物理学报 Acta Physica Sinica

点源透过率测试系统精度标定与分析

李朝辉 赵建科 徐亮 刘峰 郭毅 刘锴 赵青

Analysis and calibration of precision for point source transmittance system

Li Zhao-Hui Zhao Jian-Ke Xu Liang Liu Feng Guo Yi Liu Kai Zhao Qing

引用信息 Citation: Acta Physica Sinica, 65, 114206 (2016) DOI: 10.7498/aps.65.114206 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.114206 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I11

您可能感兴趣的其他文章 Articles you may be interested in

新型离轴反射变焦距光学系统的多视场检测方法

Novel multiple field of view detection method for the off-axis reflection zoom optical system 物理学报.2016, 65(8): 084208 http://dx.doi.org/10.7498/aps.65.084208

反射式棱栅对展宽器用于啁啾脉冲放大激光的研究

A reflective grism pair stretcher for chirped pulse amplification 物理学报.2013, 62(9): 094202 http://dx.doi.org/10.7498/aps.62.094202

微生物远红外波段复折射率测定及模型构建

Determination and model construction of microbes' complex refractive index in far infrared band 物理学报.2013, 62(9): 094218 http://dx.doi.org/10.7498/aps.62.094218

基于光线光学的非线性自聚焦现象的仿真分析

Simulation and analysis of nonlinear self-focusing phenomenon based on ray-tracing 物理学报.2013, 62(4): 044202 http://dx.doi.org/10.7498/aps.62.044202

圆锥边界附近激光空泡溃灭行为的研究

Investigation of the collapse of laser-induced bubble near a cone boundary 物理学报.2012, 61(17): 174210 http://dx.doi.org/10.7498/aps.61.174210

点源透过率测试系统精度标定与分析

李朝辉^{1)2)†} 赵建科¹⁾ 徐亮¹⁾ 刘峰¹⁾ 郭毅¹⁾ 刘锴¹⁾ 赵青¹⁾²⁾

1)(中国科学院西安光学精密机械研究所,西安 710119)

2) (中国科学院大学, 北京 100049)

(2016年2月1日收到;2016年3月1日收到修改稿)

点源透过率 (PST) 测试系统是评价光学系统杂光抑制水平高低的关键设备,其系统精度的标定是研制难 点,针对此设计了一套用于点源透过率杂散光测试系统精度标定的校准镜头.利用 Tracepro 建模分析了校准 镜头在不同离轴角下的 PST 值,并用此系统对校准镜头不同离轴角下的 PST 值进行了实测,与其理论分析 值进行比对完成设备精度的标定,同时通过实测数据分析了测试误差,给出了系统测试精度和测试极限水平. 结果表明,在双柱罐内洁净度为 ISO 7级的环境水平下,系统的可见光 PST 测试极限水平为10⁻⁸,测试精度 对数值优于 0.5,测量重复性为7.9%,根据对探测系统探测能力的评估,系统的 PST 极限测试水平为10⁻¹⁰.

关键词: 点源透过率, 校准镜头, 双柱罐, 精度 PACS: 42.87.-d, 42.15.Dp, 42.15.Eq

1引言

空间光学系统长时间工作在视场外有强烈辐射的环境下,点源透过率(point source transmittance, PST)是评价此类光学系统杂光抑制水平的 重要指标,其与杂光辐射的入射角 θ 和系统的工作 谱段有关,而与杂光光源的辐射强度无关.PST定 义为:光学系统轴外视场角为 θ 的点源辐射,经过 光学系统后在其像面处的辐照度 E_o ,与其入瞳处 辐照度 E_i 的比值.显然PST越小,则系统的杂光 抑制能力越强,系统性能越好.

国外对光学系统杂光的分析与研究工作起步 较早,在公开发表的文献中介绍了不少关于PST测 试设备的研制以及成功应用于光学系统测试的例 子.例如:1976年,Utah State University的Space Dynamics Laboratory建立了一套称为Black Hole 的PST测试系统,其对Cassini Narrow Field相机 的PSRR(PSRR是视场外杂光在像面上的总辐射 通量与中心视场像面的总辐射通量之比)的测试水 平达到10⁻¹²量级^[1],该设备目前用于美国绝大部

DOI: 10.7498/aps.65.114206

分航天相机的杂散光测试; 2008年, Ball Aerospace & Technologies Corp建立了一台新型杂散光测试 设备 SLTF,该设备引入双柱筒结构,通过反射掉 被测设备表面的散射光线达到杂散光抑制效果, 文献中指出在洁净度为5级环境下PST测试能力 优于 10⁻⁹ 量级^[2]; 2008年,美国 Breault Research Organization 设计了一套杂光测试装置,该装置准 直主镜置于真空罐中,粗糙度为1 nm,可用来测量 可见及红外波段的点源透过率和背景热辐射,文 献中指出,利用该系统完成了口径 0.3 m 的某空间 遥感系统的杂光测试,实验结果可见光 PST 小于 10⁻⁵,红外 PST 小于 10⁻⁶ [3].

国内对于点源透过率的研究起步较晚,进展较为缓慢. 根据现有的文献报道, 1996年, 中国科学院成都光电技术研究所廖胜等^[4] 搭建了一套红外光学系统的PST测试装置, 该装置使用 CO₂ 激光器作为光源, 利用高速旋转的发散镜产生近似准直的光束, 加入锁相放大器和斩波器进行信号采集, 根据文献中的数据结果, 其测试的 RC 系统的 PST 最低水平为10⁻⁶; 2011年, 哈尔滨工业大学空间光

[†]通信作者. E-mail: lizhaohui@opt.cn

^{© 2016} 中国物理学会 Chinese Physical Society

学工程研究中心在实验室搭建了一套无中心遮拦 的离轴抛物面反射式杂光测量装置,该系统的光源 采用高压短弧氙灯,模拟光源准直系统采用离轴抛 物面镜,其对于口径为300 mm、全视场为1.5°的卡 塞格林式望远系统测量结果显示 PST 最低水平可 达到10⁻⁷量级^[5].

以上信息表明, PST 是空间光学系统的重要测 试指标,与国外相比,国内尚处于实验室研究阶段, 搭建的PST设备主要用于实验室研究,对其环境 控制、精度分析与标定的研究欠缺, 尚不能满足型 号任务的需要. 随着我国光学技术以及探测器件的 发展,大部分空间光学系统都具有高分辨率、低阈 值的特点,它们对杂光抑制水平和评价指标的要求 也越来越高. 基于此, 在参考国内外成功设计的前 提下,建立了一套三波段点源透过率测试系统用于 航天遥感相机的杂散光测试,系统组成如图1所示, 系统现场实物图如图2所示,主要由激光光源、准 直光管、挡光屏、标定装置、探测器、高精度转台和 双柱罐组成. 系统可测量口径小于1000 mm的光 学系统,测试波段覆盖可见、短波红外及长波红外, 测试极限可见光为10-8,短波红外为10-6,长波红 外为10⁻⁸.在PST为10⁻⁶以内时,测试精度的绝 对值 log(测试值/分析值) 小于等于 0.5.

图1 点源透过率测试系统组成图

Fig. 1. Testing system compositions of point source transmittance.

图 2 点源透过率测试系统实物图 Fig. 2. Physical map of testing system of point source transmittance.

由于该系统为国内第一套用于航天遥感相机 杂散光点源透过率的测试设备,目前无更高精度的

系统来对其进行标定,因此最可靠的标定方法只能 是通过建模仿真来逼近光学系统的PST"真值",以 此真值与光学系统的测试值进行比对从而对该测 试系统进行精度评价. 散射理论以及物体表面双 向反射分布函数(BRDF)的研究为建模仿真提供 了理论基础,目前,大量的基于BRDF实验测量数 据的统计模型已经建立,其中经验模型如指数分布 BRDF模型^[6],半经验模型如ABg模型、五参量模 型、Wolf模型、Torrance-Sparrow模型^[7-9],它们的 建立使得大量常见材料表面属性得以确定. 随着探 测技术的发展以及材料表面属性描述精细化的要 求,在上述统计模型技术上更多的修正理论得以提 出,如微小面元的散射理论、微扰理论、Kirchhoff近 似迭代以及遗传算法用于粗糙表面的BRDF 参量 获取等^[10-13],这些修正理论弥补了因测试条件限 制导致的表面属性不完备的缺陷. 综上所述, 采用 现有的BRDF测试手段,运用可靠的统计模型及修 正方法来获得尽可能精确的建模结果是可行的.因 此,采用校准镜头建模分析与实际测试PST曲线 对比的方法来对该设备精度进行评价,本文仅就可 见光波段(0.66 µm)的标定进行分析说明.

2 校准镜头设计及建模

2.1 校准镜头设计

校准镜头的设计思想是光学系统镜片数量尽量少,整体结构接口可靠,安装重复性好,遮光罩设计结构简单,便于加工制造.这里设计了一种双高斯结构镜头,光学系统设计参数如表1所列,透镜材料使用成都H-LAK3玻璃,表面镀增透膜,该材料在0.66 μm波段透过率约99%.

表 1 校准镜头光学参数 Table 1. Optical parameters of calibration lens.

工作波段	0.66 µm	
焦距	160 mm	
视场	20°	
F 数	4	

图 3 所示为校准镜头系统结构图,系统由遮光 罩、主镜框、透镜组、探测器、暗室、连接底板组成, 为一套完整的标定系统.为了进一步达到抑制杂光 的目的,遮光罩和主镜框内壁均喷涂 Z306 黑漆进 行消光处理.

Fig. 3. System structure of calibration lens.

2.2 建模分析

校准镜头系统设计完成之后,利用 Tracepro 软 件对其进行杂散光分析,分析前需对遮光罩涂层、 透镜材料及表面、探测器表面等的属性进行设置, 使追迹光线可以按照指定路径以相应的概率分布 进行追迹,在大量的光线追迹下趋近最真实的结 果. 无论是消光黑漆还是光学元件, 其表面属性 皆由双向散射分布函数 BRDF 来定义,由于 BRDF 测试设备的局限性,许多材料表面的BRDF并不能 得到完整精确的测试结果,因此对某些材料进行模 型估算或者对其测试数据进行拟合处理成为当前 的研究热点. 在对不同材料 BRDF 的研究过程中, 提出了大量工程统计模型,如ABg模型、三参量模 型、五参量模型、Wolf模型、Torrance-Sparrow模型 等[6-9],了解并合理选用这些模型将直接影响建模 的精确性. 校准镜头透镜元件表面为光滑透明表 面,适合使用准幂数倒数模型(即ABg模型),由于 其表面属性暂无系统进行实测,并且其透过率极 高,经过分析其不是影响PST变化的主要原因,因 此可以通过推算的方式给定ABg三个参数,根据 Harvey-Shack模型, 当表面粗糙度小于等于波长, 即 $\sigma ≤ \lambda$ 时,材料表面的双向散射分布函数由(1) 式给出 [14]:

$$BRDF(|\sin\theta_{\rm s} - \sin\theta_{\rm i}|) = b_0 \left[1 + \left(\frac{|\sin\theta_{\rm s} - \sin\theta_{\rm i}|}{l} \right)^2 \right]^{s/2}, \qquad (1)$$

其中,

$$b_0 = \frac{4\pi^2 \Delta n^2 QM}{\lambda^4},\tag{2a}$$

$$l = \frac{\lambda}{N},\tag{2b}$$

$$s = -C.$$
 (2c)

以上公式中, θ_s 表示散射方向的天顶角; θ_i 表示入 射光线的天顶角; Δn 表示散射分界面折射率差, 对 于镜面 $\Delta n = 2$; Q为偏振因数, 这里取1; M, N, C为K-correlation 模型参数, M为功率谱密度低频 部分的常数值, N为功率谱密度翻转点处的横坐 标值, C为斜率. ABg模型中的三个参数可以通 过Harvey-Shack模型系数进行换算, 换算公式如 下^[10]:

$$A = b_0 N, \tag{3a}$$

$$B = l^{-s}, \tag{3b}$$

$$q = -s. \tag{3c}$$

将 (2a)—(2c) 式代入 (3a)—(3c) 式得到透镜元 件表面属性的 ABg 参数, 最终代入到软件中进行 计算的表面属性数据列于表 2.

表 2 H-LAK3 表面属性数据 Table 2. Surface property data of H-LAK3.				
	А	В	g	
BRDF	0.000138	0.0001	2	
吸收率	0.001			

0.003

0.988

镜反射率

透过率

遮光罩和主镜框内壁材料均为Z306黑漆,由 于轴外视场的一次散射均取决于遮光罩和主镜框 内壁的结构以及散射特性,分析表明遮光罩和主 镜框内壁材料表面属性是影响PST的变化的主要 原因.为了得到最趋近真实值的仿真结果,必须对 Z306黑漆属性进行精确建模.虽然国内外已经有 不少关于Z306黑漆的分析数据,但是迄今为止还 没有一种模型能够完美解释Z306黑漆的散射行为. 为了使校准镜头达到标定效果,采取实测Z306表 面属性的方法来将分析误差降低到最小.本文建模 所用的Z306表面属性数据为使用德国REFLET系 统实测得到,考虑到测试数据量庞大,而入射面内 的BRDF数值为影响主因,因此选取测试方位角为 0°的数据导入.图4所示为Z306黑漆在不同入射 角度下测量数据的双对数图.

图4中的测试结果表明,Z306黑漆散射在小角 度近似为朗伯体,随着入射角度增大,其表现出强 烈的前向散射特性,而ABg模型仅能拟合其后向散 射特性,故ABg模型不再适用.为此采用Tracepro 内置的Asymmetric Table模型,其参数定义如下: scatter beta 表示向量 $\beta - \beta_0$ 的模, scatter azimuth 表示 $\beta - \beta_0$ 的方位角, 对于测试方位角为0°和180° 的部分, $|\beta - \beta_0|$ 简化为 $|\sin \theta - \sin \theta_0|$, 其中 θ 为散 射光线的天顶角, θ_0 为镜反射光线的天顶角.

图 4 (网刊彩色) 不同入射角度下 Z306 黑漆测试数据双对数图 Fig. 4. (color online) Double logarithmic graph of testing data under different incident angles of Z306.

完成校准镜头系统各结构表面属性设置之后, 对校准镜头的PST进行了仿真分析,分析结果如 图5所示.

图5 校准镜头PST分析值

Fig. 5. PST analysis value of calibration lens.

图 5 中给出了校准镜头在离轴角±80°范围内的PST分析值,其中规避角为±5°.分析结果表明,离轴角大于15°时镜头的PST值迅速下降约1个数量级,离轴角30°以外PST值趋于稳定.

3 PST测试及数据分析

将校准镜头安装在点源透过率测试系统转台上,对其离轴角范围为±5°—±80°的PST进行了

测试,校准镜头PST测试实物图如图6所示,测试结果如图7所示.

图 6 (网刊彩色) 校准镜头 PST 测试实物图 Fig. 6. (color online) PST testing physical map of calibration lens.

图7 (网刊彩色) 校准镜头 PST 测试值

Fig. 7. (color online) PST testing values of calibration lens.

图7中三条曲线为重复3次测量的结果,用来 验证系统的测试稳定性.数据表明,该系统的全局 重复测试精度为7.9%.PST曲线在离轴角30°以 外并不完全对称,其原因可能与镜头遮光罩加工制 造误差有关,此外,校准镜头在装调过程中也会产 生一些不对称因素.校准镜头在离轴角为±80°时 出现了"翘尾"现象,这是由于双柱罐的消杂光原 理引起的,双柱罐通过不共圆心的两个圆柱形罐 体,使得一次散射杂光永远不会沿原路返回,从而 达到消杂光的目的,实验中校准镜头离轴角最大测 试到了±80°,已经接近90°边缘,而±90°离轴角位 置双柱罐两圆心处于同一条直线上,光线满足原路 返回的条件,因此导致测试的PST值出现"翘尾" 现象. 图 8 所示的两条曲线分别为校准镜头的 PST 分析值和测试值,数据表明,PST 在 10⁻⁶ 以内时, 满足 log(测试值/分析值)的绝对值小于等于 0.5 的 精度要求,PST 在 10⁻⁶ 以外时,由于环境、遮光罩 及镜头表面散射影响,偏离程度变大.此外,在离 轴角为 12° 时,校准镜头的 PST 曲线左右两边出现 对称性"尖峰"现象,这可能与镜头遮光罩和主镜框 内壁结构有关,PST 的分析值曲线为单调递减,并 未出现"尖峰"现象,经过分析,可能原因有:1)材 料表面散射属性测试以及计算误差,导致引入的属 性不完备;2)装调过程中某一结构件(如隔圈)出现 的前后偏移未引入到模型中.

图 8 (网刊彩色) 校准镜头 PST 分析值与测试值对比 Fig. 8. (color online) Comparison of PST analytical and testing values of calibration lens.

4 测试误差分析

校准镜头PST测试的误差主要来源于光源稳 定性、探测器线性度、空气洁净度和双柱罐结构及 表面散射.其中,光源稳定性和探测器线性度主要 影响测试数据的重复测试精度,此部分为随机误 差,空气洁净度和双柱罐结构影响PST测试极限, 此部分为系统误差.

对点源透过率测试系统的光源稳定性和探测 器线性进行了标定,其光源稳定性为3.6%/10 h,探 测器在10⁸倍动态范围内,线性度优于5.1%.因此, 由光源稳定性和探测器线性度引起的测试误差为 $\Delta = \sqrt{(3.6\%)^2 + (5.1\%)^2} = 6.2\%.$

为了评估环境洁净度对校准镜头PST测试值 的影响,用粒子计数器对双柱罐内的空气洁净度 进行了测试,分别在空气洁净度达到ISO 8级和 ISO 7级时,对校准镜头的PST进行了测试,相应 的PST测试曲线如图9所示. 从图 9 中可以得出, 在空气洁净度为 ISO 8 级时, 校准镜头 PST 测试极限水平为10⁻⁷, 测试时把将校准镜头移出光路测得双柱罐内空气散射引起的 PST 值约4×10⁻⁷; 在空气洁净度为 ISO 7 级时, 校准镜头 PST 测试极限水平为10⁻⁸, 测试时把将校准镜头移出光路测得双柱罐内空气散射引起的 PST 值约3×10⁻⁸. 根据数据分析可知, 在探测器灵敏度足够的情况下, PST 的测试极限主要取决于空气洁净度, 同时, 上述空气散射引起的 PST 值的测试结果还包含了双柱罐表面尘埃微粒散射造成的影响, 因此提高空气和双柱罐内壁的洁净度是提高 PST 测试极限的主要手段.

图9 (网刊彩色) 空气洁净度为 ISO 8 级与 ISO 7 级时校 准镜头 PST 测试值对比

Fig. 9. (color online) Comparison of testing values between class ISO 8 and ISO 7 of calibration lens.

双柱罐结构对 PST 测试极限的影响主要在于 大离轴角度的 PST 测试时,由于双柱罐的固有结构 造成散射光线镜像返回,从而在 PST 曲线两端出现 "翘尾"的现象.图10为散射光线在双柱罐内的追 迹图,图中光路1散射光线由于双柱罐圆心C1,C2 不共心,所以一次反射光线不会原路返回,这也是 双柱罐抑制杂光的基本原理;光路2出现的情形为 被测相机离轴角较大(通常在±70°以上),双柱罐 圆心基本共线从而使反射光线进入相机,这种情况 可以通过增大双柱罐尺寸(即圆柱直径)来尽量避 免;光路3为被测相机离轴角与双柱罐圆心共线的 情形,此时反射光线满足原路返回条件.因此,校 准镜头 PST 测试值在离轴角接近 90°时出现的"翘 尾"现象主要是由于光路2和光路3所示的情形引 起,前者可通过改变双柱罐尺寸消除,后者为双柱 罐结构引起,无法消除,一般相机测试时,应尽量避免相机离轴角与双柱罐圆心共线的情况.

图 10 双柱罐内散射光线追迹图 Fig. 10. Ray tracing path of scattering rays in double cylindrical chamber.

5 结 论

本文在建立点源透过率测试系统的基础上,通 过对校准镜头的设计和杂散光分析,给出了一般透 镜元件以及涂层表面属性数据的处理方法,对PST 的建模分析具有指导意义,此外文中对PST测试曲 线的形状进行了详细讨论,给出了相应的分析,为 光学系统的杂散光设计提供了参考.通过对校准镜 头进行PST测试,完成了点源透过率测试系统的 测试精度的评价分析,数据表明,点源透过率测试 系统的测试精度和探测能力达到了要求.此外本系 统探测器件拥有三挡增益,测试由于环境散射造成 的PST影响时,只用到第二档,第三档尚有100倍 增益未使用,因此估计在环境洁净度优于ISO 6级 时,系统的PST测试能力极限可达10⁻¹⁰量级.

参考文献

- [1] Kemp J C, Wyatt C L 1977 Opt. Eng. 16 164412
- [2] Fleming J, Grochocki F, Finch T, Willis S, Kaptchen P 2008 Proc. SPIE **7069** 70690O
- [3] Peterson G L 2008 Proc. SPIE **7069** 70690M
- [4] Liao S, Shen M Z 1996 J. Infra. Milli. Wave. 15 375 (in Chinese) [廖胜, 沈忙作 1996 红外与毫米波学报 15 375]
- [5] Wang Z L, Gong Z Q, Zhang W, Wang F G 2011 Opt. Tech. 37 401 (in Chinese) [王治乐, 龚仲强, 张伟, 王付刚 2011 光学技术 37 401]
- [6] Gong Y J, Wu Z S 2009 Acta Phys. Sin. 58 6227 (in Chinese) [宮彦军, 吴振森 2009 物理学报 58 6227]
- [7] Sun L J, Tian Z S, Ren X Y, Zhang Y C, Fu S Y 2014
 Acta Phys. Sin. 63 134211 (in Chinese) [孙兰君, 田兆硕,
 任秀云, 张延超, 付石友 2014 物理学报 63 134211]
- [8] Sun L M, Zhao J L, Ren J, Zhang H J 2008 Acta Photon. Sin. 37 2529 (in Chinese) [孙礼民, 赵建林, 任驹, 张 好军 2008 光子学报 37 2529]
- [9] Yuan Y, Sun C M, Zhang X B 2010 Acta Phys. Sin. 59
 2097 (in Chinese) [袁艳, 孙成明, 张修宝 2010 物理学报
 59 2097]
- [10] Fan M, Chen L F, Li S S, Tao J H, Su L, Zou M M 2014 *Chin. Phys. B* 23 104203
- [11] Ren X C, Guo L X 2008 Chin. Phys. B 17 2491
- [12] Luo W, Zhang M, Zhou P, Yin H C 2010 Chin. Phys. B 19 084102
- [13] Guo L X, Gou X Y, Zhang L B 2014 Chin. Phys. B 23 114102
- [14] Fest E C 2013 Stray Light Analysis and Control (Washington: SPIE) pp62–75

Analysis and calibration of precision for point source transmittance system

Li Zhao-Hui^{1)2)†} Zhao Jian-Ke¹⁾ Xu Liang¹⁾ Liu Feng¹⁾ Guo Yi¹⁾ Liu Kai¹⁾ Zhao Qing¹⁾²⁾

1) (Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi'an 710119, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 1 February 2016; revised manuscript received 1 March 2016)

Abstract

Owing to space optical system working for a long time outside the field of view, where there is strong background radiation, and the fact that the point source transmittance (PST) is an important evaluation indicator for stray light suppression of this optical system, the development of stray light equipment for testing PST has received more and more attention. Though the development of PST testing system has been extensively studied, none of them elaborate on the calibration of the PST testing system. Besides, most of the PST testing systems are at a laboratory research stage, and the calibration of neither testing stability nor accuracy is recognized. Therefore, on the basis of the PST testing system established, one calibration lens is designed to calibrate the PST testing system. By comparing the measured PST values of the calibration lens with the analyzed values, the PST testing system can be evaluated. The calibration lens model is built to analyze PST values at different off-axis angles by using the ray tracing software Tracepro. We consider the accuracy of modeling, and on the basis of simplifying the structure design, we measure bidirectional reflectance distribution function values of the painted surface of the calibration lens, and then estimate values of lens surface from Harvey-Shack model and PSD theory by taking these property data into the model of simulation. Ultimately PST analyzed values of calibration lens can be obtained. Finally, by comparing the measured values of calibration lens, which are tested by using PST testing system, with the analyzed values, the calibration of the PST testing system is completed. In the PST testing process of calibration lens, by analyzing the data at different off-axis angles, the accuracy of repeated measurements and threshold of PST testing system can be obtained. At the same time, testing errors caused by the stability of light source, detector linearity, air scattering and structure of double cylindrical chamber are analyzed through the testing data. The data show that when double cylindrical chamber clean class is ISO 7, the PST threshold of this equipment is 10^{-8} , and the accuracy of repeated measurements is 7.9%. Taking into account the detection capability, the PST threshold of this equipment is 10^{-10} when environmental condition is better than ISO 6.

Keywords: point source transmittance, calibration lens, double cylindrical chamber, precisionPACS: 42.87.-d, 42.15.Dp, 42.15.EqDOI: 10.7498/aps.65.114206

[†] Corresponding author. E-mail: lizhaohui@opt.cn