应使它们随温度而变.

5 石墨烯的声子频率

石墨烯的原子除沿键联方向作纵振动外,还会 沿垂直键联方向作横振动.前者表示键长的改变, 后者表示石墨烯绕垂直平面轴转动(图2).所以石 墨烯的形变既有沿键长方向的微小变化,又有绕垂 直轴的微小转动.描述纵振动的纵声子频率由描述 沿键长方向变化的简谐系数 ε_0 决定,而描述横振动 的横声子频率由绕轴旋转的简谐系数 ε'_0 决定,比值 描述了两种振动和形变的大小关系.当只有键长变 化时, $\varepsilon'_0 = 0$, $\varepsilon_0/\varepsilon'_0 = \infty$;若 $\varepsilon_0 > \varepsilon'_0$,属于键长变 化为主的形变;若 $\varepsilon_0 < \varepsilon'_0$,属于旋转为主的形变.

图 2 石墨烯原子的纵振动 (a) 和横振动 (b) Fig. 2. The longitudinal vibration (a) and the transverse vibration (b) of the graphene.

为了计算描述旋转的简谐系数 ε'_0 以及非简 谐系数 ε'_1 , ε'_2 ,设系统绕轴旋转一微小角度 θ , 将它视为扰动. 文献 [22] 计算系统绕轴转一很 小角度 θ 时 V_2 的变化 δV_2 ,在将 cos θ 展开取近似 时,取至前两项,计算了 ε'_0 ,由此得到的声子频 率比文献 [23] 给的实验值小1—1.5倍.为了克服 其不足,这里将 cos θ 展开取近似取至第3项,即 cos $\theta \approx 1 - \theta^2/2 + \theta^4/24$,求得

$$\delta V_2 = \left(\frac{\sqrt{2}}{3}V_{sp\sigma} + \frac{2}{3}V_{pp\sigma}\right)\theta^2 - \left(\frac{\sqrt{2}}{36}V_{sp\sigma} + \frac{1}{6}V_{pp\sigma}\right)\theta^4, \quad (10)$$

这里的 $V_{sp\sigma} = \langle s|V_2|p \rangle$, $V_{pp\sigma} = \langle p|V_2|p \rangle$, $V_{ss\sigma} = \langle s|V_2|s \rangle$ 分别是 V_2 在相应的原子波函数 $|s \rangle$ 和 $|p \rangle$ 中的矩阵元,值为: $V_{ss\sigma} = -4.9885$ eV, $V_{sp\sigma} = 5.3663$ eV, $V_{pp\sigma} = 8.3896$ eV.将(1)式中的 V_2 换为 $V'_2 = V_2(d) + \delta V_2(\theta)$,得到考虑转动后原子的平均作用能 φ' ,进而求得描述旋转的简谐系数

$$\varepsilon_0' = \frac{1}{d_0^2} \left(\frac{\partial^2 \varphi'}{\partial \theta^2} \right)_{\theta=0},$$

第一非简谐系数

$$\varepsilon_1' = \frac{1}{6d_0^3} \left(\frac{\partial^3 \varphi'}{\partial \theta^3} \right)_{\theta=0}$$

第二非简谐系数

$$\varepsilon_2' = \frac{1}{24d_0^4} \left(\frac{\partial^4 \varphi'}{\partial \theta^4}\right)_{\theta=0}$$

为:

$$\varepsilon_{0}^{\prime} = -\frac{2}{3d_{0}^{2}} \left(\frac{\sqrt{2}}{3} V_{sp\sigma} + \frac{2}{3} V_{pp\sigma}\right) \left[1 - \frac{10}{3} \left(\frac{V_{1}}{V_{2}}\right)^{2}\right],$$

$$\varepsilon_{1}^{\prime} = 0,$$

$$\varepsilon_{2}^{\prime} = \frac{1}{3d_{0}^{4}} \left(\frac{\sqrt{2}}{36} V_{sp\sigma} + \frac{1}{6} V_{pp\sigma}\right) \left[1 - \frac{10}{3} \left(\frac{V_{1}}{V_{2}}\right)^{2}\right],$$

(11)

由 (3) 和 (11) 式看出:石墨烯原子横振动和纵振动 的非简谐效应不同,描述这两种振动的非简谐效应 的强弱的系数比值 $\varepsilon_2/\varepsilon'_2$ 取决于共价能等.

在波矢q = 0时纵声子(LO)和横声子(TO)频 率以及 $q = 2\pi/d$ 处的声子频率由下式决定^[22]:

$$\nu_{\rm LO}(0) = \nu_{\rm TO}(0) = \frac{1}{2\pi} \sqrt{\frac{8(\varepsilon_0 + 8\varepsilon'_0)}{3M}},$$

$$\nu_{\rm TA}(2\pi/d_0) = \frac{1}{2\pi} \sqrt{\frac{12\varepsilon'_0}{M}},$$

$$\nu_{\rm TO}(2\pi/d_0) = \frac{1}{2\pi} \sqrt{\frac{8(\varepsilon_0 + \varepsilon'_0/2)}{3M}},$$
 (12)

104701-3

考虑到非简谐效应后,原子振动的角频率 ω 与 温度T有关^[24]:

$$\omega(T) = \omega_0 \left[1 + \left(\frac{15\varepsilon_1^2}{\varepsilon_0^3} - \frac{3\varepsilon_2}{\varepsilon_0^2} \right) k_{\rm B} T \right], \qquad (13)$$

由此得到,考虑到非简谐振动后声子频率与温 度T的关系为

$$\nu_{\rm LO}(0) = \nu_{\rm TO}(0)$$

$$= \frac{1}{2\pi} \sqrt{\frac{8(\varepsilon_0 + 8\varepsilon'_0)}{3M}}$$

$$\times \left[1 + \left(\frac{15\varepsilon_1^2}{\varepsilon_0^3} - \frac{3\varepsilon_2}{\varepsilon_0^2} \right) k_{\rm B}T \right], \qquad (14)$$

$$\nu_{\rm TA}(2\pi/d_0)$$

$$=\frac{1}{2\pi}\sqrt{\frac{12\varepsilon_0'}{M}}\left[1+\left(\frac{15\varepsilon_1^2}{\varepsilon_0^3}-\frac{3\varepsilon_2}{\varepsilon_0^2}\right)k_{\rm B}T\right],\qquad(15)$$

$$\nu_{\rm TO}(2\pi/d_0)$$

$$= \frac{1}{2\pi} \sqrt{\frac{8(\varepsilon_0 + \varepsilon_0'/2)}{3M}} \times \left[1 + \left(\frac{15\varepsilon_1^2}{\varepsilon_0^3} - \frac{3\varepsilon_2}{\varepsilon_0^2} \right) k_{\rm B}T \right].$$
(16)

6 非简谐振动对石墨烯杨氏模量和 声子频率的影响

现讨论原子非简谐振动对石墨烯杨氏模 量等热力学性质的影响并求出声子频率. 文 献[17]给出:平衡时键长 $d_0 = 1.42 \times 10^{-10}$ m, $V_2 = 12.32$ eV, $V_1 = 2.08$ eV, 而R = 10.08 eV· $(10^{-10}$ m)¹². 将这些数据代入(3)式求得 $\varepsilon_0 = 3.5388 \times 10^2$ J·m⁻², $\varepsilon_1 = -3.49725 \times 10^{12}$ J·m⁻³, $\varepsilon_2 = 3.20140 \times 10^{22}$ J·m⁻⁴.

石墨烯原胞面积 $\Omega = (\sqrt{3}/2)d_0^2 = 1.746254 \times 10^{-20} \text{ m}^2$,注意到 α_1 随*T*变化不大,以第一非谐和 第一、二非谐时的平均值 $\bar{\alpha}_1$ 代入(8)式,得到弹性 模量 *B*随温度的变化见表1.表中的"本文(1)"为 只计及到第一非谐项,"本文(2)"为同时计及到第 一、二非谐项.可看出:弹性模量 *B* 随温度升高而 减小.

文献 [19] 给出形变参量 $\gamma = 0.50$, $\eta = 0.74$, 未 形变时石墨烯一个键的平均能量 $|\varphi_0| = 5.1$ eV. 由 (5) 和 (6) 式求得力常数 C_{11} , C_{12} , C_{44} 随温度的变 化见表 2. 又 $h = 2r_a = 1.54 \times 10^{-10}$ m, 将h和 C_{11} , C_{44} 以及不同温度的 B(T) 数据代入 (9) 式, 求 得杨氏模量 E 和扭曲模量 D 以及泊松系数 σ 随温 度的变化数据见表 2. 其中的"本文(1)"是只计及 到第一非简谐项的结果,"本文(2)"是同时计及到 第一、第二非简谐项的结果.为了比较,表中还给 出了文献 [21] 的计算结果和文献 [25] 给出的实验结 果、文献 [26] 用第一性原理的计算结果、文献 [27] 在 Bulingler 势框架下的计算结果以及文献 [28] 的 计算结果.可看出,本文得到的结果与实验结果较 接近.

由表2的数据得到石墨烯的力常数和泊松系 数随温度的变化如图3所示,图中虚线是简谐近似 (线0)和只考虑到第一非简谐项(线1)的结果,实 线是同时考虑到第一、第二非简谐项(线2)的结果, 由图3可以看出,石墨烯的力常数随温度升高而增 大,但变化很小,而泊松系数随温度升高而减小. 其原因在于:石墨烯的热膨胀系数为负值,温度升 高时原子间距离要减小,因而力常数增大;又力常 数主要取决于结构和相互作用势等性质,因而受温 度影响很小. 泊松系数受弹性模量 B 影响很大,而 B 随温度升高而减小,因此泊松系数随温度升高而 减小.

由表2的数据得到杨氏模量和扭曲模量随温度的变化如图4所示,图中虚线是简谐近似(线0)和只考虑到第一非简谐项(线1)的结果,实线是同时考虑到第一、第二非简谐项(线2)的结果.

由图 4 可以看出: 1) 考虑到原子振动非简谐效 应后,石墨烯的杨氏模量和扭曲模量不再是常数, 均随温度升高而增大,而且温度愈高,变化愈慢,例 如,*T* = 300 K附近,温度每升高300 度,*D*增大 0.50%,*E*增大0.53%;而在温度*T* = 1000 K附近,

Table 1. The variation of elastic modulus of the graphene with the temperature.									
T/K		0	300	600	1000	1100	1200	1300	
$B/\mathrm{N}\cdot\mathrm{m}^{-1}$	本文(1)	408.64	406.79	405.00	402.56	402.00	401.35	400.95	
	本文(2)	408.64	407.72	406.87	405.73	405.44	405.16	404.83	

表1 石墨烯的弹性模量随温度的变化

表2 石墨烯在不同温度下的力常数 Cij、杨氏模量 E、扭曲模量 D 和泊松系数 σ

Table 2. The force constant (C_{ij}) , the Young's modulus (E), the torsional modulus (D) and the Poisson's coefficient (σ) at different temperatures.

T/K		0	300	600	1000	1100	1200	1300
	文献 [<mark>21</mark>]	383.2						
$C_{11}/\mathrm{N}\cdot\mathrm{m}^{-1}$	文献 [25]	355.44						
	本文	353.72	355.96	358.22	361.253	362.02	362.78	363.55
$C_{12}/\mathrm{N}\cdot\mathrm{m}^{-1}$	文献 [<mark>21</mark>]	62.0						
	文献 [25]	60.36						
	本文	58.97	59.34	59.72	60.22	60.35	60.48	60.61
$C_{44}/\mathrm{N}\cdot\mathrm{m}^{-1}$	文献 [<mark>21</mark>]	163.3						
	文献 [25]	145.86						
	本文	147.38	148.31	149.25	150.52	150.83	151.15	151.48
$E/\mathrm{N}\cdot\mathrm{m}^{-1}$	本文(1)	394.70	396.86	399.00	401.96	402.69	403.43	404.16
	本文 (2)	394.70	396.74	398.80	401.56	402.25	402.94	403.64
	文献 [21]	380						
	文献 [<mark>28</mark>]	350.01						
	文献 [25]	340						
	本文(1)	0.3899	0.3916	0.3932	0.3955	0.3960	0.3966	0.3971
D/nN·nm	本文 (2)	0.3899	0.3915	0.3930	0.3951	0.3957	0.3962	0.3967
	文献 [19]	0.39						
	文献 [<mark>26</mark>]	0.24						
	文献 [27]	0.23						
	本文(1)	0.3390	0.3375	0.3361	0.3338	0.3332	0.3324	0.3322
σ	本文(2)	0.3390	0.3378	0.3366	0.3349	0.3345	0.3341	0.3337
	文献 [28]	0.31						

图 4 石墨烯的杨氏模量 (a) 和扭曲模量 (b) 随温度的变化 Fig. 4. The variation of the Young's modulus (a) and the torsional modulus (b) of the graphene with the temperature.

温度每升高300度时, D增大0.33%, E增大0.36%; 2)同时考虑到第一、二非简谐振动项后, 杨氏模量 和扭曲模量均比只考虑到第一非简谐项的值要稍 小, 而且温度愈高, 两者的差异愈大, 非简谐效应 愈显著, 例如, T = 300 K时, 同时考虑到第一、二 非简谐振动项的值和只考虑到第一非简谐项的值 的差异为0.02%, 而T = 1000 K时, 两者的差异为 0.09%.

图 5 石墨烯声子频率随温度的变化 (a) $\nu_{L0}(0) = \nu_{T0}(0)$; (b) $\nu_{TO}(2\pi/d)$; (c) $\nu_{TA}(2\pi/d)$ Fig.5. The variation of the phonon frequency of the graphene with the temperature: (a) $\nu_{L0}(0) = \nu_{T0}(0)$; (b) $\nu_{TO}(2\pi/d)$; (c) $\nu_{TA}(2\pi/d)$.

表3 石墨烯声子频率随温度的变化

Table 3. The variation of the phonon frequency of the graphene with the temperature.

T/K		0	300	600	1000	1100	1200	1300
	本文(1)	4.8283	4.9110	4.9938	5.1041	5.1317	5.1593	5.1869
$u_{\rm T0} = u_{\rm T0}(0) / 10^{13} {\rm Hz}$	本文(2)	4.8283	4.8956	4.9631	5.0531	5.0753	5.0980	5.1205
$\nu_{\rm L0} = \nu_{\rm T0}(0)/10$ IIZ	文献 [<mark>22</mark>]	2.0						
	文献 [<mark>23</mark>]	4.0						
	本文(1)	3.5639	3.6250	3.6861	3.7675	3.7878	3.8082	3.8286
$u_{\rm m}$, $(2\pi/d)/10^{13}$ Hz	本文(2)	3.5639	3.6137	3.6634	3.7298	3.7464	3.7630	3.7796
$\nu_{\rm TA}(2\pi/a)/10$ 112	文献 [<mark>22</mark>]	1.0						
	文献 [<mark>23</mark>]	2.0						
	本文(1)	2.5231	2.5663	2.6096	2.6672	2.6816	2.6961	2.7105
$u_{\rm TRO}(2\pi/d)/10^{13}$ Hz	本文(2)	2.5231	2.5583	2.5935	2.6405	2.6523	2.6640	2.6757
$\nu_{10}(2\pi/a)/10$ IIZ	文献 [22]	1.5						
	文献 [23]	3.0						

将碳原子的质量 $M = 1.995017 \times 10^{-26}$ kg 以 及 d_0 , V_1 , V_2 以及 $V_{sp\sigma}$ 等代入 (11) 式, 求得 $\varepsilon'_0 =$ 0.41744 × 10² J·m⁻², $\varepsilon'_1 = 0$, $\varepsilon'_2 = 0.00205 \times$ 10²³ J·m⁻⁴. 与描述键长变化的中心相互作用的 系数 ε_0 , ε_1 , ε_2 相比, ε'_0 远小于 ε_0 , ε'_2 也远小于 ε_2 , 比值为 $\varepsilon_0/\varepsilon'_0 \approx 8.477$, $\varepsilon_2/\varepsilon'_2 \approx 1.56$. 这表明石墨烯 热膨胀过程中, 以键长变化的形变为主, 而且原子 以键长方向的纵振动的非简谐效应占绝对优势.

将 ε_0 和 ε'_0 以及M代入(14)—(16)式,求得波 矢q = 0处,石墨烯纵声子(LO)和横声子(TO)频 率 $\nu_{LO}(0), \nu_{TO}(0)$ 以及 $q = 2\pi/d$ 处声子频率随温 度的变化见表3.为了比较,表中还给出了文献[22] 的计算结果和文献[23]的实验结果.由表3做出其 变化曲线见图5,图中虚线是简谐近似(线0)和只 考虑到第一非简谐项(线1)的结果,实线是同时考 虑到第一、第二非简谐项(线2)的结果.

由图5可以看出,考虑到原子短程相互作用和 原子振动的第一、二非简谐项,得到的石墨烯的声 子频率不仅比文献[22]不考虑原子短程相互作用 计算的值更接近文献[23]给的实验值,而且还给出 声子频率随温度的变化,即石墨烯的声子频率随着 温度的升高而增大.这与温度升高,粒子振动加快, 频率增大这一规律相符.图5还表明:若不考虑非 简谐项,则声子频率为常量;同时考虑到第一、二非 简谐项后的声子频率比只考虑到第一非简谐项的 值稍小.温度愈高,非简谐效应愈显著.

7 结 论

本文对石墨烯的杨氏模量和声子频率等的研 究表明:1)考虑到原子短程相互作用和原子振动的 第一、二非简谐项后,得到石墨烯的力常数、杨氏模 量、扭曲模量、泊松系数以及声子频率等,不再是 一个常量,而是随温度变化并遵从一定的规律,与 文献给出的实验结果较接近;2)若不考虑原子的非 简谐振动,则石墨烯的力常数、杨氏模量、扭曲模 量、泊松系数以及声子频率等为常量;同时考虑到 第一、第二非简谐振项,它们均随温度而变,其中力 常数、杨氏模量、扭曲模量随温度升高而增大,但 变化较小;声子频率随温度升高而增大,但变化较 快,几乎成正比关系;泊松系数随温度升高而较快 减小;3)石墨烯热膨胀过程中,原子有沿键长方向 的纵振动和绕垂直平面轴的横振动两种,但以键的 长短变化的纵振动为主; 横振动的简谐系数 ε_0^{\prime} 和第 二非谐系数 ε_2^{\prime} 均小于纵振动的相应值 ε_0 , ε_2 , 比值 为 $\varepsilon_0/\varepsilon_0^{\prime} \approx 8.477$, $\varepsilon_2/\varepsilon_2^{\prime} \approx 1.56$; 纵振动的非简谐效 应占绝对优势; 石墨烯热膨胀时会发生大小的微小 变化和绕垂直轴的微小转动, 但以大小变化的形变 为主; 4) 温度愈高, 石墨烯原子振动的非简谐效应 愈显著.

参考文献

- Novoselov K S, Ceim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S, Grigorieva I V 2004 Science 306 666
- [2] Katsnelson M I 2007 Materials Today 10 20
- [3] Bolotin K I, Sikes K J, Jiang Z, Klima M, Eudenberg G, Hone J, Stormer H L 2008 Sol. Sta. Com. 146 351
- [4] Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801 (in Chinese) [王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801]
- [5] Yang Y L, Lu Y 2014 Chin. Phys. B 23 106501
- [6] Tian W, Yuan P F, Yu Z L, Tao B B, Hou S Y, Ye C, Zhang Z H 2015 Acta Phys. Sin. 64 046102 (in Chinese)
 [田文, 袁鹏飞, 禹卓良, 陶斌斌, 侯森耀, 叶聪, 张振华 2015 物理学报 64 046102]
- [7] Zhou P, He D W 2016 Chin. Phys. B 25 017302
- [8] Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese)
 [常旭 2014 物理学报 63 086102]
- [9] Mi C G, Liu G P, Wang J J, Guo X L, Wu S X, Yu J 2014 Acta Phys. Chem. Sin. 30 1230 (in Chinese) [米传国, 刘国平, 王家佳, 郭新立, 吴三械, 于金 2014 物理化学学报 30 1230]
- [10] Davydov S Y, Subinova G Y 2011 Phys. Stat. Sol. 53 608 (in Russian)
- [11] Davydov S Y, Subinova G Y 2015 Phys. Stat. Sol. 57 1017 (in Russian)
- [12] Mounet N, Marzari N 2005 Phys. Rev. B 71 205214
- [13] Zakharchenko K V, Katsnelson M I, Fasolino A 2009 Phys. Rev. Lett. 102 046808
- [14] Jiang J W, Wang J S, Li B 2009 Phys. Rev. B 80 205429
- [15] Pozzo M, Alfe D, Lacovig P, Hofmann P, Lizzit S, Baraldi A 2011 Phys. Rev. Lett. 106 135501
- [16] Bao W, Miao F, Chen Z, Zhang H, Jang W, Dames C, Lau N 2009 Nat. Nanotechol. 4 562
- [17] Davydov S Y 2011 Tech. Phys. Lett. 37 42 (in Russian)
- [18] Davydov S Y 2012 Phys. Solid State **54** 875
- [19] Davydov S Y 2013 Phys. Stat. Sol. 55 813 (in Russian)
- [20] Zheng R L, Hu X Q 1994 College Physics 13 15 (in Chinese) [郑瑞伦, 胡先权 1994 大学物理 13 15]
- [21] Davydov S Yu, Bosledlik O W 2015 Phys. Stat. Sol. 57 819 (in Russian)
- [22] Davidov S Yu. 2009 Phys. Stat. Sol. 51 2041 (in Russian)
- [23] Solin S A, Ramdas A K 1970 Phys. Rev. B ${\bf 1}$ 1687
- [24] Zheng R L, Hu X Q 1996 Solid Theory and Application (Chongqing: southwest normal university press) pp267-271 (in Chinese) [郑瑞伦, 胡先权 1996 固体理 论及其应用 (重庆:西南师范大学出版社) 第 267-271 页]
- [25] Blaksly O L, Proctor D G, Seldin E J, Spence G B, Weng T 1970 J. Appl. Phys. 41 3373

[26] Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406

[27] Lu Q, Arroyo M, Huang R 2009 J. Appl. Phys. 42 102002

[28] Cadelano E C, Palla P L, Giordano S, Colombo L 2009 Phys. Rev. Lett. 102 235502

Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene^{*}

Cheng Zheng-Fu Zheng Rui-Lun[†]

(College of Electronic and Electrical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China)

(Received 5 January 2016; revised manuscript received 19 February 2016)

Abstract

In the frame of the Harrison bonded-orbital method, the variations of the force constant, the Young modulus, the torsional modulus and the phonon frequency with temperature are given through the relevant theory or method of the solid state physics with considering the non-harmonic effect and the short-range interaction of atoms. Results show that the force constant, the Young modulus, the torsional modulus, the phonon frequency and the Poisson's coefficient all vary with temperature. The results show that the first three quantities increase with temperature but not very much; the phonon frequency increases with temperature rapidly; the Poisson's coefficient decreases fast with the increase of temperature. There are transverse vibrations along the direction perpendicular to the bond-length direction and the longitudinal vibrations along the bond-length direction, in which the longitudinal vibrations are dominant. The nonharmonic effect of the longitudinal vibration is much larger than that of the transverse vibration. The first and the second non-harmonic coefficient of the transverse vibration are both much less than those of the longitudinal vibration, where $\varepsilon_0/\varepsilon'_0 \approx 8.477$ and $\varepsilon_2/\varepsilon'_2 \approx 156$. The above five physical quantities are constant at different temperatures if the first and second nonhamonic effects are omitted, which does not conform to the experimental results. After the first and second nonhamonic effects are considered, they all increase with temperature and results are in good agreement with experimental data. The anharmonic effect increases with temperature.

Keywords:graphene, non-harmonic effect, Young modulus, phonon frequencyPACS:47.11.Mn, 63.20.-e, 63.22.Rc, 65.80.CkDOI:10.7498/aps.65.104701

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11574253) and the Fund for Basic and Advanced Research Program of Chongqing, China (Grant No. cstc2015jcyjA40054).

[†] Corresponding author. E-mail: zhengrui@swu.edu.cn