物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

高功率激光终端 KDP 晶体非共线高效三倍频及远场色分离方案数值模拟分析 刘崇 季来林 朱宝强 林尊琪 Numerical simulation analysis of high efficient SFG and color separation in far field in high power laser facility based on noncollinear phase matching by KDP crystal Liu Chong Ji Lai-Lin Zhu Bao-Qiang Lin Zun-Qi

引用信息 Citation: Acta Physica Sinica, 65, 144202 (2016) DOI: 10.7498/aps.65.144202 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.144202 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I14

您可能感兴趣的其他文章 Articles you may be interested in

热退火、激光束和电子束等作用对纳米硅制备及其局域态发光特性的影响

Effects of thermal annealing, laser and electron beam on the fabrication of nanosilicon and the emission properties of its localized states

物理学报.2016, 65(10): 104202 http://dx.doi.org/10.7498/aps.65.104202

周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光 Continuous-wave single-frequency 589 nm yellow laser generated from sum frequency of single-block non-planar ring cavity laser in periodically poled KTiOPO₄ crystal 物理学报.2016, 65(9): 094203 http://dx.doi.org/10.7498/aps.65.094203

掺 Er³⁺ 氟化物光纤振荡器中红外超短脉冲的产生

Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er^{3+} : ZBLAN fiber laser 物理学报.2016, 65(4): 044206 http://dx.doi.org/10.7498/aps.65.044206

神光-III激光装置时标激光和任意反射面速度干涉仪探针光源产生技术

Research of time fiducial laser and probe laser of velocity interferometer system for any reflector for Shenguang-III laser facility

物理学报.2016, 65(2): 024203 http://dx.doi.org/10.7498/aps.65.024203

基于模糊控制的自适应光学校正技术

Adaptive optics correction technique based onfuzzy control 物理学报.2016,65(1):014206 http://dx.doi.org/10.7498/aps.65.014206

高功率激光终端KDP晶体非共线高效三倍频及 远场色分离方案数值模拟分析

刘崇1) 季来林1)2)† 朱宝强1) 林尊琪1)

1)(中国科学院上海光学精密机械研究所,高功率激光物理国家实验室,上海 201800)
2)(中国工程物理研究院上海激光等离子体研究所,上海 201800)
(2016年4月13日收到;2016年5月13日收到修改稿)

为满足高功率激光装置对终端光学系统的改进要求,控制 3 ω 光路透射元件厚度以降低激光损伤风险,避免 3 ω 非对称聚焦与色分离元件对靶场调靶产生不利影响,本文利用非共线相位匹配原理讨论了 KDP 晶体 I 类和 II 类两种和频产生 351 nm(3 ω)激光及其远场色分离过程.模拟结果表明,室温 20 °C环境中除目前常用 的共线和频外,1053 nm(ω)与526.5 nm(2 ω)激光可选择 I 类或 II 类两种非共线和频方式实现高效 3 ω 激光输 出并在激光远场实现色分离,且具有足够的高效转换失谐角容宽.计算表明,与 I 类和频类似,II 类和频也存 在一个非临界相位匹配过程,其匹配方向约为 $\theta(3\omega) = 86.53^\circ$.可通过增加晶体厚度克服其有效非线性系数 较低的缺点,实现 3 ω 高效输出,失谐角容宽可达±20 mrad.为满足靶场需要,解决非共线角容宽苛刻带来的 调节不便,并进一步使光路紧凑,将楔角为12°的熔石英楔板置于倍频晶体之后, ω 与 2 ω 激光在熔石英楔板 后表面可产生约 3.5 mrad 分离角.经非共线和频,使用薄透镜即可实现聚焦及色分离.该方案完全满足终端 光学系统的改进要求,可作为可靠的备选方案之一.

关键词:高功率激光装置,激光损伤,非共线和频,远场色分离 PACS: 42.55.-f, 42.65.-k, 42.65.Ky, 42.70.Mp DOI: 10.7498/aps.65.144202

1引言

终端光学系统是高功率激光装置实现谐波转 换、色分离以及聚焦功能的重要组件^[1],谐波转 换模块与聚焦模块是终端光学系统的核心技术环 节^[2].目前,比较成熟的激光装置,如美国的NIF, 192路激光产生约1.8 MJ的3ω激光能量,峰值功 率可达到500 TW^[3].其终端光学系统使用共线谐 波转换方案产生3ω激光,并在3ω光路中使用楔形 透镜实现聚焦与远场色分离^[4].国内的神光驱动器 升级装置使用与NIF类似的终端光学系统,8路激 光器3ω总输出可稳定在25 kJ水平,峰值功率可达 8 TW以上.随着激光器输出能力的发展,不断提 高的3ω输出功率将不可避免地造成终端系统光学 元件越来越严重的损伤^[5],这种损伤已经成为制约 高功率激光紫外波长远场可聚焦能力的最大技术 障碍.

目前国内外较为成熟的终端光学系统,谐波转 换模块一般采用共线倍频与和频级联的方式产生 3ω激光.共线和频方案技术已十分成熟,在大口径 ω光束抽运情况下,可忽略波矢方向与能流方向的 走离效应,可以达到高效转换,具有很高的能量利 用率.例如NIF装置,在370 cm×370 cm的光束 口径,4 GW/cm²的ω功率密度下,可实现80%的 3ω转换效率^[4];神光驱动器升级装置ω功率密度 为2 GW/cm²状态下也可以实现70%的转换效率. 其次,共线匹配的匹配方向一般与晶体入射面的法 线方向极其接近,其偏差仅为mrad量级,因此利于 晶体与光路的准直.结构紧凑,节省空间,有利于

[†]通信作者. E-mail: jsycjll@siom.ac.cn

^{© 2016} 中国物理学会 Chinese Physical Society

与终端光学系统的集成.

共线相位匹配最主要的缺点是频率转换所产 生的ω, 2ω和3ω共线传输.为满足靶场物理实验 的要求,需要在3ω光路中使用非对称元件进行色 分离与聚焦.早期采用色分离与聚焦过程相分离的 方案,先使用石英楔板色分离,再使用弯月透镜进 行3ω聚焦^[6].为了减少3ω光路中石英元件的透射 厚度,目前NIF与神光驱动器升级装置均采用楔形 透镜作为色分离聚焦元件,在一定程度上减少了光 学元件的厚度,但随着实验发次的累积,楔形透镜 的表面破坏与体破坏依然严重^[5].其次,楔形透镜 为非对称元件,终端光学系统焦斑与靶点准直的过 程需要使用包括4D干涉仪在内的一系列复杂的技 术手段,对精密调靶产生不利影响^[7].

为改进共线相位匹配在聚焦与色分离方面的 弊端,高功率激光装置的研究人员近期报道了一些 解决方案,例如上海交通大学的研究人员所使用的 聚焦ω与2ω光束非共线I类非临界和频方法^[8].但 经分析,聚焦非线性过程对于3ω激光远场焦斑的 形成是十分不利的,满足相位匹配方向的不同方向 3ω光线,在会聚点附近存在着明显的几何像差,因 此无法满足高功率激光对3ω焦斑的要求.本文基 于非共线相位匹配原理,计算了KDP晶体适用于 非共线和频的I类和II类匹配方式,提出在倍频光 路实施ω与2ω分离,利用非共线和频以及单对称 透镜实现远场色分离的新型终端光学系统模型.

2 非共线和频原理

根据非线性耦合波方程,和频过程属于二阶非 线性效应,其F,G,H三波耦合过程服从和频方程

$$\begin{cases} \frac{\partial F}{\partial z} = \frac{\mathrm{i}2\omega}{2cn_F(2\omega)} \bar{\chi} \boldsymbol{G}^* \boldsymbol{H} \mathrm{e}^{\mathrm{i}\Delta \boldsymbol{k}z}, \\ \frac{\partial G}{\partial z} = \frac{\mathrm{i}\omega}{2cn_G(\omega)} \bar{\chi} \boldsymbol{F}^* \boldsymbol{H} \mathrm{e}^{\mathrm{i}\Delta \boldsymbol{k}z}, \\ \frac{\partial H}{\partial z} = \frac{\mathrm{i}3\omega}{2cn_H(3\omega)} \bar{\chi} \boldsymbol{F} \boldsymbol{G} \mathrm{e}^{-\mathrm{i}\Delta \boldsymbol{k}z}, \end{cases}$$
(1)

其中, o光或e光的选择取决于非共线相位匹配的 方式. KDP 晶体的非共线和频过程如图1所示, 其 波矢失配量 Δk 的方向与模量由图2给出. θ_1 , θ_2 , θ_3 分别为 ω , 2ω , 3ω 与晶轴c的夹角, θ_{1+2} 为向量 $k_1 + k_2$ 与晶轴c的夹角, $\alpha \to \omega = 2\omega$ 的夹角, 即 非共线角. 根据和频产生的方向, $\theta_{1+2} = \theta_3$ 始终 成立, 即无论共线匹配还是非共线匹配, k_3 应与 $k_1 + k_2$ 共线,因此 $\Delta k = k_3 \pi k_1 + k_2$ 总是共线的.因此波矢失配量 Δk 的方向和模量可分别表示为

$$\begin{aligned} \Delta \boldsymbol{k} &= \boldsymbol{k}_3 - (\boldsymbol{k}_1 + \boldsymbol{k}_2), \\ |\Delta \boldsymbol{k}| &= ||\boldsymbol{k}_3| - |\boldsymbol{k}_1 + \boldsymbol{k}_2||. \end{aligned}$$
 (2)

与共线相位匹配不同的是,非共线相位匹配过程需要对有效非线性系数 $\bar{\chi}$ 进行修正:只考虑晶体光轴面内的非共线匹配情况,I类和频 $\bar{\chi} = -2d_{36}\sin\theta_3\sin2\varphi$,II类和频 $\bar{\chi} = 2d_{36}\sin(\theta_1 + \theta_3)\cos2\varphi$.对于KDP晶体,其 $d_{36} = 0.39$ pm/V.

图1 非共线和频相位匹配波矢匹配方向示意图 (a) I 类 和频非共线匹配; (b) II 类和频非共线匹配

Fig. 1. Phase matching direction of wave vectors of noncollinear SFG: (a) I type noncollinear SFG; (b) II type noncollinear SFG.

图 2 非共线和频波矢失配量方向与模量的几何关系 Fig. 2. Phase mismatching modulus and direction of wave vectors of noncollinear SFG.

3 KDP晶体非共线和频过程求解及 高效转换容宽分析

基于上述非共线相位匹配原理,分别对室温 20°C环境中KDP晶体I类与II类和频过程进行 求解,并讨论其高效转换失谐角容宽与非共线角 容宽.

3.1 KDP晶体I类非共线和频过程及其 高效转换容宽分析

I类和频如图 1 (a) 所示, ω 和 2 ω 的非共线角为 α , 根据余弦定理和正弦定理, 向量 $k_1 + k_2$ 的模量 和方向可表示为

$$|\mathbf{k}_{1} + \mathbf{k}_{2}|$$

$$= \frac{\omega}{c} [n_{o}^{2}(\omega) + (2n_{o}(2\omega))^{2} + 2n_{o}(\omega)2n_{o}(2\omega)\cos\alpha]^{1/2},$$

$$\alpha \langle \mathbf{k}_{1} + \mathbf{k}_{2}, \mathbf{k}_{1} \rangle$$

$$= \arcsin \left[2n_{o}(2\omega) \cdot \sin\alpha \cdot \left[n_{o}^{2}(\omega) + (2n_{o}(2\omega))^{2} + 2n_{o}(\omega)2n_{o}(2\omega)\cos\alpha \right]^{-1/2} \right],$$

$$\theta_{3} = \theta_{1} - \alpha \langle \mathbf{k}_{1} + \mathbf{k}_{2}, \mathbf{k}_{1} \rangle,$$
(3)

其中, $\alpha \langle \mathbf{k}_1 + \mathbf{k}_2, \mathbf{k}_1 \rangle$ 为向量 $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_1$ 的夹角. 由于 $\mathbf{k}_3 = \mathbf{k}_1 + \mathbf{k}_2$ 同方向,因此非共线角为 α 时, 3ω 达到匹配状态对应的 θ_3 可解析地表示为

$$\theta_{3}(\alpha) = \operatorname{arccos} \left\{ \left[\frac{9}{n_{o}^{2}(\omega) + (2n_{o}(2\omega))^{2} + 2n_{o}(\omega)2n_{o}(2\omega)\cos\alpha} - \frac{1}{n_{e}^{2}(3\omega)} \right] \times \frac{n_{e}^{2}(3\omega) \times n_{o}^{2}(3\omega)}{n_{e}^{2}(3\omega) - n_{o}^{2}(3\omega)} \right\}^{1/2}.$$
(4)

由 (4) 式可见, I类和频过程, 向量 ω , 2 ω 均为o光, 因此 $k_1 + k_2 与 \theta_3$ 无关. 所以 k_3 的匹配方向 $\theta_3(\alpha)$ 只是非共线角 α 的单值函数.

如图 **3**所示, $\alpha = 0^{\circ} = 19.99^{\circ}$ 两个非共 线角对应于 I 类共线相位匹配和非临界相位匹配 两种特殊过程.此时 3 ω 的匹配方向分别对应于 $\theta_3 = 47.7^{\circ}$ 和 $\theta_3 = 90^{\circ}$.当非共线角 α 大于 19.99° 时, KDP 晶体无法实现 I 类和频相位匹配过程.

作为一种可应用于高功率激光装置终端光学 系统的谐波转换方案,需要对其高效转换失谐角容 宽、非共线角容宽以及谐波转换效率进行系统的分 析.对于I类和频,其波矢失配量Δk可表示为非共 线角 α 和 θ₃ 的函数

$$\Delta \boldsymbol{k}(\alpha, \theta_3)$$

$$= \frac{3\omega}{c} \left[n_{\rm o}^2 (3\omega) n_{\rm e}^2 (3\omega) / (n_{\rm o}^2 (3\omega) \sin^2 \theta_3) + n_{\rm e}^2 (3\omega) \cos^2 \theta_3) \right]^{1/2} - \frac{\omega}{c} \left[n_{\rm o}^2 (\omega) + (2n_{\rm o} (2\omega))^2 + 2n_{\rm o} (\omega) 2n_{\rm o} (2\omega) \cos \alpha \right]^{1/2}.$$
(5)

考察不同非共线角 α 对应的 Δk 对 θ_3 的变化率,

$$\frac{\partial \Delta \mathbf{k}(\alpha, \theta_3)}{\partial \theta_3} \Big|_{\alpha = \alpha_0}$$

$$= \frac{3\omega}{2c} n_o^2 (3\omega) n_e^2 (3\omega) \cdot \left(n_e^2 (3\omega) - n_o^2 (3\omega) \right)$$

$$\cdot \sin(2\theta_3) \cdot \left[n_o^2 (3\omega) n_e^2 (3\omega) \cdot \left(n_o^2 (3\omega) \sin^2 \theta_3 + n_e^2 (3\omega) \cos^2 \theta_3 \right)^3 \right]^{-1/2}.$$
(6)

很明显,由于I类的 $|k_1 + k_2|$ 是一个标准球面,因此

$$\left. \frac{\partial \Delta \boldsymbol{k}(\alpha, \theta_3)}{\partial \theta_3} \right| = 0$$

只出现在 $\theta_3 = 0^\circ$ 或 $\theta_3 = 90^\circ$ 的位置,当且仅当同时满足

$$\frac{\partial \Delta \boldsymbol{k}(\boldsymbol{\alpha},\boldsymbol{\theta}_3)}{\partial \boldsymbol{\theta}_3} = 0$$

且 $\Delta \mathbf{k}(\alpha, \theta_3) = 0$ 时,满足非临界相位匹配条件.对于KDP 晶体,此时的 $\alpha \approx 19.99^{\circ}$.

由图 4 可见, I 类和频过程, 对于不同的非共线 夹角, Δk 随 θ_3 的变化关于 $\theta_3 = 90^\circ$ 对称. 非共线 角越大, 其匹配位置也就越接近 $\theta_3 = 90^\circ$. 无论 α 取何值, 其

$$\frac{\partial \Delta \boldsymbol{k}}{\partial \theta_3} = 0$$

的位置总是位于 $\theta_3 = 90^\circ$,也就是 Δk 梯度最小的 位置.图4(b)中的子图可以看出,随着非共线角 α 的增大,其匹配位置附近的 $\left|\frac{\partial \Delta k}{\partial \theta_3}\right|$ 逐渐趋于平缓. 当 α 到达非临界状态所需的19.99°时,

 $\partial \Delta k$

$$\frac{\partial \Delta \boldsymbol{\kappa}}{\partial \theta_3} = 0,$$

达到非临界状态.

图 3 非共线 I 类和频匹配角 $\theta_3(\alpha)$ 与非共线角 α 变化关系 Fig. 3. Matching angle of I type noncollinear SHG $\theta_3(\alpha)$ with respect to noncollinear angle α .

144202-3

如图 5 所示,在 ω 功率密度 1 GW/cm², 倍频 与和频晶体厚度分别为 18 和 14 mm 的条件下,模 拟结果显示,随着非共线角 α 的增加,高效转换的 失谐角容宽也随之增加.当 $\alpha = 0^{\circ}$ 时,即共线和频 过程中,晶体 $\delta\theta_3 \approx \pm 490 \mu rad$;当达到非临界相位 匹配的状态时,其 $\delta\theta_3$ 可达 $\pm 20 m rad$.

图 4 (网刊彩色) 非共线 I 类和频波矢失配量 Δk 随 θ_3 的变化规律 (a) 非共线 I 类和频波矢面及波矢量分布; (b) 给定非共线角 α 波矢失配量 Δk 随 θ_3 的变化规律 Fig. 4. (color online) I type noncollinear SFG Δk with respect to noncollinear angle θ_3 : (a) wave vector surfaces andwave vectors of $k_1 + k_2$ and Δk of I type noncollinear SHG; (b) Δk varying with θ_3 at particular noncollinear angle α .

实际工作中,非共线角的精确调整是极其困难 的.因此,对于特定的一组非共线I类匹配的过程 $\Delta \mathbf{k}(\alpha, \theta_3) = 0$,高效转换过程对δα的容宽也是至 关重要的.如图6所示,I类倍频过程,高效转换对 应的δα并不大.α越大,越接近于非临界状态,其 容差δα越小.共线过程δα ≈ ±1.1 mrad,随着α 增大,到达非临界状态, $\delta \alpha \approx \pm 0.1$ mrad. 因此对 于特定的 θ_3 过程,非共线角的调节需要相当精确. 但是根据图5的分析可知, $\delta \alpha$ 的存在可通过调节晶 体姿态,也就是扫描 θ_3 的方法予以补偿,使之达到 $\Delta k = 0$ 的最佳状态.

图 5 (网刊彩色) 失谐角容宽随非共线角变化关系 Fig. 5. (color online) The tolerance of matching angle $\delta\theta_3$ varying with noncollinear angle α .

图 6 (网刊彩色)不同非共线角情况下和频效率非共线角 容宽

Fig. 6. (color online) The tolerance of noncollinear angle $\delta \alpha$ varying with noncollinear angle α .

3.2 KDP晶体II类非共线和频过程及其 高效转换容宽分析

对于负单轴晶体, II类和频过程 ω 为e光, 其折 射率为 θ_1 的函数, 向量 $k_1 + k_2$ 的模量与方向并不 是非共线角 α 的一元函数.因此II类匹配的求解过 程较I类匹配复杂, 但仍然可以通过曲线族交点寻 求其数值解.

II类和频过程如图**1**(b)所示, ω 与*c*轴的夹角 为 $\theta_1 = \theta_2 - \alpha$.此时, $k_1 + k_2$ 的方向与模量可 表示为

144202-4

$$\begin{cases} |\mathbf{k}_{1} + \mathbf{k}_{2}| (\theta_{1}(\alpha)) = \frac{\omega}{c} \sqrt{n_{e}^{2}(\omega, \theta_{1}(\alpha)) + (2n_{o}(2\omega))^{2} + 2n_{e}(\omega, \theta_{1}(\alpha))2n_{o}(2\omega)\cos\alpha}, \\ \alpha \langle \mathbf{k}_{1} + \mathbf{k}_{2}, \mathbf{k}_{2} \rangle = \arcsin\left[\frac{n(\omega, \theta_{1}(\alpha)) \times \sin\alpha}{\left(\sqrt{n_{e}^{2}(\omega, \theta_{1}(\alpha)) + (2n_{o}(2\omega))^{2} + 2n_{e}(\omega, \theta_{1}(\alpha))2n_{o}(2\omega)\cos\alpha}\right)}\right], \quad (7)$$

$$\theta_{3} = \theta_{2} - \alpha \langle \mathbf{k}_{1} + \mathbf{k}_{2}, \mathbf{k}_{2} \rangle.$$

那么波矢 k3 在θ3 方向上的模量可表示为

$$|\mathbf{k}_{3}(\theta_{3})| = \frac{\omega}{c} \sqrt{n_{\rm o}^{2}(3\omega)n_{\rm e}^{2}(3\omega)/(n_{\rm o}^{2}(3\omega)\sin^{2}\theta_{3} + n_{\rm e}^{2}(3\omega)\cos^{2}\theta_{3})}.$$
(8)

由上述分析可知, II 类匹配的解 $\theta_3(\theta_2, \alpha)$ 即是 使得方程

$$|\boldsymbol{k}_{3}(\theta_{3}(\theta_{2},\alpha))| = |\boldsymbol{k}_{1} + \boldsymbol{k}_{2}| (\theta_{2},\theta_{1}(\alpha)) \qquad (9)$$

满足等号的所有 α 和 θ_2 的集合所对应的 $\theta_3(\theta_2, \alpha)$. 对于一个给定的非共线角 α ,分别描绘 $|\mathbf{k}_3(\theta_3(\theta_2, \alpha))|$ 和 $|\mathbf{k}_1 + \mathbf{k}_2|(\theta_2, \theta_1(\alpha))$ 随 θ_2 变化的 曲线,两条曲线的交点即为一组非共线II类和频 过程的解.取不同的非共线角 α ,就可以得出II类 非共线和频匹配位置 θ_3 随 α 变化的一族解.

图 7 描述了函数 $n_{\rm e}(3\omega, \theta_3)$ 与函数族 $[n_{\rm e}^2(\omega,$ $\theta_1(\alpha)$) + $(2n_0(2\omega))^2$ + $2n_e(\omega, \theta_1(\alpha))2n_0(2\omega)\cos\alpha$]^{1/2} 随 θ_3 变化的过程. 函数族是由非共线角 α 的变化 所产生的一族函数, 其与 $n_{\rm e}(3\omega, \theta_3)$ 曲线的交点 即为(9)式的解. 图7中插图为Ⅱ类非共线和频匹 配角以及匹配方向 3ω 折射率 $n_{\rm e}(3\omega, \theta_3)$ 随非共线 角 α 的变化趋势. KDP晶体在II类和频过程中, 实现相位匹配所允许的非共线角的变化区间为 0°-13.55°. 曲线族中,每一条曲线对应于一个给 定的非共线角 α ,其与曲线 $n_{\rm e}(3\omega, \theta_3)$ 均有两个交 点,由于 $n_{\rm e}(\omega,\theta_1)$ 随 θ_1 变化,故对应于同一 α 值的 两个交点一般情况下不关于 $\theta_3 = 90^\circ$ 对称. 当且仅 当非共线角 $\alpha = 0^{\circ}$ 时,即共线和频过程,其匹配方 向约为 $\theta_3 = 59^\circ$ 和 $\theta_3 = 121^\circ$,在单轴晶体KDP内 为两个关于 $\theta_2 = 90^\circ$ 对称的简并过程. 随着非共 线角 α 的增大,匹配方向也逐渐远离晶体c轴,当 $\alpha = 13.55$ °时,其曲线与 $n_{\rm e}(3\omega, \theta_3)$ 的两个交点合 并,形成切点.此位置即为II类和频过程的非临界 相位匹配工作点,此时的匹配方向为 $\theta_3 = 86.96^\circ$. 随着 α 的进一步增大, $|\mathbf{k}_1 + \mathbf{k}_2|$ 进一步变小, 将无 法实现相位匹配.

负单轴晶体 II 类和频过程中 ω 为e光,这使得 | $k_1 + k_2$ | 的模量不仅仅是 α 的单值函数,在给定非 共线角 α 的情况下, | $k_1 + k_2$ |(θ_3)与| k_3 |(θ_3)均为 $θ_3$ 的函数. 对于一个给定的非共线角 α, 由于 2ω 为 o 光, $|k_2| = θ_2$ 无关, $|l| |k_1| = θ_2 - α$ 的函数, 因此 II 类和频的波矢失配量可表示为

$$\Delta \mathbf{k}(\alpha, \theta_2)$$

$$= \frac{3\omega}{c} \Big[n_o^2(3\omega) n_e^2(3\omega) / (n_o^2(3\omega) \sin^2 \theta_3) + n_e^2(3\omega) \cos^2 \theta_3) \Big]^{1/2}$$

$$- \frac{\omega}{c} \Big[n^2(\omega, \theta_2 - \alpha) + (2n_o(2\omega))^2 + 2n(\omega, \theta_2 - \alpha) 2n_o(2\omega) \cos \alpha \Big]^{1/2}, \quad (10)$$

其波矢失配量 $|\Delta \mathbf{k}|$ 随 θ_3 的变化关系如图 8 所示.

图 7 (网刊彩色) 非共线 II 类和频匹配角 θ₃ 与非共线角 α变化关系

Fig. 7. (color online) Matching angle of II type noncollinear SHG $\theta_3(\theta_2 \alpha)$ with respect to noncollinear angle α .

由于 $\mathbf{k}_1 + \mathbf{k}_2$ 并非 α 的单值函数,因此与I类和 频不同,不同 α 值所对应的 $|\Delta \mathbf{k}(\theta_3)|$ 的极值点不是 $\theta_3 = 90^\circ$,且随着 α 的不同,满足 $\left|\frac{\partial \Delta \mathbf{k}}{\partial \theta_3}\right| = 0$ 的 θ_3 各不相同.在 α 从0°逐渐增大的过程中,对于一个 给定的 α 值,其 $|\Delta \mathbf{k}(\theta_3)|$ 总有两个零点,这两个零 点逐渐接近. 与 I 类和频不同,由于 $k_1 + k_2$ 同时是 θ_1 的函数,这两个零点并不关于 $\theta_3 = 90^\circ$ 对称. 在 计算过程中注意到,当 $\alpha = 13.55^\circ$ 时, $|\Delta k(\theta_3)|$ 的 两个零点合并为一点,此时 $\theta_3 = 86.53^\circ$. 由此可得

$$\left| \frac{\partial \Delta \boldsymbol{k}(\alpha, \theta_3)}{\partial \theta_3} \right|_{\substack{\alpha = 13.55^{\circ} \\ \theta_3 = 86.53^{\circ}}} = 0$$

且

$$\Delta \boldsymbol{k}(\alpha,\theta_3)\big|_{\substack{\alpha=13.55^{\circ}\\\theta_3=86.53^{\circ}}} = 0$$

为一个非临界相位匹配的解. 当非共线角 $\alpha >$ 13.55°之后,再无相位匹配的位置. 从 $\alpha = 0$ °到 $\alpha = 13.55°$ 的过程中,匹配位置的 $\left| \frac{\partial \Delta k}{\partial \theta_3} \right|$ 也逐步变 缓,直至到达非临界状态.

图 8 (网刊彩色) 给定非共线角 α 波矢失配量 Δk 随 θ_3 的变化规律

Fig. 8. (color online) II type SFG $\Delta \mathbf{k}$ varying with θ_3 at particular noncollinear angle α .

如图 9 所示, II 类和频随 θ_3 的调谐曲线并不关于 $\delta\theta_3 = 0$ 对称, 这个现象与我们前述分析是相符合的. 其原因在于 $k_1 + k_2$ 是 θ_1 的函数, 因此 $\pm \delta\theta_3$

并不是对称的过程.在临界相位匹配所对应的 α 值下,高效转换的失谐角容宽约为 $\delta\theta_3 = \pm 580$ µrad, 当达到非临界状态时 $\delta\theta_3 \approx \pm 20$ mrad.但II类非临界匹配的一个缺陷在于其满足相位匹配的 θ_3 太靠近90°,其有效非线性系数极小,因此需用较厚的 3ω 晶体才可获得比较可观的转换效率.20 °C条件下, ω 功率密度选取1 GW/cm²,和频晶体的厚度需要5 cm 左右才能达到70% 的转换效率.

II类非共线高效转换对非共线角 α 的容差 $\delta\alpha$ 也比I类过程复杂一些. 给定 θ_2 ,考察 Δk 随 θ_1 的 变化,结果如图10所示.

图 10 (网刊彩色) 非共线 II 类和频在给定的 θ₂ 条件下波 矢失配量随非共线角的变化关系

Fig. 10. (color online) II type SFG $\Delta \mathbf{k}$ varying with $\theta_1(\alpha)$ at particular θ_2 .

由 图 10 可 以 看 出, 当 θ_2 位 于 区 间 [58.69°,121.04°]内,对于一个给定的 θ_2 ,总会有 两个方向的 θ_1 使得非共线过程达到相位匹配,这个 现象与非共线相位匹配方向沿锥面分布符合^[9,10]. 当 θ_2 从90°向0°或180°变化时,两个零点会逐渐 靠近,直到 $\theta_2 = 59.96°$ 或 $\theta_2 = 120.7°$ 时,两个零点 重合,此时,

$$\left. \frac{\partial \Delta \boldsymbol{k}(\theta_2 = 58.96^\circ)}{\partial \theta_1} \right| = 0$$

且 $\Delta \mathbf{k}(\theta_2 = 58.96^\circ) = 0$, 达到一种对非共线角 α 的 非临界状态, II 类匹配的这一性质是 I 类匹配所不 具备的. 即对 I 类过程, 无论 θ_2 取何值, $\Delta \mathbf{k}(\theta_2) = 0$ 的位置均不满足 $\left| \frac{\partial \Delta \mathbf{k}}{\partial \theta_1} \right| = 0$. 其高效转换对 $\delta \alpha$ 的 容差如图 11 所示.

 $\theta_2 = 58.96^{\circ}$ 时,高效转换非共线角容宽 $\delta \alpha \approx \pm 10 \text{ mrad}, \theta_2$ 逐渐趋近于 90°的过程中, $\delta \alpha$ 的范

围也逐渐减小, 当 $\theta_2 = 90^{\circ}$ 时, $\delta \alpha \approx \pm 390 \mu rad.$ 图 11 中绿线表征了 $\theta_2 = 59^{\circ}$ 时, 和频效率随 $\delta \alpha$ 的变化情况. 其对称的双峰表明在 θ_2 接近 58.96°的区域, 使得 $\Delta k(\theta_2) = 0$ 的两个零点非常接近, 因此当 $\delta \alpha$ (即 $\delta \theta_1$)的扫描范围在图 11 所示的 0—40 mrad内时, 两个零点所表征的匹配位置即会 产生两个对称的双峰.

图 11 (网刊彩色) 不同 θ_2 情况下和频效率非共线角容宽 Fig. 11. (color online) The tolerance of noncollinear angle $\delta \alpha$ varying with θ_2 .

4 倍频光路色分离非共线和频方案

如上所述,非共线和频过程一般情况下要求非 共线角的调整精度比较高,其晶体内部的非共线角 扰动要控制在 $\delta \alpha < 50$ µrad 以内才能达到高效转 换的目的.若使用非临界相位匹配,则I,II两类过 程的非共线角约为20°和13.5°,较大的非共线角在 工程应用中使和频装置所占空间增大,不利于终端 光学系统的设计和调试.

为克服上述不利因素对终端光学系统结构 和调试工作带来的影响,提出一种新型终端组件 设计方案: ω光经SHG晶体倍频后,利用12°的楔 板对共线传输的ω与2ω光束进行色分离,产生约 3.5 mrad的夹角,通过非共线SFG过程产生3ω.由 于该方案ω,2ω和3ω不共线,因此只需要弯月透镜 就可实现聚焦与色分离. I类和II类非共线和频过 程如图12所示.

4.1 I类方案

I类匹配的参数设计较为简单. 如图12(a), 根据上述讨论, ω (o)和 ω (2o)均为o光,其折射率 与入射角无关. 经和频晶体折射后, 晶体内部的 $|\mathbf{k}_1 + \mathbf{k}_2|$ 只是晶体内非共线角的一元函数. $\omega(o)$ 与 $\omega(2o)$ 经熔石英楔板折射后, 其夹角 α 为定值. 因此, 折射光 $|\mathbf{k}_1 + \mathbf{k}_2|$ 是入射角 $i_{\omega}(\mathbf{g}i_{2\omega})$ 的一元 函数. 根据折射定律可分别得到 $\omega(o)$ 和 $\omega(2o)$ 的 折射角 i_{ω} 和 $i_{2\omega}$, 进而得到 $|\mathbf{k}_1 + \mathbf{k}_2|$. 最后可根据 $\mathbf{k}_1 + \mathbf{k}_2$ 给出晶体c轴与晶体入射面法线方向的夹 角 θ_c , 即切割角. 利用 $\theta_p = 35.2^\circ$ 时I类SHG, 得到 共线传输的 $\omega(o)$ 和2 $\omega(o)$, 然后令其以接近垂直的 入射角入射和频晶体. 利用上述算法可得, 和频晶 体c轴与晶体切割面法线方向的夹角为 $\theta_c = 47.30^\circ$ 时达到非共线匹配. 此时, 无需考虑 $\omega(o)$ 和2 $\omega(o)$ 夹角 α 的扰动对转换效率的影响, 因为 α 是由熔石 英楔板决定的单值函数.

图 12 (网刊彩色) 非共线和频相位匹配模型 (a) I 类匹 配; (b) II 类匹配

Fig. 12. (color online) Noncollinear SFG process: (a) I type phase matching; (b) II type phase matching.

如图 13 所示,使用 12° 熔石英楔板将 $\omega(o)$ 与 2 $\omega(o)$ 分开 3.5 mrad,并沿接近于垂直入射的方 向入射 SFG 晶体.此时,SFG 晶体的切割角约为 $\theta_c \approx 47.30^\circ$.在 ω 功率密度 1 GW/cm²,和频晶体

图 13 (网刊彩色) I 类非共线和频示意图及入射角调谐 容宽 (子图为高效转换过程中匹配入射角 δ*i* 随切割角 δ*θ*с 的变化规律)

Fig. 13. (color online) I type noncollinear SFG structure diagram and efficient conversion tolerance with respect to incident angle (insert-graph depicts δi varying with $\delta \theta_c$). 14 mm条件下,其高效转换的失谐角容宽近似为 δ*i* = ±600 μrad. 其达到匹配所对应的入射角的变 化量δ*i* 与晶体加工光轴方向偏差量δ θ_c 基本成线 性关系,其比例系数大约为 $\partial i/\partial \theta_c \approx -1.5$.因此, 该模型比较适用于终端光学系统倍频设计:即使晶 体切割角度存在 mrad 量级的偏差量,也可通过扫 描入射角 i_{ω} 和 $i_{2\omega}$ 获得最佳匹配位置.根据计算, 输出的 3 ω (e) 与 ω (o) 和 2 ω (o) 的夹角分别为2.4 和 0.9 mrad.

4.2 II 类方案

非共线 II 类和频的参数确定较复杂.由于 ω 为 e光,因此 $|k_1 + k_2|$ 不仅与入射角 i_{ω} 和 $i_{2\omega}$ 有关,它 也随晶体内部 c轴的方向变化,而 c轴的方向又决 定了 Δk 的大小和方向.可采用如下的方法确定一 组满足 II 类相位匹配条件的入射角和切割角的解 $(i_{\omega}, i_{2\omega}, \theta_c)$ (如图 14 所示).

图 14 (网刊彩色) II 类非共线和频示意图 (a) e 光入射角 *i*、折射角 *i'* 与折射光折射率 *n*(ω) 的关系; (b) II 类非共线和频相位匹配

Fig. 14. (color online) II type noncollinear SFG (a) refraction law of e light; (b) II type noncollinear SFG structure diagram

给定切割角度 θ_c ,令入射角 i_ω 为变量,根据反 射定律,折射角 i'_ω 和折射光线折射率 $n(\omega)$ 应同时 满足下式:

$$\begin{cases} \frac{1}{n\omega} = \frac{\sin i'_{\omega}}{\sin i_{\omega}}, \\ \frac{1}{n^2(\omega)} = \frac{1}{n_{\rm e}^2(\omega)} + \left[\frac{1}{n_{\rm o}^2(\omega)} - \frac{1}{n_{\rm e}^2(\omega)}\right] \qquad (11) \\ \times \cos(i'_{\omega} + \theta_{\rm c}). \end{cases}$$

为解得 i'_{ω} 和 $n(\omega)$, 令 $x = \sin i'_{\omega}$, $s = \sin i_{\omega}$, $a = \frac{1}{n_{\rm o}(\omega)}$, $b = \frac{1}{n_{\rm e}(\omega)}$, $c = \cos \theta_{\rm c}$, $d = \cos \theta_{\rm c}$; 再令

$$k = \frac{1}{s^2(a^2 - b^2)} + (c^2 - d^2), g = \frac{b^2}{(a^2 - b^2)} + c^2,$$

h = -2cd. 于是可以得到一个关于 $x(即 \sin i'_{\omega})$ 的
4次方程

$$(k^{2} + h^{2})x^{4} - (2kg + h^{2})x^{2} + g^{2} = 0,$$
(12)

$$x^{2} = \frac{(2kg + h^{2}) \pm \sqrt{(2kg + h^{2})^{2} - 4g^{2}(h^{2} + k^{2})}}{2(k^{2} + h^{2})},$$
(13)

图 15 (网刊彩色) $\omega = 2\omega$ 夹角为 3.5 mrad 情况下 II 类 非共线和频入射角数值解及入射角容宽 (a) 给定晶轴切 割角 θ_c 时,满足相位匹配的入射角的数值解 (同色虚线与 实线交点); (b) I+II 类非共线和频及远场色分离示意图; (c) II 类非共线和频入射角容宽 (子图为匹配入射角 δi 随 切割角 $\delta \theta_c$ 的变化规律)

Fig. 15. (color online) Numerical solution of incident angle of II type noncollinear SFG when intersection angle between ω and 2ω is about 2.4 mrad: (a) Numerical solution of incident angle at particular θ_c (intersection of solid line and dotted line using the same color); (b) optical path configuration of I+II type noncollinear SFG process; (c) tolerance of incident angle corresponding to high efficiency frequency conversion(sub-graph depicts δi varying with $\delta \theta_c$). 因此由 (13) 式得到了 $i'_{\omega} = f(i_{\omega}, \theta_c)$. 式中两个解 分别对应图 14 (a) 中 c 轴与折射光位于晶体表面法 线同侧和异侧两种情况, 同侧取 –, 异侧取 +. 可 以根据 (9) 式所述的方法获得切割角为 θ_c 时, k_1 和 k_2 以及 $|k_1 + k_2|$ 与光轴的夹角, 进而获得满足 $\Delta k = 0$ 的入射角 i_{ω} 和 $i_{2\omega}$. 这个过程的求解, 依然 采用两族曲线相交的方法. 即满足 θ_c 状态下

$$(\boldsymbol{k}_1 + \boldsymbol{k}_2) (i_{\omega}, i_{2\omega}, \theta_{\rm c}) = \boldsymbol{k}_3(\theta_3)$$
(14)

的所有 $(i_{\omega}, i_{2\omega}, \theta_3)$ 的集合.

图 15 为 ω 与 2ω 夹角为 3.5 mrad 情况下 II 类非 共线和频入射角解及入射角容宽.图15(a)表明, 当 $\theta_c \approx 59.3^{\circ}$ 时,入射角为 $i \approx 0^{\circ}$.这是由于12°石 英楔板所提供的非共线角 $\alpha = 3.5 \text{ mrad}$ 非常小,其 匹配方向接近于II类共线和频的匹配方向.因此 目前装置上工作于 II 类共线和频状态下的 KDP 晶 体对于这样的非共线角仍然兼容,即近似晶体法线 方向入射可以实现相位匹配. 其完整的谐波转换 及色分离方案如图15(b)所示,石英楔板的姿态相 对于正入射方向逆时针倾斜30°放置,可使折射的 ω 与2 ω 光线相交, 避免了光束分离产生的能量损 失. 在图 15(c)中,选择 $\theta_c \approx 58.6^\circ$,此时,入射角 $i_{2\omega} = 10$ mrad. 在 ω 功率密度 1 GW/cm², 和频晶 体11 mm条件下,其实现高效转换的入射角容宽约 为±1 mrad. 当切割角存在偏差时, $\delta i / \delta \theta_c \approx -1.5$, 与Ι类相仿. 由于ω与2ω的折射角相差很小, 因此, 在1-2 cm 晶体厚度的情况下,由于非共线角引起 的走离效应可以忽略. 出射 3ω 与ω, 2ω 的夹角分 别为2.5和0.9 mrad, 如果使用4500 mm 焦距的透 镜,在远场色分离尺度约为11 和4.5 mm. 完全满 足高功率激光装置对终端光学系统色分离的设计 要求.

进一步计算发现,沿KDP晶体折射率主轴方 向将晶体切割成楔板,即o光与e光折射率差值最 大方向,只需3°楔角即可实现同等尺度的远场色 分离.因此利用3°左右的KDP晶体楔板代替12° 石英楔板,可进一步减少色分离原件厚度从而进一 步提高损伤阈值.

5 结 论

分析了非共线I,II类和频过程的参数设计、不同非共线角情况下晶体失谐角容宽以及非共线角

容宽. 对于 KDP 晶体, 满足相位匹配的 I 类和频 非共线角 α 范围为 0°—19.99°, $\alpha = 0°$ 为共线匹配 过程, 其匹配角 $\theta_3 \approx 47.7°$; $\alpha = 19.9°$ 时, 达到非 临界状态 $\theta_3 = 90°$. 临界状态的失谐角容宽约为 $\delta\theta_3 \approx \pm 490 \mu rad$, 非临界状态的失谐角容宽约为 $\delta\theta_3 \approx \pm 20 m rad$, 非临界状态有效非线性系数达 到 I 类匹配最大值, 容易实现高效转换. I 类非临界 过程对非共线角容宽约为 $\delta\alpha \approx \pm 0.17 m rad$, 十分 苛刻.

II 类和频过程, 满足相位匹配的非共线角 α 的 范围约 0°—13.55°, $\alpha = 13.55°$ 时达到非临界状态, 此时 $\theta_3 \approx 86.53°$. II 类匹配临界状态的失谐角容 宽约为 $\delta\theta_3 \approx \pm 580$ µrad, 略宽于 I 类过程; 非临 界状态 $\delta\theta_3 \approx \pm 20$ mrad. II 类过程对非共线角容 宽约为 $\delta\alpha \approx \pm 0.4$ mrad, 比 I 类宽. 且存在一个 $\theta_2 \approx 58.96°$ 的特殊位置, 满足非共线角 α 的非临界 匹配, 其容宽约为 $\delta\alpha = 20$ mrad. II 类非临界和频 过程的缺点在于匹配角接近 90°, 有效非线性系数 极小, 需要较厚的和频晶体才能达到较高的转换 效率.

进一步提出了一种基于非共线和频的终端光 学系统改进方案,即使用熔石英楔板对同向传输 的 ω 与2 ω 进行分离,产生约3.5 mrad的夹角.利 用近似正入射,切割角为 $\theta_c \approx 47.30^\circ$ 的I类过程 或切割角为 $\theta_c \approx 58.6^\circ$ 的II类过程,均可使3 ω 与 $\omega, 2\omega$ 产生2.4与0.9 mrad的夹角,满足色分离要 求.且满足 $\delta i/\delta \theta_c \approx -1.5$ 的变化关系.其实现高 效转换的入射角容差分别为 $\delta i_{\rm I} \approx \pm 0.6$ mrad和 $\delta i_{\rm II} \approx \pm 1$ mrad.该方案非常适合终端光学系统频 率转换与色分离的技术要求.

本阶段工作仅考虑沿非线性介质厚度方向,即 光束传输方向上的非线性耦合过程,以便得到I,II 两类非共线和频过程的数值解,而未考虑光束截面 空间分布与时间波形对耦合效率产生的影响.在进 一步的工作中,需利用含有时空变量的耦合波方程 对三维非线性耦合过程予以分析,并通过实验对模 拟结果加以验证.

参考文献

- Wegner P, Auerbach J, Biesiada T, Dixit S, Lawson J, Menapace J, Parham T, Swift D, Whitman P, Williams W 2004 Proc. SPIE 5341 181
- [2] Wegner P J, Auerbach J M, Barker C E, Burkhart S C, Couture S A, DeYoreo J J, Hibbard R L, Liou L W, Norton M A, Whitman P K, Hackel L A 1999 *Proc. SPIE* 3492 392
- [3] Dunne M 2012 Update on NIF and NIC
- [4] National Ignition Facility User Guide 2012 p47
- [5] Parham T G, Azevedo S, Chang J, Conder A, Heestand G, Henesian M, Kegelmeyer L, Liebman J, Manes K, Norton M, Nostrand M, Wegner P, Williams W, Whitman P K, Yang S 2009 LLNL-TR-410955
- [6] Qiao Z F, Lu X Q, Zhao D F, Zhu B Q 2008 Chin. J. Lasers **39** 1328 (in Chinese) [乔战峰, 卢兴强, 赵东峰, 朱 宝强 2008 中国激光 **39** 1328]
- [7] Shao P, Xia L, Zhao D F, Ju L J, Jiao Z Y 2015 Chin.
 J. Lasers 42 0408006 (in Chinese) [邵平, 夏兰, 赵东峰, 居玲洁, 焦兆阳 2015 中国激光 42 0408006]
- [8] Chen J, Zheng Y L, An N, Chen X F 2015 Opt. Lett. 40 4484
- [9] Bates H E 1971 J. Opt. Soc. Am. **61** 904
- [10] Bates H E 1973 J. Opt. Soc. Am. 63 146

Numerical simulation analysis of high efficient SFG and color separation in far field in high power laser facility based on noncollinear phase matching by KDP crystal

Liu Chong¹⁾ Ji Lai-Lin^{1)2)†} Zhu Bao-Qiang¹⁾ Lin Zun-Qi¹⁾

1) (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

2) (Shanghai Institute of Laser and Plasma, Chinese Academy of Engineer and Physics, Shanghai 201800, China)

(Received 13 April 2016; revised manuscript received 13 May 2016)

Abstract

Asymmetric property of wedge lens in 3ω optical path which is used as frequency separation, and focusing element is considered to be an unfavourable factor for target alignment in inertial confinement fusion (ICF). Furthermore, the thickness of wedge lens in 3ω optical path will lead to laser induced damage inevitably. For the purpose of scheme improvement of final optical assembly, types I and II noncollinear sum frequency generation in KDP crystal at room temperature are discussed based on nonlinear coupled wave theory. As illustrated by simulated result, in addition to type II collinear SFG used in ICF recently, 351 nm (3ω) waves can be generated by type I or II noncollinear SFG process. This method can realize color separations of ω , 2ω , 3ω in far field without asymmetric element such as wedge lens and posses adequate tolerance of matching angle corresponding to the high efficiency conversion. As calculated, for type I SFG, when the noncollinear angle α is in the interval from 0° to 19.99°, phase matching condition can be satisfied in KDP crystal. The noncritical phase matching angle θ_3 is 90° and the corresponding noncollinear angle α is about 19.99°. The tolerance of mismatching angle is about ± 20 mrad. For type II SFG, the noncollinear angle interval that can satisfy phase matching process is about $0^{\circ}-13.55^{\circ}$. Like type I SFG, there is also an noncritical solution in type II process whose matching angle is about $\theta(3\omega) = 86.53^{\circ}$. Because of the smaller effective nonlinear coefficient in this case, high efficiency conversion needs about 5 cm thick SFG crystal under 1 GW/cm². Correspondingly, tolerance of mismatching angle is about ± 20 mrad. Because of the harsh tolerance of noncollinear angle between ω and 2ω and for the purpose of compactness of final optical assembly, another method of noncollinear SFG is proposed: a piece of silica wedge with 12° wedged angle is mounted behind the SHG crystal in order to produce a 3.5 mrad intersection angle between ω and 2ω , and after type II noncollinear SFG process, ω , 2ω , 3ω will be frequency separated in far field automatically by using thin lens. The tolerance of incident angle corresponding to high efficient conversion is about ± 1.0 mrad. This scheme can improve the final optical assembly used recently.

Keywords: high power laser facility, laser induced damage, noncollinear sum frequency generation, harmonic wave separation at far field

PACS: 42.55.–f, 42.65.–k, 42.65.Ky, 42.70.Mp

DOI: 10.7498/aps.65.144202

[†] Corresponding author. E-mail: jsycjll@siom.ac.cn