物理学报 Acta Physica Sinica

磁阱中超冷玻色气体临界行为的观测

王兵 朱强 熊德智 吕宝龙

Observation of critical behavior of ultra-cold Bose gas in a magnetic trap

Wang Bing Zhu Qiang Xiong De-Zhi Lü Bao-Long

引用信息 Citation: Acta Physica Sinica, 65, 110504 (2016) DOI: 10.7498/aps.65.110504 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.110504 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I11

您可能感兴趣的其他文章 Articles you may be interested in

有限温度下一维 Gaudin-Yang 模型的热力学性质

Thermodynamic properties of one-dimensional Gaudin-Yang model at finite temperature 物理学报.2015, 64(15): 156402 http://dx.doi.org/10.7498/aps.64.156402

Sierpinski 地毯上 S⁴ 模型的临界特性 Critical properties of the S⁴ model for Sierpinski carpet 物理学报.2015, 64(1): 016402 http://dx.doi.org/10.7498/aps.64.016402

非线性磁式压电振动能量采集系统建模与分析

Modeling and analysis of piezoelectric vibration energy harvesting system using permanent magnetics 物理学报.2014, 63(24): 240504 http://dx.doi.org/10.7498/aps.63.240504

用Weiss分子场理论对有外电场时铁电体系相变特征的研究

Study on the phase transitions of ferroelectric systems by Weiss's molecular field theory with an external field

物理学报.2012, 61(14): 140501 http://dx.doi.org/10.7498/aps.61.140501

磁阱中超冷玻色气体临界行为的观测*

王兵1)2)3) 朱强1)2)3) 能德智1)2)† 吕宝龙1)2)

1)(中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉 430071)2)(中国科学院武汉物理与数学研究所,中国科学院原子频标重点实验室,武汉 430071)

3) (中国科学院大学,北京 100049)

(2016年2月28日收到; 2016年3月21日收到修改稿)

超冷玻色气体为研究量子临界现象提供了一个非常干净的实验系统. 弱相互作用下的三维玻色气体的临界行为与⁴He发生超流相变时的临界行为类似, 都属于三维XY型普适类. 从正常流体到超流的量子相变过程中, 系统会经历一个从无序相到长程有序相的转变; 而在相变点附近, 系统参量会表现出一些奇点的特征. 本文从实验上观测到了静磁阱中超冷⁸⁷Rb玻色气体在凝聚体相变温度*T*c附近的临界行为. 原子气体从静磁阱中释放, 经过30 ms的自由飞行后, 通过吸收成像得到原子气体的动量分布; 然后从中扣除热原子气体的动量分布, 提取出空间上处于临界区域内的原子气体动量分布, 并对不同温度下的动量分布半高宽进行统计. 统计结果显示: 在非常接近相变温度*T*c时, 动量分布的半高宽突然减小, 表现出十分明显的奇点行为.

关键词: 临界区域, 临界行为, 相变温度, 动量分布半高宽 PACS: 05.70.Jk, 67.85.-d, 64.70.Tg

DOI: 10.7498/aps.65.110504

1引言

临界现象通常是指处于二阶相变的相变温度 或者气液相变的临界点附近的系统的热力学性 质^[1],它广泛地存在于不同物理系统中,例如:铁 磁相变^[2]、超导^[3,4]、金属绝缘相变^[5]和⁴He的超流 相变^[6]等.1995年,稀薄气体玻色-爱因斯坦凝聚 (BEC)的实现^[7-9]为人们研究量子相变的临界行 为提供了独特的机会.一维和二维玻色气体的临界 行为已经被广泛地研究^[10-12];而对于三维玻色气 体的临界行为,人们早期认为系统处于临界的温度 范围太窄以至于不可能在实验上进行研究^[13].然 而在2007年,Donner等^[14]在实验上观测了三维玻 色气体发生BEC 相变时的临界行为.该实验巧妙 地利用物质波波包干涉的方法研究了临界温度附 近的关联长度的发散行为.随后在2013年,Xiong 等^[15]利用 Talbot-Lau 干涉仪的方法也完成了对三 维玻色气体临界行为的观测.

BEC相变温度附近的量子临界行为的研究有 助于我们对BEC相变过程的理解. 四极 Ioffe 磁阱 (quadrupole-Ioffe configuration, QUIC)中⁸⁷Rb原 子气体的 BEC 相变与液氦的正常流体到超流的量 子相变一样都属于 λ -型量子相变.在临界温度 T_c 附近,系统的参量都表现出一种奇点行为: 当系统 参量越过临界点时,基态的性质发生不连续的变 化,即从无序到长程有序[14,16],而且这种不连续的 变化表现出类似尖端的特征[17,18].本文从实验上 观测了QUIC磁阱中超冷玻色气体的一种临界行 为. 不同于关联长度的发散行为[14,15],我们在实验 上观测到的是原子气体动量分布的奇点行为. 通过 对空间上处于临界区域内原子气体的动量分布半 高宽进行统计,发现在临界温度Tc以上,原子气体 的动量分布半高宽随着原子气体温度的降低而逐 渐减小;而当温度非常靠近Tc时,动量分布的半高 宽突然减小,表现出非常明显的奇点行为;继续降

^{*} 国家自然科学基金青年科学基金 (批准号: 11104322) 资助的课题.

[†]通信作者. E-mail: wssxdz@wipm.ac.cn

^{© 2016} 中国物理学会 Chinese Physical Society

低温度, 在*T*_c以下的很大温度范围内, 动量分布的 半高宽基本没有变化.

2 QUIC磁阱中的临界气体

对于 QUIC 磁阱中的玻色气体,有限尺寸效应 深刻影响着系统的临界行为^[13,19]. QUIC 磁阱中 原子气体的化学势是随着位置而缓慢变化的,如 果势阱中心的原子气体是临界的,那么由势阱中 心向外,原子气体就逐渐变为热原子气体 (thermal gas). 在有限温度的情况下,根据 Ginzburg 判据^[13,20],临界气体在空间上所占的区域半径不 能超过

$$L_j = 4\sqrt{2\pi a} \frac{k_{\rm B} T_{\rm c0}}{\hbar \omega_j},\tag{1}$$

其中, j = x, $y \pi z$, $\omega_x = \omega_y = \omega_{\perp}$ 为QUIC 磁 阱径向的囚禁频率, ω_z 为磁阱轴向的囚禁频率, a为⁸⁷Rb原子的s波散射长度, k_B 为玻尔兹曼常 数, $T_{c0} = 0.94\hbar\omega N^{1/3}/k_B$ 是不考虑有限尺寸效应 和相互作用情况下的原子气体的临界温度^[20,21], $\omega = (\omega_{\perp}^2 \omega_z)^{1/3}$, N为原子数, \hbar 为约化普朗克常数. 在临界区域之外, 原子气体是热原子气体,且动量 服从高斯型分布; 而在实验上, 原子气体样品的动 量分布可以从QUIC 磁阱中释放后的原子气体的 二维吸收成像直接获得; 所以, 我们可以从原子气 体样品的动量分布中减去热原子气体的动量分布 来获得临界区域内原子气体的动量分布.

当系统的温度T高于相变温度T_c时,QUIC磁 阱中原子气体样品的密度分布可以表示为^[21]

$$n(x, y, z) = \frac{N}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z} \times \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} - \frac{z^2}{2\sigma_z^2}\right), \quad (2)$$

其中, $\sigma_j = \sqrt{k_{\rm B}T/m\omega_j^2}$, m为⁸⁷Rb原子的质量. 那么, 临界区域内的原子数就可以表示为

$$N_{\rm c} = \int_V n(x, y, z) \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z, \tag{3}$$

其中积分区域V满足

$$\frac{x^2}{L_x^2} + \frac{y^2}{L_y^2} + \frac{z^2}{L_z^2} \leqslant 1$$

L_j 由 (1) 式得到.因此,实验上需要扣除的临界区 域外的原子在原子气体样品中所占的比例为

$$\alpha = (N - N_{\rm c})/N. \tag{4}$$

3 实 验

在实验中,我们需要从原子气体样品中提取出 不同温度下临界区域内的原子气体的动量分布.因 此,精确标定原子气体样品的温度是必要的.对于 临界温度以上的热原子气体和临界温度以下的原 子气体(不是纯净的BEC),它们分别服从高斯分布 和双模分布 (bimodal distribution)^[22], 所以它们的 温度都可以从自由飞行后的原子气体的动量分布 中获得,而对于临界温度附近的原子气体我们并不 清楚它服从哪种分布,所以无法直接通过拟合的方 法得到温度.为了精确标定临界气体的温度T,我 们的实验采用了类似于Esslinger研究组使用的方 法^[14]. 在实验中, 首先制备温度低于临界温度T_c 的原子气体样品,根据双模模型获得初始温度T_i; 然后让原子气体在 QUIC 磁阱中等待 $\Delta t = 500 \text{ ms}$ 的时间.此时,由于磁阱的噪声和背景气体的热碰 撞等因素所导致的加热效应,原子气体已经越过临 界温度成为热原子气体,这样可以利用高斯模型 获得另一个温度T_f,然后就可以得到原子气体在 QUIC磁阱中的加热率为 $\beta = (T_f - T_i)/\Delta t$. 在我 们的实验中,加热率为 $\beta = 0.348 \pm 0.078$ nK/ms. 然后,让初始制备好的原子气体样品在磁阱中等待 不同时间t,通过加热率和时间的乘积来精确地标 定原子气体的温度 $T = T_i + \beta t$.

在实验的开始,首先将制备到 $|F = 2, m_F = 2\rangle$ 的 ⁸⁷Rb 原子装载到 QUIC 磁阱中. QUIC 磁阱的 径向囚禁频率为 $\omega_{\perp} = 2\pi \times 205$ Hz,轴向囚禁频 率为 $\omega_z = 2\pi \times 18.7$ Hz. 然后对 QUIC 磁阱中的 原子进行射频诱导蒸发冷却,通过控制射频的截 止频率,将原子样品的温度控制在 $T = 0.79 T_{c0}$, 此时原子样品的原子数为 $N = 7.8 \times 10^5$. 接着, 让原子气体在磁阱中等待不同时间 t 后释放,经过 $t_{TOF} = 30$ ms 自由飞行,利用吸收成像技术获得原 子气体的二维动量分布.

图1显示了从原子气体样品的二维吸收成像 中提取出临界区域内原子气体的动量分布的实验 过程.图1(a)是原子气体自由飞行30ms后的二 维吸收成像,探测光的行进方向是沿着重力的反方 向(*x*轴方向);图1(b)中黑色实线是二维吸收成像 沿着*y*方向的积分,它反映的是原子气体样品沿着

图1 (网刊彩色)临界区域内原子气体的动量分布的提取过程 (a) QUIC 阱中原子样品经过 30 ms 自由飞行后的 二维吸收成像; (b) 黑色实线是原子气体的轴向动量分布,它是图 (a) 沿 y 方向的积分,红色虚线是需要扣除的临界 区域外的热原子气体的高斯波包; (c) 空间上处于临界区域内原子气体沿 QUIC 阱轴向的动量分布,它是由图 (b) 中 的黑线实线减去红色虚线所得

Fig. 1. (color online) Extraction of axial momentum distributions of atomic gases in critical region: (a) A two-dimensional absorption image of atomic sample released from QUIC trap after 30 ms time-of-flight; (b) the black line is the axial momentum distribution of atomic gases, which is obtained by integrating along y axis for Fig. (a), the red dash line is a gaussian curve determined by the thermal gas outside the critical region; (c) the axial momentum distribution of atom gases in critical region, which is obtained by subtracting the red dashed line from the black solid line in Fig. (b).

QUIC 阱 轴 向 (*z*方 向) 的 动 量 分 布, 图 1 (b) 中 红 色 虚 线 是 需 要 扣 除 的 临 界 区 域 外 的 热 原 子 气 体 所 确 定 的 高 斯 波 包, 高 斯 波 包 的 形 式 为 $\frac{N\alpha}{\sqrt{2\pi\sigma_z}} \exp(-(z - z_0)^2/2\sigma_z^2)$, 其 中, $\sigma_z = \sqrt{k_{\rm B}T(t_{\rm TOF}^2 + 1/\omega_z^2)/m}$, α 由 (4) 式 计 算 得 到, 在 我 们 的 实 验 中, α 的 典 型 值 约 为 89%; 图 1 (c) 是 临 界 区 域 内 的 原 子 气 体 沿 QUIC 阱 轴 向 的 动 量 分 布, 它 是 由 图 1 (b) 中 的 黑 色 实 线 减 去 红 色 虚 线 所 得.

4 实验结果及分析

为了对临界温度附近的临界行为进行定量的 分析,我们提取了不同温度下临界区域内原子气 体沿QUIC阱轴向的动量分布半高宽;并且在每个 温度点,我们重复实验至少10次.我们将温度范 围为 $0.91T_{c0} \leq T \leq 1.10T_{c0}$ 的实验数据进行了统 计.如图2所示,在原子气体温度远高于临界温度 ($T > 1.05T_{c0}$)时,原子气体的动量分布半高宽随着 温度的降低而减小;但是当温度继续降低,原子气 体的动量分布半高宽在温度为 $1.05T_{c0}$ 附近出现明 显的扭曲,表明原子气体从热原子气体逐渐转变为 临界气体;进一步降低温度,动量分布半高宽突然 减小,表现出非常明显的奇点行为.此时,原子气 体的温度非常接近临界温度*T*_c. 然后, 当温度越过临界温度*T*_c以后, 动量分布半高宽没有明显变化, 表明BEC 在QUIC阱轴向的动量变化非常小.

图 2 临界区域内原子气体的动量分布半高宽随温度的 变化关系 黑色点代表在一个温度点测量的动量分布的 半高宽的平均值,在每个温度点实验至少被重复10次;蓝 色实线是实验数据的经验拟合,代表动量分布半高宽变化 的趋势;插图是当温度非常接近临界温度时的实验数据的 放大

Fig. 2. Full width at half maximum of momentum distribution (FWHMMD) in the critical regime versus the temperature. For each black data point, at least ten independent runs were averaged. The blue line is an empirical fit, and has been drawn to guide eyes. The inset enlarges the region very near the critical temperature.

1996年, Giorgini等^[20]的理论工作中指出, 各向异性的三维简谐势阱中的玻色气体的临界温度 *T*_c相对于*T*_{c0}的偏移为

$$\delta T_{\rm c} \equiv T_{\rm c} - T_{\rm c0} = \left(-1.33 \frac{a}{a_{ho}} N^{1/6} - 0.73 \frac{\overline{\omega}}{\omega} N^{-1/3} \right) T_{\rm c0}, \quad (5)$$

其中, $\overline{\omega} = (\omega_x + \omega_y + \omega_z)/3$, $a_{ho} = \sqrt{\hbar/m\omega}$. 将 我们的实验参数代入上式, 结合 T_{c0} , 得到临界温度 $T_c = 0.928T_{c0}$. 在图 2 中, 原子气体动量分布半高 宽的最小值所对应的温度约为 0.955 T_{c0} , 它就是原 子气体的临界温度 T_c . 该数值与理论计算的临界 温度非常接近.

5 结 论

我们在实验上观测了临界区域内原子气体沿 QUIC 阱轴向动量分布的临界行为,并没有考虑其 他方向的动量分布. 原因在于QUIC势阱轴向的囚 禁频率远远小于径向的囚禁频率, 当原子气体从磁 阱中释放后,势阱中原子气体的化学势在QUIC阱 轴向上对自由飞行的原子气体的动量分布几乎没 有影响^[23],磁阱中原子气体的相互作用能大部分 都释放在QUIC径向上.本文从实验上观测了静磁 阱中超冷⁸⁷Rb原子气体在凝聚体相变温度附近的 临界行为. 就我们所知, 这方面的实验研究只有参 考文献 [14, 15] 中对原子气体关联长度的奇点行为 进行了测量,该实验测量了原子气体动量分布的奇 点行为. 从临界区域内原子气体的动量分布半高宽 随温度的变化关系得到原子气体由热原子气体转 变为临界气体是一个渐变的过程,临界气体先从势 阱的中心出现,逐渐向外扩展;当系统的温度非常 接近临界温度时,临界区域内原子气体的动量分布 半高宽突然减小,表明其完全转化为临界气体,此 时序参量的量子涨落完全支配系统的行为^[24].临 界气体的动量分布的观测为我们理解临界行为提 供了一个新的视角.

参考文献

- Huang K 1987 Statistical Mechanics (New York: John Wiley & Sons) pp392–415
- [2] Coleman P, Schofield A J 2005 Nature 433 226
- [3] Sachdev S 2003 Rev. Mod. Phys. 75 913
- [4] Li Z, Zhou R, Zheng G Q 2015 Acta Phys. Sin. 64
 217404 (in Chinese) [李政, 周睿, 郑国庆 2015 物理学 报 64 217404]
- [5] Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039
- [6] Gasparini F M, Kimball M O, Mooney K P, Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009
- [7] Anderson M H, Ensher J R, Matthews M R, Wieman C
 E, Cornell E A 1995 Science 269 198
- [8] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 *Phys. Rev. Lett.* **75** 3969
- [9] Bradley C C, Sacket C A, Tollett J J, Hulet R G 1995
 Phys. Rev. Lett. **75** 1687
- Köhl M, Moritz H, Stöferle T, Schori C, Esslinger T 2005
 J. Low. Temp. Phys. 138 635
- [11] Polkovnikov A, Altman E, Demler E 2006 Proc. Natl. Acad. Sci. U.S.A 103 6125
- [12] Hadzibabic Z, Kruger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118
- [13] Bezett A, Blakie P B 2009 Phys. Rev. A 79 033611
- [14] Donner T, Ritter S, Bourdel T, Ottl A, Kohl M, Esslinger T 2007 Science 315 1556
- [15] Xiong W, Zhou X J, Yue X G, Chen X Z, Wu B, Xiong H W 2013 Laser Phys. Lett. 10 125502
- [16] Sondhi S L, Girvin S M, Carini J P, Shahar D 1997 Rev. Mod. Phys. 69 315
- [17] Buckingham M J , Fairbank W M 1961 Progress in Low Temperature Physics (Vol. 3) (Amserdam: North-Holland) pp80–122
- [18] Feng M, Zhong Y P, Liu T, Yan L L, Yang W L, Twamley J, Wang H 2015 Nat. Commun. 6 7111
- [19] Damle K, Senthil T, Majumdar S N, Sachdev S 1996 Eur. Phys. Lett. 36 7
- [20] Giorgini S, Pitaevskii L P, Stringari S 1996 Phys. Rev. A 54 R4633
- [21] Pethick C J, Smith H 2008 Bose-Einstein Condensation in Dilute Gases (2nd Ed.) (New York: Cambridge University Press) pp21–28
- [22] Lü B L, Tan X Z, Wang B, Cao L J, Xiong H W 2010 Phys. Rev. A 82 053629
- [23] Mewes M O, Andrews M R, van Druten N J, Kurn D M, Durfee D S, Ketterle W 1996 Phys. Rev. Lett. 77 416
- [24] Ma S K 2000 Modern Theory of Critical Phenomena (New York: Westview Press) pp16–32

Observation of critical behavior of ultra-cold Bose gas in a magnetic trap^{*}

Wang Bing¹⁾²⁾³⁾ Zhu Qiang¹⁾²⁾³⁾ Xiong De-Zhi^{1)2)†} Lü Bao-Long¹⁾²⁾

 (State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China)

2) (Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences,

Wuhan 430071, China)

3) (University of Chinese Academy of Sciences, Beijing 100049, China)
(Received 28 February 2016; revised manuscript received 21 March 2016)

Abstract

Quantum criticality emerges when the collective fluctuations of matter undergo a continuous phase transition at zero temperature and has been a research focus in conventional condensed-matter physics over the past several decades. In the quantum critical regime, the exotic and universal properties are expected. These properties are independent of the microscopic details of the system, but depend only on a few general properties of the system, such as its dimensionality and the symmetry of the order parameter. The research of quantum criticality can not only help us to understand quantum phase transitions, but also provide a novel route to new material design and discovery.

Ultracold bosonic gases have provided a clean system for studying the quantum critical phenomena. The critical behavior of a weakly interacting three-dimensional (3D) Bose gas should be identical to that of ⁴He at the superfluid transition, which belongs to the 3D XY universality class. From the normal fluid to the superfluid, the system undergoes a phase transition from completely disorder to long-range order, while in the vicinity of the phase transition point, the system parameters will show some singularity characteristics. In this paper, we observe the critical behavior of ⁸⁷Rb Bose gas in a quadrupole-Ioffe configuration (QUIC) trap near the phase transition temperature T_c . A novel singularity behavior of the full width at half maximum of momentum distribution (FWHMMD) of atomic gas is discovered in the experiment. Prior to our experiment, we prepare a sample with 7.8×10^{5} ⁸⁷Rb atoms in the $5S_{1/2}|F = 2, m_F = 2$ state. Then the sample is held in a QUIC trap for a presetting period of time to control the temperature of atom sample precisely. During the holding time, the sample is heated up due to background gas collisions or fluctuations of the trap potential. In our experiment, the heating rate is deduced to be 0.348 ± 0.078 nK/ms from the absorption image. For a bosonic gas in a harmonic trap, critical gas can only cover a finite-size region due to a spatially varying density. We define the finite-size region as a critical region determined by the Ginzburg criterion. Then the FWHMMDs of atomic gas in the critical region are measured for different temperatures near the critical point. To this aim, we first extract the momentum distribution of atomic gas from the absorption image of the atomic clouds released from the QIUC trap after free expansion. Thus momentum distribution of atomic gas in the critical region can be extracted from the absorption image by subtracting the momentum distribution of thermal gas outside the critical region. According to the statistical results of the FWHMMD at different temperatures, we find that the FWHMMD suddenly reduces, thus revealing a very notable singularity behavior when the temperature is very close to the phase transition temperature $T_{\rm c}$.

Keywords: critical region, critical behavior, phase transition temperature, full width at half maximum of momentum distribution

PACS: 05.70.Jk, 67.85.-d, 64.70.Tg

DOI: 10.7498/aps.65.110504

^{*} Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104322).

[†] Corresponding author. E-mail: wssxdz@wipm.ac.cn