物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

室温合成非晶三硫化钼析氢催化剂的性能调制及其在串联制氢器件中的应用

晋中华 刘伯飞 梁俊辉 王宁 张奇星 刘彩池 赵颖 张晓丹

Modulating catalytic capacities of room-temperature synthetized amorphous molybdenum trisulfide hydrogen evolving catalysts and their applications to in series solar water splitting devices in series Jin Zhong-Hua Liu Bo-Fei Liang Jun-Hui Wang Ning Zhang Qi-Xing Liu Cai-Chi Zhao Ying Zhang Xiao-Dan

引用信息 Citation: Acta Physica Sinica, 65, 118801 (2016) DOI: 10.7498/aps.65.118801 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.118801 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I11

您可能感兴趣的其他文章 Articles you may be interested in

二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用

Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells 物理学报.2016, 65(11): 118802 http://dx.doi.org/10.7498/aps.65.118802

新型碳材料在钙钛矿太阳电池中的应用研究进展

Progress of new carbon material research in perovskite solar cells 物理学报.2016, 65(5): 058801 http://dx.doi.org/10.7498/aps.65.058801

类桑拿法制备的周期性结构 Mo 金属催化电极及其在电解水制氢中的应用

Sauna-like process prepared periodic molybdenum metal catalytic electrodes and their applications in water reduction

物理学报.2016,65(4):048801 http://dx.doi.org/10.7498/aps.65.048801

后退火增强氢化非晶硅钝化效果的研究

Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon

物理学报.2015, 64(19): 198801 http://dx.doi.org/10.7498/aps.64.198801

Bathocuproine/Ag复合电极对于聚合物光伏器件效率和稳定性的影响

Effects of bathocuproine/Ag composite anode on the performances of stability polymer photovoltaic devices

物理学报.2015, 64(10): 108801 http://dx.doi.org/10.7498/aps.64.108801

室温合成非晶三硫化钼析氢催化剂的性能调制 及其在串联制氢器件中的应用*

晋中华¹⁾²⁾ 刘伯飞²⁾ 梁俊辉²⁾ 王宁²⁾ 张奇星²⁾ 刘彩池¹⁾ 赵颖²⁾ 张晓丹^{2)†}

1) (河北工业大学材料科学与工程学院, 天津 300130)

2) (南开大学光电子薄膜器件与技术研究所, 光电子薄膜器件与技术天津市重点实验室, 光电信息技术科学教育部重点实验室, 天津

300071)

(2015年12月29日收到;2016年3月4日收到修改稿)

高催化活性、低成本、良好工艺兼容性以及高稳定性的析氢催化剂是实现一体化光电化学水解制氢器件 的关键,然而传统的贵金属催化剂由于储量稀缺、成本高昂而严重限制了光电化学水解制氢器件的产业化进 程.本文在室温下通过湿法化学合成法制备了高催化活性、成本低廉以及工艺兼容性好的非金属非晶三硫 化钼析氢催化剂,并研究了不同催化剂滴涂量对其催化活性以及串联制氢器件制氢性能的影响.结果表明, 存在最优化非晶三硫化钼催化剂滴涂量以获得最佳催化活性(10 mA/cm² 电流密度对应电势达 260 mV vs. RHE(可逆氢电极),塔菲尔斜率达 68 mV/dec),其粗糙表面以及多孔结构可获得更大的电化学接触面积以促 进析氢反应.进一步将其作为光阴极应用于串联制氢器件,可有效降低过电势损失和提高光生电流密度输出, 与光阳极结合有望提高制氢效率.

关键词:催化剂,三硫化钼,滴涂量,催化活性 PACS: 88.20.fn, 88.30.E-, 88.40.H-, 82.65.+r

1引言

全球工业经济的发展导致化石能源逐渐枯竭, 绿色环保可持续的新能源逐渐引起人们的广泛关 注.氢能由于其可电解水制备、产物安全无污染以 及可存储等特点,成为替代化石能源的首选.相比 于传统的电解水制氢方法,光电化学水解制氢由于 采用取之不尽、用之不竭、清洁以及可持续供给的 新能源——太阳能来驱动水分解,因此逐渐成为低 成本制氢并促进其进一步产业化的"阳光经济"解 决方案.

为提高光电化学水解制氢器件的效率, 需在满 足所需水解电压的基础上, 提高其电流输出, 而这 需要从最大化光吸收、低复合载流子输运、100%载

DOI: 10.7498/aps.65.118801

流子收集效率和提高半导体/电解液界面催化反应 速率四个方面进行考虑^[1],其中提高半导体/电解 液界面催化反应活性对于降低过电势以及提高电 流输出至关重要.因此,寻找高催化活性、工艺兼容 性强、低成本以及高稳定的催化剂成为光电化学水 解制氢研究的热点.

传统的高催化性能析氢反应(HER)催化剂为 贵金属及其合金,如铂、钌、铱等,然而其储量稀缺, 价格高昂,严重限制了制氢器件的产业化进程^[2]. 高储量活性镍合金虽成本低廉,催化活性好,然而 其在酸性电解液中极不稳定^[3].低成本、高催化活 性非金属类催化剂为其产业化进程指明了方向.其 中硫化钼材料作为非金属催化剂,在酸性环境中 具有高催化活性和稳定性而成为析氢催化剂的首 选^[4,5].基于催化剂的工艺兼容性以及进一步应用

* 科技部国际合作项目 (批准号: 2014DFE60170) 和高等学校博士学科点专项科研基金 (批准号: 20120031110039) 资助的课题.

© 2016 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: xdzhang@nankai.edu.cn

光电化学水解制氢器件的考虑,本文在室温下通过 湿法化学合成了非晶三硫化钼(a-MoS₃)析氢催化 剂,该方法简化了复杂的工艺流程,如超高的真空 条件[6]、高温退火处理[3]、硫化工艺[7]及电沉积工 艺^[8]等,其室温合成的特性也使之可广泛应用于 不同类型的基底形成一体化制氢器件.同时,为提 高非晶三硫化钼的催化活性,除广泛报道的纳米结 构设计以及共催化等[5]方法外,工艺参数的调制对 催化剂性能也至为重要. 本文同时以溅射钼的绒 面二氧化锡透明导电氧化物 (rFTO-Mo) 作为衬底 来研究不同的a-MoS3 析氢催化剂的滴涂量对其催 化性能的影响.实验表明,存在最优化的a-MoS₃ HER催化剂滴涂量以提高其HER反应活性,其粗 糙表面以及多孔结构可有效增大催化剂纳米粒与 电解液的有效电化学接触面积,从而有效提供更多 的催化活性点以促进HER催化反应.进一步将之 作为光阴极催化剂应用于串联制氢器件,可有效改 善串联制氢器件光生电流密度输出,有潜力获得更 高的制氢效率.

2 实 验

将1.2g七钼酸铵添加到0.2 M (mol/L)的硫酸 溶液中作为钼源,将0.15g的硫化钠添加到24 mL 的去离子水中作为硫源,并将两种溶液迅速混合并 搅拌均匀,经离心处理后将所合成的a-MoS₃纳米 颗粒分离,随后加入15 mL的异丙醇,搅拌、清洗、 静止后将上层的清液移除,加入2.5 mL的异丙醇, 置于超声容器中超声波分散15 min,获得a-MoS₃ 分散液.通过控制垂直滴定到rFTO-Mo衬底上的 滴数,来制备不同滴涂量三硫化钼样品(0.2,0.5, 0.7 mg/cm²).

为表征不同滴涂量催化剂表面形貌,采用 JEOLJSM-6700F型扫描电子显微镜(SEM)测试 其俯面和断面图,并通过测量获得催化剂厚度.采 用PARSTAT-4000型电化学工作站测试不同样品 的电化学特性,包括线性扫描曲线(LSV)、塔菲尔 曲线(Tafel)以及电化学阻抗谱(EIS)等.

3 结果与讨论

实验证明,催化剂的晶体结构及有效催化活性 区对催化剂催化活性有着显著影响^[9].片状六角形 结构的块状硫化钼晶体催化剂,通过Li插入剥离法 制备的1T金属相催化剂比2H半导体相具有更好的HER催化活性^[10].密度泛函理论计算证明,平 头三角形结构的硫化钼纳米晶的Mo边原子氢吸附 自由能非常接近于0,作为催化活性点相比于硫边 具有更好的催化性能^[11].因此,如何最大化提高表 面催化活性点密度以提高催化活性至为重要.除了 通过设计纳米粒、纳米线以及多孔结构等提高催化 剂的有效活性表面积,采用非晶材料结构也可达到 这一目的.本实验中采用的非晶相结构硫化钼催化 剂,由于其长程无序性以及额外引入的缺陷,相比 于晶体结构硫化钼催化剂,其存在多种类型以及更 高密度的催化活性点^[4]以参与HER反应,因此可 能存在更高的HER催化活性.

由于HER催化剂的催化活性与电化学表面 积、催化活性点数量以及负载衬底电导率等密切 相关,因此提高催化活性点数量对于提高a-MoS₃ HER催化剂的催化活性具有非常重要的作用.为 此,我们研究了a-MoS3催化剂在rFTO-Mo衬底表 面不同滴涂量对其HER催化性能的影响.表面滴 涂量不同而造成的催化剂厚度以及在负载表面的 分布差异,与a-MoS₃ HER 催化剂有效电化学表面 积以及由此而造成的与电解液接触的有效催化活 性点数量密切相关. 实验中的滴涂量是通过滴定 进行控制, 滴涂量的选择需保证表面均匀成膜和完 全覆盖, 通过进行不同a-MoS3 析氢催化剂滴涂量 系列实验,我们最后选择0.2 mg/cm² 作为起始滴 涂量,通过保持相同的化学合成条件和控制垂直 滴定于rFTO-Mo 衬底上的a-MoS3分散液的滴数, 制备了滴涂量分别为0.2, 0.5 以及0.7 mg/cm²的 a-MoS₃催化剂样品,并测试了三个样品的俯面以 及断面SEM图以表征不同滴涂量导致的催化剂表 面形貌和纵向结构差异,测试结果如图1(a)—(c) 所示.为方便比较,不同滴涂量样品的断面SEM 图内嵌于其俯面SEM图中.同时,通过测量断面 SEM 图而获得的不同滴涂量a-MoS3 催化剂厚度 也示于图1(d)中.

由图1可见,室温湿法化学合成的a-MoS₃ HER催化剂表面粗糙,由垂直滴定于rFTO-Mo 衬底上的a-MoS₃纳米粒在衬底表面团簇而成.对 于滴涂量为0.2 mg/cm²的样品,其表面相对致 密,随着滴涂量增加到0.5 mg/cm²,催化剂表面 依然保持粗糙面特征,同时也可以看到,催化剂 在三维尺度上开始呈现出不规则的多孔特征.当 滴涂量继续增大到0.7 mg/cm²时,该多孔状结构 消失,催化剂又逐渐变得致密.根据图1(d), a-MoS₃ HER催化剂滴涂量除了影响其催化剂表面 形貌和薄膜几何结构,随着滴涂量的逐渐增大,其 催化剂厚度也逐渐增大,从0.91 μm逐渐增大到 3.5 μm.虽然传统贵金属催化剂一般以分立的纳 米粒结构进行催化反应,其厚度要比室温湿法化 学合成的 a-MoS₃ HER催化剂更薄,但是,考虑到 所采用的非贵金属 a-MoS₃ HER 催化剂的低成本 特性以及经济的合成方式,其有希望实现催化剂 大面积制备和进一步工业化应用.此外需指出的 是,由于催化剂粒子团簇而造成的粗糙表面和三 维多孔结构可有助于 a-MoS₃ HER 催化剂催化特 性的提升,也可提高催化剂表面与电解液的接触 面积.

图 1 (网刊彩色) (a)—(c) 滴涂量分别为 0.2, 0.5 及 0.7 mg/cm² 的 a-MoS₃ HER 催化剂的俯面以及断面 SEM 图, 滴涂量为 0.5 mg/cm² 时的多孔状结构在图中圈出, 断面 SEM 图中的比例尺为 500 nm; (d) 通过断面 SEM 图测试获得的不同滴涂量样品厚度

Fig. 1. (color online) (a)–(c) The top-down and cross-sectional SEM images for a-MoS₃ HER catalysts with mass loading of 0.2, 0.5 and 0.7 mg/cm², the porous structure for the catalysts with 0.5 mg/cm² mass loading were circled, the scale bars in the cross-sectional SEM images are 500 nm; (d) the thickness values for catalysts with various mass loading extracted from cross-sectional images.

为表征 a-MoS₃ HER 催化剂的催化性能, 我们 采用三电极电化学测试体系以分别测试不同滴涂 量样品的暗态线性扫描曲线以及塔菲尔曲线.其 中对电极为铂 (Pt) 金属、参考电极采用 KCl 饱和的 Ag/AgCl 电极,工作电极则为待测的 a-MoS₃ HER 催化剂,电解液为 0.5 M 硫酸溶液,其 pH 值为 0.5. 测试时有效工作电极 -电解液接触面积为 0.25 cm². 扫描速率为 50 mV/s,扫描方向为正向扫描 (从低 电压到高电压).同时,为方便与其他研究成果 相比较,我们将相对于 Ag/AgCl参比电极的电势 (V_{Ag/AgCl})通过以下公式转换到相比于可逆氢电极

(RHE) 的电势

$$V_{\rm RHE} = V_{\rm Ag/AgCl} + V_{\rm Ag/AgCl}^0 \text{ vs NHE} + 0.059 \text{ pH},$$

其中, $V_{Ag/AgCl}^0$ vs NHE等于 0.199 V(25 °C), 因此 LSV 曲线横坐标通过 $V_{RHE} = V_{Ag/AgCl} + 0.228$ V(pH = 0.5)进行转换. 同时, 对测试获得的塔菲尔曲线, 在 0.1—0.2 V 过电势范围内采用塔菲尔公式进行线性拟合:

$$|\eta| = a + b \log(|J|),$$

其中, η为过电势, b为塔菲尔斜率. 越小的塔菲尔 斜率则代表更好的表面反应活性, 其与析氢反应 中的 Tafel 反应过程相关^[12].图 2 (a) 和图 2 (b) 中 分别示出了在 rFTO-Mo 衬底上不同 a-MoS₃ HER 催化剂滴涂量样品的 LSV 特性曲线以及滴涂量为 0.5 mg/cm² 样品的塔菲尔曲线,通过线性拟合获 得的塔菲尔斜率也标注于图 2 (b) 中.

图 2 (网刊彩色) (a) 不同 a-MoS₃ HER 催化剂滴涂量 样品的 LSV 特性曲线; (b) 滴涂量为 0.5 mg/cm² 样品的 塔菲尔曲线

Fig. 2. (color online) (a) The LSV characteristics of a-MoS₃ catalysts with various mass loading; (b) the Tafel plot for catalysts with 0.5 mg/cm² mass loading.

为方便比较,我们选择阴极电流密度为 10 mA/cm²时所对应的电势值,该电流密度对应 12.3%的析氢效率^[13],其值越小则代表具有更好 的催化活性.如图 2 (a)所示,可看到随着 a-MoS₃ HER 催化剂在 rFTO-Mo衬底上滴涂量的逐渐增 大,其10 mA/cm²时所对应的电势值呈现出先减 小后增大的趋势,在滴涂量为0.5 mg/cm²时,该值 降低到 260 mV.同时,如图 2 (b)所示,该样品塔菲 尔斜率也达到 68 mV/dec,与文献所报道的 a-MoS₃ HER 催化剂相近^[4],也进一步说明了我们采用室 温湿法化学合成的 a-MoS₃ HER 催化剂的高催化 活性.

由以上讨论可知, a-MoS₃ HER 催化剂的催化 活性与其在rFTO-Mo衬底上的滴涂量密切相关, 并且存在最优的滴涂量值,因此在实际制备过程 中, 需严格控制 a-MoS₃ HER 催化剂在制氢器件上 的滴涂量,以实现性能最优化的制氢器件.为探究 最优化滴涂量以及影响因素,我们随后对不同滴 涂量催化剂样品进行了电化学阻抗谱测试,测试 频率范围为0.1—10000 Hz, 施加电压为0.3 V vs. RHE, 测试电压幅度为10 mV. EIS 谱是表征电化 学反应的有效手段,通过对其阻抗谱进行拟合分 析,可以获得串联阻抗R_s、传输阻抗R_{ct}以及双层 电容值 C_{dl}. 其中, 串联阻抗 R_s 包含外联导线、工 作电极到参考电极间的溶液电阻、rFTO-Mo衬底 电阻以及 a-MoS₃ HER 催化剂体区电阻的贡献, 传 输阻抗 R_{ct}用于表征界面载流子传输能力和催化 剂/电解液界面反应速率, 而双层电容值 Cdl 则为催 化剂/电解液界面双层电容值,其与催化剂有效电 化学活性面积正相关^[12]. 然而考虑到图1(a)—(c) 中催化剂样品的粗糙表面以及多孔结构特征,应 采用常相电容(CPE)等效元件以获得更好的拟合, 其阻抗通过 ZCPE = $Q(j\omega)^{-n}$ 来表示, 其中Q 称 为假电容 ($\mathbf{F}^{-1} \cdot \mathbf{s}^{1-n}$), j是虚数单位, ω 是角频率, n 为无量纲变量,其值在0—1之间^[12].图3(a)中给 出了不同滴涂量a-MoS₃ HER 催化剂的测试和拟 合后的Nyquist图,同时拟合EIS图所采用的等效 电路也内嵌于该图中. 图3(b) 中则给出了根据等 效电路计算的传输阻抗 Rct 以及双层电容值 Cdl 随 a-MoS₃ HER 催化剂滴涂量的变化曲线.

根据图3(a)所示,对于所有样品,采用内嵌图 中等效电路所拟合的阻抗谱与测试阻抗谱相符,这 充分说明了所采用等效电路的正确性、拟合精度 和数据的可靠性.对于所有的样品,其Nyquist图 表现出近似半圆特征,可看到对于0.5 mg/cm²滴 涂量的a-MoS₃ HER 催化剂, 其具有最小的阻抗半 径,呈现出滴涂量先减小后增大的趋势.由此所获 得的传输阻抗 Rct 以及双层电容值 Cdl 等量化数据 如图3(b)所示,可以看到,双层电容值Cdl随着滴 涂量的增加呈现出先增大后减小的趋势. 由于该值 与催化剂有效电化学活性面积的正相关关系,说明 随着 a-MoS₃ HER 催化剂滴涂量的增大,其有效电 化学活性面积呈现出先增大后减小的趋势. 该结果 与图1(a)—(c) 中观察到的结果相一致. 当滴涂量 为0.5 mg/cm²时, a-MoS₃ HER 催化剂呈现出三维 多孔状结构, 当其与电解液进行接触时, 电解液会 充分浸入a-MoS₃ HER 催化剂体内的孔隙结构中, 其存在两方面的优点: 1) 有效增大了催化剂/电解 液界面的表面积,因此增加了参与HER反应的表 面活性点数量,从而会提高表面反应速率; 2) 由于 电解液浸入催化剂,导致传输到催化剂表面活性点 位置参与HER 催化反应的电子传输距离变短,故 而复合概率降低,因此也会提高HER反应速率.另 一方面,随着滴涂量的逐渐增大,催化剂厚度逐渐 增加,当滴涂量为0.7 mg/cm²时,催化剂具有较厚 的厚度,电子输运到催化剂/电解液界面需要更长 的距离,这也导致了在0.7 mg/cm²时其催化活性 的降低.因此,从图3(b)可见,当0.5 mg/cm² 滴涂 量时,其具有最小的传输阻抗,这也解释了我们在 图2中观察到的0.5 mg/cm²滴涂量a-MoS₃ HER 催化剂具有最佳的催化特性.

为实现无偏压辅助太阳光自动制氢器件的制

图 3 (网刊彩色) (a) 不同滴涂量 a-MoS₃ HER 催化剂 的测试和拟合后的 Nyquist 图, 内嵌图为拟合所采用的等 效电路; (b) 通过拟合后获得的传输阻抗 *R*_{ct} 以及双层电 容值 *C*_{dl} 随 a-MoS₃ HER 催化剂滴涂量的变化曲线

Fig. 3. (color online) (a) Measured and fitted Nyquist plots of a-MoS₃ catalysts with various mass loading, the inset is the equivalent circuit used for fitting; (b) fitted $R_{\rm ct}$ and $C_{\rm dl}$ values with respect to the mass loading for a-MoS₃ HER catalysts.

备,除了提高半导体/电解液界面的催化活性以降 低过电势以外,仍需提供1.23 V的电压以实现水分 解^[13].为考察我们采用室温湿法化学反应制备、并 最优化滴涂量的a-MoS₃ HER 催化剂对制氢性能 的影响,我们将其作为光阴极催化剂应用于串联太 阳光制氢器件中,如图4(a)所示.如图所示,通过 串联两个单结非晶硅电池以提供光照下自动HER 反应所需电压,其AM1.5太阳光谱下测试的开路 电压值为0.95 V, 故而可提供1.9 V光生电压以驱 动水分解. 该系统采用Pt作为光阳极,采用不同 滴涂量的a-MoS₃ HER 催化剂作为光阴极, 在三电 极测试体系中,模拟AM1.5光谱照射到串联的单 结非晶硅电池上以分别测试其LSV 曲线以及斩光 J-t曲线,扫描速率为50 mV/s,扫描方向为正向扫 描, 其测试结果如图 4 (b) 和图 4 (c) 所示. 斩光 J-t 曲线是通过以10s为周期的开关入射光,在偏压为 0.8 V vs. RHE 下测试 J-t 曲线获得的, 用以表征光 阴极 a-MoS₃ HER 催化剂的反应活性.

由图4(b)可见,和图3(a)中进行暗态LSV测 试的结果相似,随着 a-MoS₃ HER 催化剂滴涂量的 逐渐增大,其在0V vs. RHE以及0.8V vs. RHE的 光电流密度表现出先增大后降低的趋势,在滴涂量 为0.5 mg/cm²时,其达到最大值(在0 V vs. RHE 以及0.8 V vs. RHE分别达到7.51 和3.28 mA/cm² 的电流输出). 不仅如此, 通过图4(c)中也可以看 到,相对于其他两种滴涂量的催化剂,滴涂量为 0.5 mg/cm²时具有最大的起始电压值(1.83 V),其 更接近于两个串联非晶硅电池的开路电压(1.9 V), 这也说明0.5 mg/cm²滴涂量时具有最小的过电势 损失. 该起始电压值足以驱动水分解, 在AM1.5光 照下进行自动水解制氢. 考虑到对于一体化太阳 光光电化学制氢器件,其最大功率输出发生在光 阳极LSV曲线与光阴极曲线最大功率点相互匹配 时,因此,我们测试了在正偏压下(0.8 V vs. RHE) 的斩光 J-t 曲线, 如图 4 (d) 所示. 通过周期性开关 光,可以有效控制光生载流子在催化剂表面的注入 和反应过程,通过研究瞬态过程可以有效表征催化 剂/电解液表面的反应活性. 当瞬间进行光照时, 所 测试的光电流密度大小与图4(b)中相符,不仅如 此,同时也存在较大的瞬态阴极光电流密度,随后 逐渐弛豫到稳定的饱和电流密度. 该瞬态阴极光 电流密度来源于瞬间光照导致光生载流子在催化 剂/电解液界面的堆积,随后逐渐参与HER反应而 趋于饱和.

图 4 (网刊彩色) (a) 串联制氢系统装置示意图; (b) 采用不同滴涂量 a-MoS₃ HER 催化剂作为串联制氢系统光阴 极的 LSV 曲线; (c) 内嵌图为 LSV 在起始电压附近的放大图; (d) 0.8 V vs. RHE 偏压下测试的斩光 J-t 曲线 Fig. 4. (color online) (a) Schematic diagram of series water-splitting configuration; (b) LSV curves for a-MoS₃ HER catalysts with various mass loading, which acted as the photocathodes in series water-splitting devices; (c) the inset is the enlarged LSVs near onset potentials; (d) the chopped J-t values at 0.8 V vs. RHE.

4 结 论

本文通过室温湿法化学合成了 a-MoS₃ HER 催化剂,研究了其滴涂量对催化剂析氢催化性能以 及作为光阴极催化剂对串联制氢器件制氢性能的 影响.研究证明 a-MoS₃ HER 催化剂存在最优化的 滴涂量以实现最佳的催化性能,此时催化剂呈现粗 糙表面以及多孔结构,可以有效增大 a-MoS₃ HER 催化剂纳米粒与电解液的电化学接触面积,从而提 供更多的催化活性点以促进 HER 反应.将其作为 光阴极应用于串联制氢器件,合适的 a-MoS₃ HER 催化剂滴涂量也可以有效降低过电势损失,并有效 改善在 0.8 V vs. RHE 以及正偏压区的光生电流密 度输出,从而有望获得更高的制氢效率.

参考文献

 Jacobsson T J, Fjällström V, Sahlberg M, Edoff M, Edvinsson T 2013 *Energy Environ. Sci.* 6 3676

- [2] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446
- [3] Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 J. Am. Chem. Soc. 133 7296
- [4] Benck J D, Chen Z B, Kuritzky L Y, Forman A J, Jaramillo T F 2012 ACS Catal. 2 1916
- [5] Morales-Guio C G, Stern L A, Hu X L 2014 Chem. Soc. Rev. 43 6555
- [6] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100
- [7] Chen Z B, Cummins D, Reinecke B N, Clark E, Sunkara M K, Jaramillo T F 2011 Nano Lett. 11 4168
- [8] Merki D, Fierro S, Vrubel H, Hu X L 2011 Chem. Sci. 2 1262
- [9] Yan Y, Xia B Y, Xu Z C, Wang X 2014 ACS Catal. 4 1693
- [10] Huang X, Zeng Z Y, Zhang H 2013 Chem. Soc. Rev. 42 1934
- [11] Lauritsen J V, Bollinger M V, Lægsgaard E, Jacobsen K
 W, Nørskov J K, Clausen B S, Topsøe H, Besenbacher
 F 2004 J. Catal. 221 510
- [12] Merki D, Vrubel H, Rovelli L, Fierro S, Hu X L 2012 *Chem. Sci.* **3** 2515
- [13] Abdi F F, Han L H, Smets A H M, Zeman M, Dam B, van de Krol R 2013 Nat. Commun. 4 2195

Modulating catalytic capacities of room-temperature synthetized amorphous molybdenum trisulfide hydrogen evolving catalysts and their applications to in series solar water splitting devices in series^{*}

Jin Zhong-Hua¹⁾²⁾ Liu Bo-Fei²⁾ Liang Jun-Hui²⁾ Wang Ning²⁾ Zhang Qi-Xing²⁾ Liu Cai-Chi¹⁾ Zhao Ying²⁾ Zhang Xiao-Dan^{2)†}

1) (School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

2) (Institute of Photo Electronics Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic

Thin Film Devices and Technology, Tianjin 300071, China)

(Received 29 December 2015; revised manuscript received 4 March 2016)

Abstract

Highly-catalytic, cost-effective, well process-compatible, and highly-stable hydrogen-evolving catalysts are increasingly becoming key catalysts in realizing monolithic electrochemical solar water-splitting devices. However, the typical noble metallic catalysts seriously restrict the industrialization of electrochemical solar water-splitting devices on account of their poor storages and high costs. Low-cost, high-catalytic and non-metallic catalysts pave the promising way for the industrialization process. Molybdenum sulfide has emerged as a type of potential catalyst with high-activity and stability for the hydrogen-evolving reaction (HER) in the acidic condition, nowadays gradually becoming a research hotspot in solar-water-splitting. The process preparation of high-efficient molybdenum sulfide catalyst is consequently extremely important for enhancing the solar-to-hydrogen efficiency. In this paper, we synthesize highly-catalytic, low-cost, and highly-compatible non-metallic amorphous molybdenum trisulfide catalyst based on a simple wet chemical approach at room temperature for hydrogen-evolving reaction, followed by extensive studies of the effects of the mass loading of catalyst on the catalytic capacity and the solar-to-hydrogen performance of solar-water-splitting devices in series. When the mass loading is $0.5 \text{ mg} \cdot \text{cm}^{-2}$, the MoS₃ catalyst exhibits the promising HER activity. the surface of catalyst appears to be rough, porous, nano-sized architecture and the thickness is around 2.0 µm, which simultaneously enlarges the electrochemically active area and reduces charge transfer impedance, accelerating the electron transport to electrochemically active site and improving the interfacial charge transfer. Besides, the HER catalytic activity is illustrated in a wired solar-water-splitting device. The current density can achieve the maximum values of 7.51 and 3.28 mA/cm² corresponding to 0 and 0.8 V vs. RHE, and the onset potential is 1.83 V, comparable to the open circuit voltage (1.90 V) of two amorphous silcon cells in series. Therefore, we conclude that for amorphous molybdenum trisulfide catalyst there exists an optimized mass loading, with which an optimized catalytic capacity (260 mV vs. RHE at 10 mA/cm^2 and tafel slope of 68 mV/dec) can be achieved. Further, by using the catalyst as a cathode for the solar-water-splitting devices in series, the catalyst can efficiently reduce the overpotential and improve the current output for the device, thereby potentially achieving a higher solar-to-hydrogen efficiency.

Keywords: catalysts, amorphous molybdenum trisulfide, mass loading, catalytic capacities PACS: 88.20.fn, 88.30.E-, 88.40.H-, 82.65.+r DOI: 10.7498/aps.65.118801

^{*} Project supported by International Cooperation Projects of the Ministry of Science and Technology, China (Grant No. 2014DFE60170), and Specialized Research Fund for the PhD Program of Higher Education of China (Grant No. 20120031110039).

[†] Corresponding author. E-mail: xdzhang@nankai.edu.cn