物理学报 Acta Physica Sinica

利用表面微结构提高波长上转换红外探测器效率

王超 郝智彪 王磊 康健彬 谢莉莉 罗毅 汪莱 王健 熊兵 孙长征 韩彦军 李洪涛 王禄 王文 新 陈弘

Improvement on the efficiency of up-conversion infrared photodetectors using surface microstructure Wang Chao Hao Zhi-Biao Wang Lei Kang Jian-Bin Xie Li-Li Luo Yi Wang Lai Wang Jian Xiong Bing Sun Chang-Zheng Han Yan-Jun Li Hong-Tao Wang Lu Wang Wen-Xin Chen Hong

引用信息 Citation: Acta Physica Sinica, 65, 108501 (2016) DOI: 10.7498/aps.65.108501 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.108501 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I10

您可能感兴趣的其他文章 Articles you may be interested in

含有 AlGaAs 插入层的 InAs/GaAs 三色量子点红外探测器

Three-color InAs/GaAs quantum dot infrared photodetector with AlGaAs inserting layers 物理学报.2016, 65(10): 108502 http://dx.doi.org/10.7498/aps.65.108502

基于高阻ZnO薄膜的光电导型紫外探测器

Photoconductive UV detector based on high-resistance ZnO thin film 物理学报.2015, 64(19): 198501 http://dx.doi.org/10.7498/aps.64.198501

红外波长上转换器件中载流子阻挡结构的研究

Studies on carrier-blocking structures for up-conversion infrared photodetectors 物理学报.2015, 64(17): 178502 http://dx.doi.org/10.7498/aps.64.178502

基于电子轰击式CCD的大动态条纹相机研究

Research on large dynamic range streak camera based on electron-bombarded CCD 物理学报.2015, 64(9): 098501 http://dx.doi.org/10.7498/aps.64.098501

利用色彩转换法制备高色稳定性的柔性白色有机电致发光器件

Highly color-stability flexible white organic light-emitting devices fabricated by color conversion method 物理学报.2012, 61(17): 178502 http://dx.doi.org/10.7498/aps.61.178502

利用表面微结构提高波长上转换红外探测器效率^{*}

王超¹) 郝智彪¹)[†] 王磊¹) 康健彬¹) 谢莉莉¹) 罗毅¹)[‡] 汪莱¹) 王健¹) 熊兵¹) 孙长征¹) 韩彦军¹) 李洪涛¹) 王禄²) 王文新²) 陈弘²)

1)(清华大学电子工程系,清华信息科学与技术国家实验室,北京 100084)

2) (中国科学院物理研究所, 北京 100190)

(2015年11月23日收到;2016年1月19日收到修改稿)

波长上转换红外探测器具有实现大面阵焦平面的优势,但光提取效率是制约器件整体效率的关键因素之一.本文主要研究利用表面微结构来提高波长上转换红外探测器的效率.首先通过仿真计算研究了表面微结构参数对光提取效率的影响,然后基于优化设计的参数,采用聚苯乙烯纳米球掩膜刻蚀的方法制作了具有圆台型表面微结构的波长上转换红外探测器.测试结果表明,具有表面微结构的器件的光提取效率比无表面微结构的器件提高了130%.本文制作表面微结构的方法可以实现波长上转换红外探测器件整体效率的提高.

关键词: 波长上转换, 表面微结构, 纳米球, 光提取效率 **PACS:** 85.60.Bt, 85.60.Gz, 73.63.Hs, 78.60.Fi

DOI: 10.7498/aps.65.108501

1引言

红外探测器在气象、环境、医疗、安防、军事等 方面都有广泛的应用,目前较为成熟的红外探测 器包括热辐射计、碲镉汞探测器、锑化铟探测器和 量子阱红外探测器等. 高性能、大尺寸以及具备多 色探测潜力的成像系统是目前以及未来第三代红 外探测技术的主要发展趋势^[1,2].在面向大面阵成 像探测时, 红外探测器阵列需要与硅基读出电路键 合, 工艺复杂度高, 而且探测器材料与硅基读出电 路材料之间存在较大的热失配^[3],会导致低温下器 件性能恶化甚至失效,不利于制作大面阵焦平面. 波长上转换红外探测器[4] 可将红外光子转变为能 够被低暗电流的硅CCD探测的短波长光子,这类 器件无须键合读出电路, 通过与硅 CCD 的光学耦 合实现成像探测,可解决大面阵焦平面制作的困 难. 王磊等^[5]报道了基于量子级联输运的波长上 转换红外探测器件,在较低的工作偏压下实现了低 暗电流的波长上转换红外探测.

由于制作红外探测器的半导体材料与空气之 间的折射率差造成的全反射效应限制了器件表面 的光提取效率,因此严重制约了波长上转换红外探 测器的整体效率. 以GaAs材料为例, 根据菲涅耳 定律可知,只有当有源区出射光子的发射角度在约 16°的临界角范围之内时,光子才能从器件表面出 射,其他大部分近红外光子则无法出射,估算得到 的光提取效率只有2%---3%.因此,提高器件的光 提取效率是提高波长上转换器件的整体效率的重 要途径. 通过在器件表面制作具有适当形貌和尺 寸的微结构,可以改变发射光线在器件表面的入射 角度分布,在统计概率上将有更多的光从逃逸圆锥 角内出射^[6],从而提高光提取效率.目前,对于提 高波长上转换红外探测器光提取效率尚缺乏较为 系统的研究,现有的文献研究大多关注的是LED 器件的表面出光效率的提高. 陈依新等^[7] 将微米 量级的表面图形应用于 AlGaInP 基 LED 器件, 可 有效地提高器件的光提取效率,并降低器件的发

© 2016 中国物理学会 Chinese Physical Society

^{*} 国家重点基础研究发展计划(批准号: 2013CB632804, 2012CB315605)、国家自然科学基金(批准号: 61176015, 61210014, 51002085, 61321004, 61307024, 61176059)和国家高技术研究发展计划(批准号 2015AA017101)资助的课题.

[†]通信作者. E-mail: zbhao@tsinghua.edu.cn

[‡]通信作者. E-mail: luoy@tsinghua.edu.cn

热. 陈新莲等^[8]利用空气孔和半径无序变化的光 子晶体结构,可使GaN基LED的光提取效率提高 53.8%. 其他可利用的方法有表面粗糙化^[9-14]、表 面纳米孔结构^[15]、表面覆盖阳极氧化铝薄膜^[16]以 及表面亚微米级微结构等^[17].

本文采用自组装纳米球掩膜刻蚀的方法制作 表面微结构,以期提高波长上转换红外探测器件的 效率.该方法简单易行,便于实现尺寸可控的大面 积微结构制作.首先通过模拟计算对表面微结构参 数进行优化设计,然后制作了具有表面微结构和无 表面微结构的波长上转换红外探测器件,最后进行 对比测试,分析了表面微结构对波长上转换器件效 率的作用.

2 表面微结构设计与器件制作

2.1 表面微结构提高光提取效率的 计算分析

本文采用的计算方法是基于蒙特卡罗统计原 理的光线追迹法,其基本原理是将折射定律应用于 每一个折射面,追迹具有代表性的光线通过光学系 统的准确路径,考虑的主要光学机理包括几何光学 的反射(散射)、折射、透射效应等.考虑到器件发 光区的特点,其出射光场的空间分布可近似为朗伯 型.使用与实际器件相同的材料参数,建立具有表 面微结构的器件模型,同时考虑到纳米球掩膜的特 点,表面微结构采用圆台模型,如图1插图所示.

首先分别研究圆台微结构的底面长度a = 2R(R为圆台底面半径)、侧面倾角 θ 、高度h等参数的 改变对器件光提取效率的影响.根据初步计算的结 果并结合相关文献的报道,在微结构形貌和其他参 数相同的情况下,相邻微结构的间距d等于微结构 底面长度a时,得到的结果往往是最优的.因此,计 算微结构的其他参数变化对光提取效率的影响时, 保持微结构的间距d = a不变.当器件表面没有任 何微结构时,计算得到的光提取效率约为3.89%.

图1(a)是固定微结构的高度为80 nm 和侧面 倾角为70°时,光提取效率随微结构底面长度的 变化.计算结果表明:当微结构底面长度在40— 200 nm变化时,器件的光提取效率达到8%—9.3%, 且当微结构底面长度大于80 nm 时,光提取效率 随微结构底面长度的变化趋缓,并保持在9%以 上; 当微结构底面长度为150 nm时, 光提取效率为 9.23%.

图 1 (b) 是固定微结构的底面长度为 150 nm 和 微结构高度为 80 nm 时, 光提取效率随微结构侧面 倾角的变化. 计算结果表明: 微结构侧面倾角对光 提取效率的影响较为明显, 当倾角在 50°—90°变化时, 光提取效率达到 8.73%—9.23%; 当侧面倾角为 75°时, 光提取效率达到 9.26%.

Fig. 1. The calculated light extraction efficiency as a function of (a) the bottom length, (b) the side slope angle and (c) the height of the microstructure.

图1(c)是固定微结构的底面长度为150 nm 和侧面倾角为75°时,光提取效率随微结构高度 的变化. 计算结果表明: 随着微结构高度的增 加,光提取效率的变化趋势是先上升后下降,当微 结构高度在60—120 nm变化时,光提取效率达到 8.9%—9.3%;当微结构的高度为105 nm时,光提取 效率可以达到9.31%.

综合上述计算结果,当微结构的底面长度为 150 nm、高度为105 nm、侧面倾角为75°时,计算 得到的光提取效率约为9.31%,与无微结构的情况 相比,光提取效率可提高139%.

2.2 器件制作

器件制作采用的外延材料和器件基本结构 与王磊等^[5]所报道的相同.外延片由分子束外 延设备在(100) GaAs衬底上生长.器件的基本 结构包括吸收区、级联输运区和发光区. 吸 收区包括十个周期In0.28Ga0.72As/Al0.38Ga0.62As 耦合量子阱(2.1 nm/3 nm);级联输运区由 GaAs/Al_{0.38}Ga_{0.62}As 啁啾超晶格组成, 各量子阱 中的电子能级能量逐个降低:近红外发光区是阱宽 为3.1 nm的In_{0.18}Ga_{0.82}As/Al_{0.2}Ga_{0.8}As量子阱, 78 K时的发光波长为770 nm. 吸收区吸收红外 光后,量子阱基态能级的电子跃迁到激发态能级, 通过共振隧穿注入到输运区,光生电子在输运区的 迁移依赖于子带间的快速弛豫过程,最后注入发光 区的量子阱中,与从P型接触层注入到发光区的空 穴发生辐射复合,从而实现短波长光子的发射.

根据前文的计算结果,优选的微结构底面长度 为150 nm,微结构间距也为150 nm.考虑到纳米球 掩膜刻蚀工艺的特点^[18],应当选用直径为300 nm 的纳米球.我们购买得到的聚苯乙烯(PS)纳米球 平均直径为245 nm,虽略小于300 nm,但是根据 图1(a)计算结果,仍有望获得较大的光提取效率.

首先采用化学自组装方法,使纳米球尽量均匀 且单层地平铺在样品表面. 平铺后的纳米球在样品 表面紧密排列,因此需要利用氧气等离子体辉光对 纳米球的尺寸进行缩减. 为了减少热集聚效应对纳 米球形貌的影响,采用两次氧气辉光的方式将纳米 球缩减到需要的尺寸,该方法还可以有效清除覆盖 在纳米球表面的其他残余有机物质. 然后以纳米球 为掩膜,采用等离子体干法刻蚀工艺在样品表面刻 蚀出微结构,并在空气氛围下经高温热退火去除残 余的纳米球. 图 2 (a) 为热退火处理后刻蚀样品表 面的电镜图.如图所示,在样品表面获得了形貌良 好、排列均匀的圆台型微结构,观察电镜图可知圆 台底面长度约为140 nm、高度约为110 nm、侧面倾 角约为80°、间距约为120 nm,与前文计算得到的 微结构参数比较接近.用实际得到的微结构参数重 新计算,得到的光提取效率为8.6%,与无微结构时 相比提高了121%.

完成表面微结构制作后, 再经过多次光刻、湿 法腐蚀、两次电极制备、钝化、退火等工艺, 最 终完成器件制作. 图 2 (b) 为具有表面微结构的 器件台面区域电镜俯视图. 器件台面的尺寸为 300 μ m × 300 μ m, 表面依次有表面微结构、Ti/Au 透明电极以及SiN_x钝化层. 使用相同的外延片和 器件工艺, 制作了表面有微结构的器件 A 和表面无 任何微结构的器件 B.

图 2 (a) 采用纳米球掩膜刻蚀工艺制作的表面微结构电 镜图片; (b) 制作完成的器件的电镜图片

Fig. 2. Scanning electron microscopy images of (a) the surface microstructure fabricated by using nanosphere mask etching process and (b) the device.

3 结果与讨论

为了对制作完成的器件进行测试,将波长上转换器件和Si二极管探测器(Hamamatsu S2386-45K)紧靠并固定在液氮杜瓦的冷指上,使器件的发光面正对探测器,测试温度为78 K.器件的衬底打磨出一个45°面用于耦合入射的红外光.标准温度为1223 K的黑体光源发出的红外光经过滤波片后由器件的45°面入射,器件发出的近红外光被Si

探测器收集探测并产生响应电流.通过测量上转换器件和Si探测器的电流,可以计算器件的光提取效率.

为了获得良好的器件红外响应特性以及测试 信噪比,器件的工作偏压选取在其开启前的平带电 压,此时器件能带结构基本被拉平,平衡p-n结的 内建电场,同时级联输运区形成载流子输运所需的 声子台阶,有利于吸收区产生的光生电子单向输运 到发光区.图3(a)所示为具有表面微结构的器件 A以及后置硅探测器的归一化红外响应谱.由图 可见,器件A与后置硅探测器的红外响应谱基本相 符,峰值波长均为4μm.这表明引起后置硅探测器 的响应信号是由红外光对器件作用从而造成器件 发光而产生的,波长上转换红外探测器的基本功能 达到预期.图3(b)对比了器件A和器件B的归一 化红外响应谱,二者几乎完全一致,表明制作表面 微结构对上转换器件的基本工作特性并无影响.

图 3 波长上转换器件与后置 Si 探测器的归一化红外响 应谱 (a)器件 A 与后置 Si 探测器的归一化红外响应谱; (b)器件 A 与器件 B 的归一化红外响应谱

Fig. 3. The normalized infrared response spectra of up-conversion infrared photodetectors and silicon detector: (a) The response spectra of device A and silicon detector; (b) the response spectra of device A and device B. 图4为器件A和器件B在无红外光照下的暗 电流随偏压变化的曲线.如图4所示,在器件开启 之前,其暗电流随偏压的增加整体呈缓慢上升的趋 势,两种器件的变化趋势基本一致,暗电流在同一 量级.但是器件B的整体暗电流水平略高于器件 A,在工作电压下,器件A和器件B的暗电流分别 为0.2和0.8 nA,这可能是由于材料不均匀或工艺 差别等因素造成的.上述测试结果表明,表面微结 构工艺并未对器件造成损伤.

图 4 (网刊彩色) 器件暗电流随器件偏压的变化 Fig. 4. (color online) The dark currents of the devices versus device bias.

在相同的测试光路下,使用半导体参数测试仪 控制器件A和器件B的工作偏压,并根据有、无入 射红外光情况下的电流变化得到器件和后置硅探 测器的光响应电流.后置硅探测器响应电流与器 件响应电流的比值和器件的辐射效率 $\eta_{辐射}$ 、光提取 效率 $\eta_{提取}$ 、Ti/Au透明电极的透射效率 $\eta_{透射}$ 、硅探 测器的光收集效率 $\eta_{收集}$ 以及硅探测器的量子效率 η_{PD} 有关.具体表达式如下所示:

$\frac{I_{\rm PD}}{I_{\rm DE}} = \eta_{\rm \bar{a} h h} \eta_{\rm \bar{k} u} \eta_{\rm \bar{c} h h} \eta_{\rm \bar{k} u \mu} \eta_{\rm PD}.$

在两种器件的测试过程中, 硅探测器的光收集 效率 η_{收集} 和量子效率 η_{PD} 是相同的.器件发光区 量子阱的辐射复合效率 η_{辐射} 在理论上与器件的响 应电流有关, 相同的器件响应电流对应的辐射复合 效率近似相同.由于器件 A 和器件 B 非同一轮工 艺制作, 其金属透明电极的透射率可能是不同的. 本文利用两个器件蒸镀透明电极时的透明玻璃陪 片, 测量得到对应于器件的发光波长时器件 A 和器 件 B 的透明电极透射率分别为42%和56%.基于上 述测量数据, 可以得到器件 A 和器件 B 的光提取效 率之比. 在工作电压下, 通过改变入射光强得到器件A 和器件B对应的后置硅探测器响应电流以及两个 器件光提取效率之比随器件响应电流的变化, 如 图5所示. 测试结果表明, 在相同的器件响应电流 下, 具有表面微结构的器件A 对应的后置硅探测器 响应电流明显高于无表面微结构的器件B; 响应电 流在 250—500 nA 范围内变化时, 器件A 的光提取 效率较器件B 提高了 60%—130%.

图 5 (网刊彩色)后置硅探测器的响应电流和器件的光提 取效率随器件响应电流的变化

Fig. 5. (color online) The relationship between the response current of silicon detector as well as the light extraction efficiency and the response current of device.

理论上,表面微结构对波长上转换器件光提取 效率的影响与入射红外光光强是无关的.但测试结 果却是随入射光强的增加,器件A与器件B的光提 取效率之比也是增加的,可能的原因如下:尽管器 件A和器件B采用的是相同的外延材料和工艺,但 实际上两个器件并非全同,因此在相同的器件响应 电流下,二者的辐射复合效率可能略有不同,所以 在计算光提取效率之比时直接将两个器件的辐射 复合效率抵消会造成偏差.随着入射红外光光强增 加,器件的响应电流逐渐增大,同时对应的辐射复 合效率趋于饱和,此时按上述方法计算得到的光提 取效率之比更接近实际情况.综合上述测试结果和 分析可以得出,通过在器件表面制作微结构,可以 使器件的光提取效率提高130%.相应地,波长上转 换红外探测器的总体效率也可以获得等量的提高.

4 结 论

本文研究了表面微结构对波长上转换红外探测器效率的提升作用.本文首先通过仿真计算,研

究了微结构的底面长度、侧面倾角和高度等参数对 光提取效率的影响,获得了优化的参数设计.在此 基础上,采用聚苯乙烯纳米球掩膜刻蚀的方法制作 了具有圆台型表面微结构的波长上转换红外探测 器.与无表面微结构的器件相比,具有表面微结构 的器件在相同工作电流下的光提取效率提高可达 130%,同时器件的基本特性并无变化.本文工作表 明,制作表面微结构是提高波长上转换红外探测器 件效率的有效方法.

参考文献

- [1] Rogalski A 2003 Prog. Quant. Electron. 27 59
- [2] Liu W, Ye Z H 2011 Laser Infrar. 41 365 (in Chinese)
 [刘武, 叶振华 2011 激光与红外 41 365]
- [3] Dupont E, Byloos M, Gao M, et al. 2002 IEEE Photon. Technol. Lett. 14 182
- [4] Yang Y, Zhang Y H, Shen W Z, et al. 2011 Prog. Quant. Electron. 35 77
- [5] Wang L, Hao Z B, Luo Y, et al. 2015 Appl. Phys. Lett. 107 131107
- Schnitzer I, Yablonovitch E, Caneau C, et al. 1993 Appl. Phys. Lett. 63 2174
- [7] Chen Y X, Shen G D, Han J R, et al. 2010 Acta Phys. Sin. 59 545 (in Chinese) [陈依新, 沈光地, 韩金茹 等 2010 物理学报 59 545]
- [8] Chen X L, Kong F M, Li K, et al. 2013 Acta Phys. Sin.
 62 017805 (in Chinese) [陈新莲, 孔凡敏, 李康 等 2013 物 理学报 62 017805]
- [9] Huh C, Lee K S, Kang E J, et al. 2003 J. Appl. Phys.
 93 9383
- [10] Huang H W, Kao C C, Chu J T, et al. 2005 IEEE Photon. Technol. Lett. 17 983
- [11] FuJii T, Gao Y, Sharma R, et al. 2004 J. Appl. Phys. 84 855
- [12] Lee Y J, Lu T C, Kuo H C, et al. 2007 Mat. Sci. Eng: B 138 157
- [13] Tamboli A C, McGroddy K C, Hu E L 2009 Phys. Status Solidi C 6 807
- [14] Zike L, Wei G, Chen X, et al. 2010 J. Semicond. 31 114011
- [15] Ma L, Jiang W J, Zou D S, et al. 2011 J. Phys: Conf. Ser. 276 012077
- [16] Wang C C, Lu H C, Liu C C, et al. 2008 IEEE Photon. Technol. Lett. 20 428
- [17] Song Y M, Choi E S, Yu J S, et al. 2009 Opt. Express.
 17 20991
- [18] Hu Y, Hao Z, Lai W, et al. 2015 Nanotechnology 26 075302

Improvement on the efficiency of up-conversion infrared photodetectors using surface microstructure^{*}

Wang Chao¹⁾ Hao Zhi-Biao^{1)†} Wang Lei¹⁾ Kang Jian-Bin¹⁾ Xie Li-Li¹⁾ Luo Yi^{1)‡} Wang Lai¹⁾ Wang Jian¹⁾ Xiong Bing¹⁾ Sun Chang-Zheng¹⁾ Han Yan-Jun¹⁾ Li Hong-Tao¹⁾ Wang Lu²⁾ Wang Wen-Xin²⁾ Chen Hong²⁾

 (Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)

2) (Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)(Received 23 November 2015; revised manuscript received 19 January 2016)

Abstract

In recent decades, infrared (IR) detection technology has been widely used in many fields such as weather monitoring, environmental protection, medical diagnostics, security protection, etc. With the progress and mature of the technologies, more attention has been paid to the imaging detections of weak IR signals. So the higher efficiency of the device is required. Moreover the next-generation IR photodetection technology focuses on large-scale, high-speed and low-dark-current imaging. The mechanical bonding between infrared detector chip and silicon readout circuit inevitably causes a thermal mismatch problem. Up-conversion IR photodetectors can solve the problem about the performance deterioration of photodetector and the thermal mismatch with silicon-based readout circuit, hence they have great advantages in realizing large-format focal plane array detection.

However, the poor light extraction efficiency due to total reflection severely restricts the overall efficiency of the up-conversion device, which has become one of the bottlenecks to improve the device efficiency. In this paper, surface microstructures with micro-pillar morphology are designed and fabricated on quantum-cascade up-conversion IR photodetectors. The effect on the up-conversion efficiency is investigated by enhancing the light extraction efficiency.

Firstly, by the optical ray retracing method, the influence of surface microstructure on light extraction efficiency is studied when considering different morphology parameters, and optimized surface microstructure is designed to possess a pillar base length of 150 nm, height of 105 nm and side wall angle of 75° .

Then based on the results of simulation, up-conversion IR photodetectors with surface microstructures are fabricated using polystyrene nanospheres as mask. The self-assembled monolayer nanospheres are first etched to a proper size by using O_2 plasma, then the patterns are transferred to SiN_x film, which acts as an ICP dry etching mask of the micro-pillars. Finally, the up-conversion device and a silicon detector are together loaded on a cold finger of a cryogenic dewar. The characteristics of the up-converter and up-conversion system are evaluated using a blackbody source.

The experimental results show that the devices with and without surface microstructure exhibit similar IR responses and dark currents, while the emission of device with microstructure is obviously increased. Taking into consideration other factors related to external quantum efficiency, the light extraction efficiency of the device with micro-pillar structure on surface can be increased by up to 130%. Therefore it can be concluded that this method is an efficient way to improve the efficiency of up-conversion IR photodetector. The finding in this paper can also be applied to other semiconductor device with light extraction efficiency.

Keywords: up-conversion, surface microstructure, light extraction efficiency, polystyrene spheres

PACS: 85.60.Bt, 85.60.Gz, 73.63.Hs, 78.60.Fi

DOI: 10.7498/aps.65.108501

^{*} Project supported by the National Basic Research Program of China (Grant Nos. 2013CB632804, 2012CB315605), the National Natural Science Foundation of China (Grant Nos. 61176015, 61210014, 51002085, 61321004, 61307024, 61176059), and the National High Technology Research and Development Program of China (Grant No. 2015AA017101).

[†] Corresponding author. E-mail: zbhao@tsinghua.edu.cn

[‡] Corresponding author. E-mail: luoy@tsinghua.edu.cn