物理学报 Acta Physica Sinica

空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响

唐士惠 操秀霞 何林 祝文军

Effects of vacancy point defects and phase transitions on optical properties of shocked AI_2O_3

Tang Shi-Hui Cao Xiu-Xia He Lin Zhu Wen-Jun

引用信息 Citation: Acta Physica Sinica, 65, 146201 (2016) DOI: 10.7498/aps.65.146201 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.146201 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I14

您可能感兴趣的其他文章 Articles you may be interested in

非对称冲击-卸载实验中纵波声速的特征线分析方法

Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment

物理学报.2016, 65(11): 116201 http://dx.doi.org/10.7498/aps.65.116201

冲击加载下液态水的结构相变

Structural transformation of liquid water under shock compression condition 物理学报.2014, 63(12): 126201 http://dx.doi.org/10.7498/aps.63.126201

钒的高压声速测量 Sound velocities of vanadium under shock compression 物理学报.2014, 63(2): 026202 http://dx.doi.org/10.7498/aps.63.026202

纳米多晶铜中冲击波阵面的分子动力学研究

Molecular dynamics investigation of shock front in nanocrystalline copper 物理学报.2013, 62(3): 036201 http://dx.doi.org/10.7498/aps.62.036201

熔化前后 Pb 样品表面微喷射现象研究 Ejecta on Pb surface below and above melting pressure 物理学报.2012, 61(20): 206202 http://dx.doi.org/10.7498/aps.61.206202

空位缺陷和相变对冲击压缩下蓝宝石 光学性质的影响^{*}

唐士惠1) 操秀霞2) 何林1)† 祝文军2)

(四川师范大学物理与电子工程学院,固体物理研究所,成都 610101)
 (中国工程物理研究院流体物理研究所,冲击波物理与爆轰物理重点实验室,绵阳 621900)

(2016年4月16日收到;2016年5月11日收到修改稿)

为了探究冲击压缩下蓝宝石光学性质的变化行为,本文采用第一性原理方法,在180 GPa的压力范围内 计算了蓝宝石理想晶体和含空位点缺陷晶体的光学性质.吸收光谱数据表明,仅考虑压力和温度因素不能解 释冲击消光实验的结果,而冲击诱导的氧离子空位点缺陷应该是导致该结果的一个重要原因.波长在532 nm 处的折射率数据表明:1)蓝宝石的两个高压结构相变将导致其折射率明显上升;在 Corundum 和 Rh₂O₃ 相 区,其折射率将随冲击压力增大而降低;在 CalrO₃ 相区,压力小于172 GPa时,其折射率随冲击压力增大而 缓慢地降低,但172 GPa以上时折射率却随冲击压力增大而逐渐增大;2)空位点缺陷对折射率随冲击压力的 变化规律有明显的影响.本文结果不仅有助于增强用空位点缺陷的物理机理来解释蓝宝石冲击透明性损伤现 象的可靠性,而且对未来进一步的实验研究以及发展新型窗口材料有重要的参考作用.

关键词: 高压, 第一性原理计算, 光学性质, 蓝宝石 **PACS:** 62.50.Ef, 71.15.Mb, 78.20.Ci, 61.72.-y

DOI: 10.7498/aps.65.146201

1引言

蓝宝石 (Al₂O₃) 是一种重要的陶瓷材料, 在高 压科学中有广泛的应用. 例如, 在冲击波动态高压 实验中, 它常常被用作窗口材料^[1-4]. 目前, 主要 有以下两类动高压实验需用到窗口材料.

一类是非透明材料的冲击温度测量(冲击波高 压作用的特点是高压的产生同时伴随高温的出现). 该实验中的一个关注点是窗口材料的冲击透明性 问题,因为它对实验结果的置信度有巨大影响,对 发展非透明材料的冲击测温技术有关键价值^[3].因 此,深入探究冲击压缩下蓝宝石透明性变化的规律 和物理机理有重要的科学意义.蓝宝石在常态下具 有极好的透明性,但冲击压力在大约130 GPa以上 时其透明性明显降低(例如文献[1,3]).Weir等^[5] 猜测, 蓝宝石透明性的损伤与冲击诱导的缺陷有 关. He等^[6]的第一性原理计算研究结果表明了对 该猜测的支持, 并认为冲击压缩下蓝宝石中出现的 氧离子空位点缺陷在可见光范围内引起的非均匀 光吸收可能是导致蓝宝石透明性降低的一个重要 原因. 尽管如此, 理论计算得出的结论是否有效和 可靠仍需要进一步研究. 其理由是, 该理论研究仅 计算了蓝宝石在一个冲击压力下的光吸收系数随 波长变化的曲线, 并与在波长为633 nm处的消光 系数测量结果对比分析来表明其透明性降低的原 因^[6].事实上, 张岱宇等^[7]已测量了两个冲击压力 下蓝宝石在 633 nm处的消光系数, 并指明, 随着冲 击压力的增大, 其消光性显著增强; 同时, 操秀霞 等^[8]还测量了多个冲击压力下蓝宝石消光系数随 波长变化的规律, 并结合 Hare 等^[9] 的实验数据分

* 中国工程物理研究院压缩科学研究中心 (批准号: YK2015-0602004)、国家自然科学基金 (批准号: 10299040) 和四川省教育厅科研基金 (批准号: 13ZA0152) 资助的课题.

© 2016 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: linhe63@163.com

析指明,张岱字等^[7]得出的消光系数随压力增加而 增大的结论是正确的,而且随着冲击压力的增大, 其消光系数随波长变化的曲线出现了明显的红移 现象^[8].在这种情况下,能否采用空位缺陷的物理 机理去解释这些新现象是令人感兴趣的和至关重 要的.另外,研究指明^[8],在大约100 GPa以上的 强冲击压力下,实测的蓝宝石消光系数并非纯的吸 收消光,其中应包含散射消光的贡献.但强冲击压 缩下,消光谱曲线出现的明显红移现象很难用散射 消光来解释^[8].这是否意味着采用吸收消光的观点 去解释这些新现象是值得探讨的.上述问题的研究 不仅有助于强化文献[6]中提出的蓝宝石透明性损 伤机理的合理性和增强其他高压物性预测结果的 可信度^[10,11],而且对于未来发展新型窗口材料也 有重要参考作用.

另一类加窗冲击波实验是采用任意反射面速 度干涉仪 (velocity interferometer system for any reflector, VISAR)等激光干涉测速技术来测量受冲 击样品中的粒子速度. 该类实验的一个研究热点是 冲击压缩下窗口材料折射率的变化行为,这对正确 解读实验数据至关重要^[10,12-16]. VISAR 实验通常 采用波长为532 nm的光源^[12,15],因此探索冲击压 缩下蓝宝石在该波长处折射率的变化规律有重要 的科学价值. 目前, Setchell^[15]已在低的冲击压力 范围内测量了蓝宝石在532 nm 处的折射率变化行 为,但更高冲击压力下其折射率变化的信息是未知 的. 如果采用简单外推的方法来获得蓝宝石在强 冲击压缩下的折射率信息,可能存在一些问题.因 为:1)实验研究指明,蓝宝石在一个较宽的压力范 围内存在两个结构相变,这些相变或许会导致其折 射率显著变化; 2) 在强冲击压缩下, 蓝宝石中存在 的高浓度空位点缺陷也许对其折射率有较大的影 响^[10,17]. 上述因素究竟如何影响蓝宝石的折射率 需进一步研究.

从目前的情况来看,采用第一性原理计算方 法探究上述问题是一个较好的途径.因为采用该 方法:1)可以直接计算出材料在不同压力和波长 下的光吸收系数和折射率;2)在计算一些材料(例 如,LiF和MgO等)在高压下的光学性质时,获得 了与实验观测相符的结果^[6,10,11,17].另外,以下几 点需要说明.1)在探究第一个问题时,计算所采 用的压力范围本应与操秀霞等^[8]和Hare等^[9]的实 验压力范围一致(因为实验获得了消光系数随波

长的变化关系). 考虑到蓝宝石的冲击透明性明显 降低的压力条件^[1,3],计算时所采用的冲击压力范 围应该是约156—255 GPa^[8,9]. 由于约156 GPa压 力点的实验数据误差较大^[8],实际的压力范围是 约183—255 GPa. 然而,在该压力区计算蓝宝石 的光吸收性质时,将会出现由于冲击温度过高使 得计算软件不能实施温度修正的情况(冲击温度引 起的能隙降低值大于计算误差修正造成的能隙增 加值)^[6].因此,将选择在约130—172 GPa的压力 区计算其光吸收性质(与张岱宇等^[7]实验点的压 力范围一致). 2) 在探究第二个问题时, 由于蓝宝 石出现两个结构相变的压力条件分别是大约80和 130 GPa^[1,2],于是计算折射率时采用的压力范围 应该覆盖这些压力点. 3) Weir 等^[5] 推测冲击诱导 的缺陷浓度将随冲击压力的增大而升高;而且计算 研究表明冲击诱导的空位点缺陷浓度也会随冲击 压力的增大而升高^[10].因此,在计算冲击压缩下蓝 宝石的光学性质时应考虑此因素.基于上述情况, 本文采用第一性原理方法,在180 GPa的压力范围 内计算了Al₂O₃理想晶体和含空位点缺陷晶体的 光吸收性和折射率,进一步探究蓝宝石冲击透明性 损伤的机理以及预测其折射率在冲击压缩下的变 化行为.

2 计算方法

冲击压缩不仅会产生高压,同时会伴随高温的出现.所以,本文的计算将按照以下两个步骤来 实施.

1) 蓝宝石在高压下的光吸收谱和折射率的第 一性原理计算. 根据蓝宝石的相图^[1,2],在180 GPa 压力范围内,存在三个结构相(corundum, Rh₂O₃ 和CalrO₃). 因此,在理想晶体的计算中采用了上 述三种结构的原胞模型(模型信息见文献[6]). 按 照引言部分所述,本文需要探究空位点缺陷对高压 下蓝宝石光学性质的影响. 研究表明^[10],冲击诱 导的空位点缺陷浓度随冲击压力增大而升高. 然 而,在不同的冲击状态下,空位缺陷浓度具体是多 少不清楚,基于这种情况,我们只能定性地预测空 位缺陷的行为. 同时考虑到计算资源的限制,本文 的缺陷计算选取了三种超原胞结构模型: 40,60和 80个原子的超原胞(分别对应不同的压力点). 在 这些超原胞内去掉一个氧原子或铝原子,就获得了 浓度分别为2.5%, 1.67%以及1.25%的氧或铝空位 缺陷晶体模型. 已有研究表明, 蓝宝石中处于充分 电离态的空位点缺陷是最稳定的[18],所以本文仅 计算了氧离子和铝离子空位点缺陷对高压下蓝宝 石光学性质的影响.同时,检验计算表明,超原胞 内氧或铝离子空位(V_O⁺²或V_{A1}⁻³)位置的变化对计 算结果基本没有影响,这意味着去掉超原胞内任意 一个氧离子或铝离子来做各自缺陷晶体的计算模 型都是可以的. 计算是在 Material Studio 5.0下的 CASTEP 模块中完成的^[19],并采用平面波超软赝 势结合广义梯度近似(GGA)的密度泛函理论方法 来计算Al₂O₃晶体的光学性质^[20-22].用GGA的 PBE计算方案来处理电子间的交换关联势. 几何 优化采用了BFGS算法^[23],理想晶体和缺陷晶体 结构模型的优化计算精确度由下面的条件控制:最 大位移偏差为0.002 Å, 最大应力偏差为0.1 GPa, 原子间相互作用力的收敛精度为0.05 eV/Å, 自洽 收敛精度为 2×10^{-5} eV/atom. 为了证实计算的 收敛,平面波截断能取为300 eV. 对于 Corundum, $Rh_2O_3和 CalrO_3结构相的理想晶体, K 点分别设$ 置为 $3 \times 3 \times 2$, $2 \times 3 \times 3$ 和 $5 \times 2 \times 2$, 空带数均为 384. 对于缺陷晶体设置如下: Rh₂O₃结构相, 100 和131.2 GPa的计算分别采用了空位缺陷浓度为 1.25% 和1.67% 的模型,其K点设置为2×1×1和 2×1×3. CalrO₃结构相, 131.2 GPa的计算采用了 空位缺陷浓度为1.25%和1.67%的模型,其K点的 设置分别为1×2×2和2×2×2;172 GPa的计算 采用了空位浓度为1.67%和2.5%的模型,对应K 点的设置分别为2×2×2和3×2×2. 空位浓度为 1.25%, 1.67% 以及 2.5% 的缺陷晶体模型在实施计 算时的空带数分别设置为480,432和384.为了说 明计算结果的可靠性,我们选取了不同的截断能、 K点以及空带数进行了检验计算.结果表明,采用 更大的截断能、更多的K点以及更高的空带数来实 施计算不会影响本文的结论. 另外, 由于 VISAR 实 验通常采用波长为532 nm的光源^[12,15],所以本文 仅计算了蓝宝石在该波长处的高压折射率.

2) 高压吸收谱和折射率计算数据的冲击温度 修正. 温度修正所需的冲击温度数据是根据模型计 算而得到的^[8,24](注意: 文献[6] 中曾对131.2 GPa 压力点的吸收光谱数据实施了冲击温度修正, 但采 用的温度数据估计过高, 所以本文采用文献[8, 24] 中的冲击温度数据对该压力点的数据实施了重新 修正).研究表明,温度因素对材料光学性质的影响是由于温度导致其能隙变化而产生的(例如,文献[25,26]).第一性原理计算的能隙将随冲击温度的出现而降低(其降低程度随温度升高而增大).本文将依据文献[24]中获得的蓝宝石冲击温度曲线以及在文献[6]中采用的能隙随温度变化关系来对本文每个压力点的数据实施冲击温度修正.另外,蓝宝石零压下计算的能隙值低于常态下的测量值约2 eV^[6],这个差异是由于第一性原理理论的局限性造成的,该理论更适合预测材料基态的物理性质^[6,27].用第一性原理计算半导体和绝缘体材料的能隙时常常会产生低估的结果,这种偏差可以视为一种系统误差^[6,27].所以,本文的计算数据不仅要实施冲击温度修正还要考虑系统误差修正.

3 结果与讨论

3.1 吸收谱

图1(a)和图1(b)给出了冲击压缩下CalrO₃-Al₂O₃的吸收谱曲线(计算数据)和在633 nm处的 消光系数(实测数据). 从图1可以看出, 与文献[6] 的结论相似,理想晶体在131.2和172 GPa压力处 的计算结果表明,在633 nm处不存在光吸收,不能 解释冲击实验在该波长处观测到的消光现象^[7,8], 更重要的是,冲击压力和温度的变化对吸收曲线几 乎没有影响(见图1(a)),意味着仅考虑压力和温度 因素不能解释实验的观测(随着冲击压力的增大, 蓝宝石消光性显著增强,且消光系数随波长变化的 曲线出现了明显的红移行为^[7,8]). 然而, 含V₀⁺² 点 缺陷晶体在633 nm 处的计算数据却与张岱字等^[7] 的实验结果接近(见图1(a)),而且吸收系数随波长 增大而降低的行为也得到实验证实[8]. 另外, 空位 点缺陷模型的计算数据还表明了一个重要事实:随 着冲击压力的增大,吸收曲线显示出明显的红移行 为(见图1(a)). 这一点与操秀霞等^[8]的观测一致. 而且,在两个压力点分别采用较低缺陷浓度模型的 计算数据也得到相似的结果(冲击压缩下蓝宝石内 部的空位缺陷浓度具体是多少不清楚. 在这种情况 下,如果采用两组缺陷浓度的计算模型都得出一致 的结论, 那表明该结论应该是可靠的) (见图1(b)). 然而,仔细对比计算的吸收曲线和实测的消光曲 线^[8],还是存在一些差异的. 与MgO晶体的情况 相似[17],差别主要表现在计算的吸收系数随波长 增大衰减较快,而实测的消光系数随波长增大衰减 相对较慢^[8].这是由于计算模型过于简化而造成 的.本文采用的是能够解释蓝宝石冲击吸收谱一些 关键特征的模型(含V_O⁺²点缺陷模型).但实际情况 是,蓝宝石在强冲击压缩下其内部还会出现线、面 以及体缺陷^[6,28],这些缺陷对其吸收谱也可能有影 响.尽管如此,由于计算资源的限制,我们目前还 难以估计这些缺陷的贡献.

图 1 CalrO₃-Al₂O₃吸收光谱随冲击压力的变化规律 (计算的吸收谱曲线和在 633 nm 处实测的消光系数) (a) 在两个压力点分别采用较高缺陷浓度模型的计算 数据; (b) 在两个压力点分别采用较低缺陷浓度模型的计 算数据

Fig. 1. Shock pressure dependence of the optical absorption spectrum for CalrO₃-Al₂O₃ (the calculated absorptive-spectrum curves and the measured absorptive coefficients at 633 nm): (a) Data calculated with higher defective concentration model at 131.2 GPa and 172 GPa; (b) data calculated with lower defective concentration model at 131.2 GPa.

以上分析可以说明: 1) 文献 [6] 中提出的用空 位缺陷机理来解释蓝宝石冲击透明性损伤现象是 合理的;2)在实测的蓝宝石冲击消光系数中,吸 收消光应占有重要地位,而散射消光的贡献较小; 3)吸收谱的成功计算增强了用第一性原理方法预 测蓝宝石其他物性的可信度.

3.2 折射率

图2(a)和图2(b)给出了冲击压缩下蓝宝石 在532 nm处的折射率变化行为. 理想晶体计算 数据表明. 1)在蓝宝石的Corundum和Rh₂O₃相 区^[1,2],其折射率随压力增大而降低,但后一个相 区降低的程度减弱;在蓝宝石的CalrO3相区,压力 小于172 GPa时折射率随压力增大而缓慢地降低, 但当压力在172 GPa以上时折射率却随压力增大 而逐渐升高;2)令人感兴趣的是,蓝宝石两个高压 结构相变将使得其折射率增高约1.9%. 低压段理 想晶体计算数据与实测数据相符表明本文的折射 率计算结果是有效的(见图2(b)中的嵌入图). 该 一致性是否是一个普适现象仍需进一步的研究,但 LiF 的数据在低压段确实有该现象出现^[10].研究 表明, LiF 在高压段的计算数据与实验数据存在差 异,而且该差异可能与冲击诱导的空位点缺陷有 关^[10]. 这意味着, 在高压段探究空位点缺陷对蓝宝 石折射率的影响是有价值的. LiF在中压段的计算 和实验数据之间也存在一些差异,且该差异也可能 与空位缺陷有关. 但相对于高压段, 中压段诱导的 缺陷浓度要低一些^[10],这将使得计算模型显著增 大(现有的计算资源还难以实施较大模型的第一性 原理计算). 基于这些情况, 本文在高压段选择了三 个压力点(对应不同空位缺陷浓度)实施了计算(见 图2). 由于蓝宝石中处于充分电离状态的空位点 缺陷是最稳定的^[18],所以本文仅考虑了含V-²和 $V_{\Lambda 1}^{-3}$ 的晶体模型. 对其计算得到的结果是, 在蓝宝 石的Rh₂O₃和CalrO₃相区,空位缺陷因素的存在 将对折射率随冲击压力的变化规律有显著的影响 (见图2(a)). 而且,在CalrO₃相区的两个压力点分 别采用较低缺陷浓度模型的计算数据也支持该结 论(见图2(b)).于是可以推断,空位缺陷因素的存 在可能使得 Rh₂O₃相的折射率随冲击压力增大而 下降的趋势明显减弱, CalrO₃相的折射率随冲击 压力增大而上升. 以上分析表明, 仅根据一些低压 实验数据点[15],并通过实施简单地外推方法来获 得蓝宝石在强冲击压缩下的折射率信息是不可行 的. 另外, 上述结果如果能被实验证实, 那不仅表

明计算获得的蓝宝石折射率随冲击压力变化的规 律是可靠的,而且还预示着动态高压下的折射率测 量是探究蓝宝石冲击相变的一个新途径,这一点也 对其他材料的冲击相变研究提供了一个好的启示.

图2 (网刊彩色) Al₂O₃ 折射率随冲击压力的变化规律 (计算和实验数据) (a) 在 CalrO₃ 相区的两个压力点采 用较高缺陷浓度模型的计算数据; (b) 在 CalrO₃ 相区的 两个压力点采用较低缺陷浓度模型的计算数据; 内插图为 低压段数据

Fig. 2. (color online) Shock pressure dependence of the refractive index for Al_2O_3 (calculated and experimental data): (a) Data calculated with higher defective concentration model at two pressure points of CalrO₃ region; (b) data calculated with lower defective concentration model at two pressure points of CalrO₃ region; the inserted figure shows low-pressure data.

4 结 论

本文采用第一性原理方法,在180 GPa的压力 范围内计算了蓝宝石理想晶体和含空位点缺陷晶 体的光吸收性和折射率.获得了如下一些认识.

 1)理想晶体模型不能解释冲击消光实验结果, 意味着仅考虑压力和温度因素不足以揭示蓝宝石 冲击消光现象的物理本质,而冲击诱导的V⁺²则可 能是引起该现象的一个重要原因.基于这些结果, 可以进一步推断何林等提出的采用空位缺陷的物 理机理来解释蓝宝石冲击透明性损伤现象是合理 的;对于蓝宝石的冲击消光现象,吸收消光应占有 重要地位.

2)理想晶体折射率计算数据表明: 蓝宝石的 两个高压结构相变将使得其折射率增高约1.9%; 在蓝宝石的Corundum和Rh₂O₃相区,折射率将随 冲击压力增大而降低;在CalrO₃相区,压力小于 172 GPa时折射率随冲击压力增大而缓慢地降低, 但在172 GPa以上时折射率却随冲击压力增大而 逐渐增大. 空位缺陷因素的存在可能使得Rh₂O₃ 相的折射率随冲击压力增大而下降的趋势明显减 弱,CalrO₃相的折射率随冲击压力增大而下降的趋势明显减 简单地外推方法来获得蓝宝石在强冲击压缩下的 折射率信息是不可靠的.本文的这些预测对未来进 一步的实验研究有重要的参考价值.

参考文献

- [1] Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828
- [2] Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326
- [3] Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q
 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 物理学报 56 4965]
- [4] Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater.
 3 389
- [5] Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522
- [6] He L, Tang M J, Fang Y, Jing F Q 2008 Europhys. Lett.
 83 39001
- [7] Zhang D Y, Hao G Y, Zhang M J, Liu F S 2007 Journal of Synthetic Crystals 36 531 (in Chinese) [张岱宇, 郝高 宇, 张明建, 刘福生 2007 人工晶体学报 36 531]
- [8] Cao X X 2011 M. S. Thesis (Chengdu: Sichuan University) (in Chinese) [操秀霞 2011 硕士学位论文 (成都:四 川大学)]
- [9] Hare D E, Webb D J, Lee S H, Holmes N C 2002 Optical Extinction of Sapphire Shock-Loaded to 250–260 GPA. In Shock Compression of Condensed Matter-2001: 12th APS Topical Conference Atlanta, Georgia (USA), June 24–29, 2001 p1231
- [10] He L, Tang M J, Yin J, Zhou X M, Zhu W J, Liu F S, He D W 2012 *Physica B* 407 694
- [11] He X, He L, Tang M J, Xu M 2011 Acta Phys. Sin. 60
 026102 (in Chinese) [何旭, 何林, 唐明杰, 徐明 2011 物理
 学报 60 026102]

- [12] Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李 雪梅, 俞字颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 物 理学报 59 2691]
- [13] LaLone B M, Fat' yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505
- [14] Wise J L, Chhabildas L C 1986 Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials (New York: Springer US) pp441–454
- [15] Setchell R E 2002 J. Appl. Phys. 91 2833
- [16] Fratanduono D E, Eggert J H, Akin M C, Chau R, Holmes N C 2013 J. Appl. Phys. **114** 043518
- [17] He L, Tang M J, Zeng M F, Zhou X M, Zhu W J, Liu F S 2013 *Physica B* 410 137
- [18] Matsunaga K, Tanaka T, Yamamoto T, Lkuhara Y 2003 Phys. Rev. B 68 085110

- [19] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
- [20]~ Kohn W, Sham L J 1965 Phys. Rev. $\mathbf{140}$ A1133
- [21] Vanderbilt D 1990 *Phys. Rev. B* **41** 7892
- [22] Perdew J P, Burke K, Ernzerhof M 1996 *Phys. Rev. Lett.* 77 3865
- [23] Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768
- [24] Zhang D Y, Liu F S, Hao G Y, Sun Y H 2007 Chin. Phys. Lett. 24 2341
- [25] Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404
- [26] Wu J, Walukiewicz W, Shan W, Yu K M, Ager III J W, Li S X, Haller E E, Lu H, Schaff W J 2003 J. Appl. Phys. 94 4457
- [27] Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777
- [28] Meyers M A 1994 Dynamic Behavior of Materials (New York: Wiley-IEEE) p413

Effects of vacancy point defects and phase transitions on optical properties of shocked Al₂O₃^{*}

Tang Shi-Hui¹⁾ Cao Xiu-Xia²⁾ He $Lin^{1\dagger}$ Zhu Wen-Jun²⁾

1) (Institute of Solid State Physics, College of Physics and Electronic Engineering, Sichuan Normal University,

Chengdu 610101, China)

2) (National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of

Engineering Physics, Mianyang 621900, China)

(Received 16 April 2016; revised manuscript received 11 May 2016)

Abstract

The velocity interferometer system for any reflector (VISAR) and pyrometric measurements in dynamic highpressure experiments require the use of an optical window, and Alumina (Al_2O_3) or sapphires is often considered as a window material due to its high shock impedance and excellent transparency. Consequently, understanding the characteristics of its transparency and refractive index change under shock loading is crucial for explaining such experimental data. Experimental studies indicate optical transparency loss in shocked Al₂O₃. The mechanisms for the phenomenon are some interesting issues. A first-principles study suggests that shock-induced V_{Ω}^{+2} (the +2 charged O vacancy) defects in Al_2O_3 could be an important factor causing the transparency loss. Recently, the red shift of the extinction curve (i.e., the wavelength dependence of the extinction coefficient) with increasing shock pressure has been observed. It is needed to ascertain whether this behavior is also related to shock-induced vacancy point defects. In addition, up to now, information about Al_2O_3 refractive index at a wavelength of 532 nm under strong shock compression (the optical source wavelength in VISAR measurement is usually set at 532 nm) has been unknown, and neither the effects of structural transitions nor vacancy point defects on the refractive index of shocked Al_2O_3 are determined. Here, to investigate the above-mentioned questions, we perform first principles calculations of optical absorption and refractive index properties of Al₂O₃ crystal without and with $V_{\rm O}^{+2}$ and $V_{\rm Al}^{-3}$ (the -3 charged Al vacancy) defects in a pressure range of 180 GPa (the calculations in CASTEP are carried out by the plane-wave pseudo potential method in the framework of the density functional theory). Our absorption data show that the observed optical extinction in shocked Al₂O₃ cannot be explained by only considering pressure and temperature factors, but shock-induced V_{Ω}^{+2} should be an important source for this behavior. On the basis of these results, we may judge that 1) the transparency loss explanation for shocked Al_2O_3 in the view of vacancy point defects is reasonable; 2) the absorption extinction should dominate the extinction phenomenon observed in shocked Al_2O_3 . Our calculations find that high-pressure structural transition in Al_2O_3 causes an obvious enhancement of its refractive index. The refractive index decreases with increasing shock pressure in corundum and Rh₂O₃ regions, and decreases slightly below 172 GPa and increases slowly above 172 GPa with increasing shock pressure in CalrO₃ region. The V_{Ω}^{+2} and V_{A1}^{-3} defects in Al₂O₃ have apparent influences on the shock pressure dependence of its refractive index. These results mean that the information about Al_2O_3 refractive index under strong shock loading cannot be obtained simply by extrapolating its low pressure data. Our prediction could be of importance for future experimental study and new window-material development.

Keywords: high pressure, first-principles calculations, optical properties, sapphire PACS: 62.50.Ef, 71.15.Mb, 78.20.Ci, 61.72.-y DOI: 10.7498/aps.65.146201

^{*} Project Supported by CCS Project (Grant No. YK2015-0602004), the National Natural Science Foundation of China (Grant No. 10299040), and the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant No. 13ZA0152).

[†] Corresponding author. E-mail: linhe63@163.com