物理学报 Acta Physica Sinica

 γ -Fe₂O₃/NiO核-壳纳米花的合成、微结构与磁性

李志文 何学敏 颜士明 宋雪银 乔文 张星 钟伟 都有为

Synthesis, microstructure, and magnetic properties of γ -Fe₂O₃/NiO core/shell nanoflowers Li Zhi-Wen He Xue-Min Yan Shi-Ming Song Xue-Yin Qiao Wen Zhang Xing Zhong Wei Du You-Wei

引用信息 Citation: Acta Physica Sinica, 65, 147101 (2016) DOI: 10.7498/aps.65.147101 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.147101 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I14

您可能感兴趣的其他文章 Articles you may be interested in

正交各向异性双层交换弹簧薄膜的磁矩分布

Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies 物理学报.2016, 65(12): 127502 http://dx.doi.org/10.7498/aps.65.127502

耦合电磁场对石墨烯量子磁振荡的影响

The coupled electromagnetic field effects on quantum magnetic oscillations of graphene 物理学报.2016, 65(2): 027502 http://dx.doi.org/10.7498/aps.65.027502

隧穿磁电阻效应磁场传感器中低频噪声的测量与研究

Measurement and study of low-frequency noise in TMR magnetic field sensor 物理学报.2016, 65(5): 057501 http://dx.doi.org/10.7498/aps.65.057501

基于交换作用的纳磁逻辑电路片上时钟结构研究

On-chip clocking for exchange-interaction-based nanomagnetic logic circuits 物理学报.2014, 63(22): 227503 http://dx.doi.org/10.7498/aps.63.227503

Fe₃O₄纳米颗粒/聚二甲基硅氧烷复合材料磁电容效应的研究

Effect of magnetic capacitance in the Fe₃O₄ nanopartides and polydimethylsiloxane composite material 物理学报.2014, 63(5): 057501 http://dx.doi.org/10.7498/aps.63.057501

γ -Fe₂O₃/NiO核-壳纳米花的合成、微结构与磁性^{*}

李志文¹) 何学敏¹⁾²⁾ 颜士明¹⁾³⁾ 宋雪银¹) 乔文¹) 张星¹) 钟伟^{1)†} 都有为¹⁾

(南京大学物理系,固体微结构物理国家重点实验室,南京 210093)
 2)(南京邮电大学理学院,信息物理研究中心,南京 210023)
 3)(河南工业大学理学院,郑州 450001)

(2016年4月11日收到;2016年5月10日收到修改稿)

利用溶剂热/热分解的方法合成出微结构可控的 γ -Fe₂O₃/NiO 核 - 壳结构纳米花.分析表明 NiO 壳层是 由单晶结构的纳米片构成,这些纳米片不规则地镶嵌在 γ -Fe₂O₃核心的表面. Fe₃O₄/Ni(OH)₂前驱体的煅烧 时间对 γ -Fe₂O₃/NiO 核 -壳体系的晶粒生长、NiO 相含量和壳层致密度均有很大的影响.振动样品磁强计和 超导量子干涉仪的测试分析表明,尺寸效应、NiO 相含量和铁磁 -反铁磁界面耦合效应是决定 γ -Fe₂O₃/NiO 核 -壳纳米花磁性能的重要因素.随着 NiO 相含量的增加,磁化强度减小,矫顽力增大.在5 K下, γ -Fe₂O₃/NiO 核 - 壳纳米花表现出一定的交换偏置效应 ($H_{\rm E} = 46$ Oe),这来自于 (亚) 铁磁性 γ -Fe₂O₃ 和反铁磁性 NiO 之 间的耦合相互作用.与此同时,这种交换耦合效应也进一步提高了样品的矫顽力 ($H_{\rm C} = 288$ Oe).

关键词:相含量,分层结构,界面耦合,交换偏置 PACS: 71.70.Gm, 75.70.Cn, 75.75.-c

DOI: 10.7498/aps.65.147101

1引言

数十年来,由于在基础研究和技术应用上的重 大意义,过渡金属氧化物纳米材料受到广泛的关注. 其中,铁氧化物纳米颗粒(如Fe₃O₄和 γ -Fe₂O₃)在 磁流体、磁存储介质、靶向药物输送及磁共振成 像等方面有着巨大的应用价值^[1,2],这主要是因为 它们具有很好的化学稳定性和优异的铁磁(FM)特 性.同时考虑到过渡金属氧化亚物(如FeO,CoO, NiO)具有本征的反铁磁(AFM)属性,其纳米颗粒 所表现出的异常磁性也见报道^[3-5].对以上氧 化物的块体材料而言,亚铁磁性Fe₃O₄和 γ -Fe₂O₃ 的居里温度 $T_{\rm C}$ 分别是858和948 K,而反铁磁性 FeO,CoO和NiO 的奈尔温度 $T_{\rm N}$ 分别为198,293 和 523 K^[6]. 在铁磁/反铁磁体系中, 一般前者的 $T_{\rm C}$ 要高于后者的 $T_{\rm N}$, 经过场冷却 (FC) 过程后就 会观察到交换偏置现象^[7,8]. 目前已有文献报道 了 FeO/Fe₃O₄和 CoO/ γ -Fe₂O₃核-壳体系中的交 换偏置效应^[9–11]. 在可能的 FM/AFM 复合材料 中, γ -Fe₂O₃/NiO 核-壳体系实为理想的交换偏置 基研究对象, 因为它具有高的奈尔温度和较好的热 稳定性.

最近,可控的核-壳体系(纳米复合物、二元 纳米颗粒、分层纳米结构等)引起了人们极大 的兴趣,这主要归因于它们优异的物理化学特 性^[12-15].例如,Xi等^[16]合成出的Fe₃O₄/WO₃层 状核-壳纳米结构极大地改善了材料的光催化性 能,这得益于Fe₃O₄ 核和WO₃壳之间的协同效 应. Panagiotopoulos等^[17]采用一种简单的化学

^{*} 国家自然科学基金(批准号: 11174132, 11474151, U1232210)、国家重点基础研究发展计划(批准号: 2011CB922102, 2012CB932304)和江苏省普通高校博士生科研创新计划(批准号: CXZZ13_0035)资助的课题.

[†]通信作者. E-mail: wzhong@nju.edu.cn

^{© 2016} 中国物理学会 Chinese Physical Society

方法合成二元纳米颗粒,并研究了铁磁/反铁磁 型 γ -Fe₂O₃/CoO和"倒置"反铁磁/铁磁型CoO/ γ -Fe₂O₃二元纳米颗粒体系中的交换偏置现象.Yao 等^[18]制备了Ni-NiO纳米复合物,在5K下表现出 大的交换偏置和增强的矫顽力,这主要是因为在铁 磁性Ni和反铁磁性NiO的界面处形成了交换偏置 异质结.NiO纳米材料有着新颖的物理、化学性质, 已经在催化^[19]、锂离子电池^[20]、超级电容器^[21]、气 体传感器^[22]和水处理吸附剂等^[23]领域得到了广 泛的应用.由于 γ -Fe₂O₃纳米材料的优异磁特性, 因此通过一种环境友好的途径来制备微结构可控、 稳定性好的新型 γ -Fe₂O₃/NiO纳米结构磁 性能的影响,将会大大拓展 γ -Fe₂O₃/NiO纳米结构磁 的应用前景.

本文报道了一种简易、可重复的方法来 合成 γ -Fe₂O₃/NiO核-壳纳米花,研究发现改变 Fe₃O₄/Ni(OH)₂前驱体的煅烧时间可以调控其微 结构.着重研究了尺寸效应、NiO相含量和界面 耦合效应等微结构特征对室温和5K下磁性能的 影响.此外,对于 γ -Fe₂O₃/NiO核-壳纳米花中观 察到的交换偏置和矫顽力增强,也进行了详细的 分析.

2 实 验

2.1 Fe₃O₄纳米球的合成

首先,将0.811g的FeCl₃溶解在40mL的乙二 醇中,得到一种澄清溶液;然后依次向溶液中加入 3.6g的醋酸钠和1.0g的聚乙二醇.再将得到的干 净混合液转移至高压反应釜中,置于干燥箱中在 200°C下溶剂热反应8h后自然冷却至室温.接着 用酒精和去离子水反复清洗多次并离心,得到黑色 的沉淀物.最后,将黑色沉淀物放入真空干燥箱中 于60°C下干燥12h,再经研磨形成的黑色粉末即 为Fe₃O₄纳米球颗粒.

2.2 γ -Fe₂O₃/NiO核-壳纳米花的合成

核-壳纳米花样品是通过溶剂热/热分解的方 法来制备.首先,将1 mmol的Ni(NO₃)₂·6H₂O加 入到7 mL酒精和3 mL乙二醇的混合溶液中,形成 一种浅绿色的溶液;然后将10 mg的Fe₃O₄粉末加 入到该溶液中,并超声分散大约15 min.再将得到 的混合液转移至高压反应釜中,置于干燥箱中在 160°C下溶剂热反应8h后自然冷却至室温,得到 的前驱体用酒精和去离子水反复清洗多次并离心. 最后,产物在真空干燥箱中于60°C下干燥12h,得 到的黑色粉末再在空气中于300°C下分别煅烧3 和6h.如表1中所列,最终得到两个γ-Fe₂O₃/NiO 核-壳纳米花样品M1和M2.

2.3 样品的表征

用 Philips X'pert 型 X 射线衍射 (XRD) 仪对粉 末样品的晶体结构进行分析. X射线光电子能谱 (XPS) 是用 Kratos Axis Ultra DLD 型分光光度 计的Al Kα辐射来记录. 使用加速电压为5 kV 的FEI Sirion200型扫描电子显微镜(SEM)对样品 的形貌进行初步观测. 在进行透射电子显微镜 (TEM)的研究之前,制样时先将适量的粉末超 声分散于酒精中,再滴一滴分散后的清液到碳 膜涂载的铜网上,在空气中自然晾干后即可用于 TEM 测试. 基于 JEOL JEM-2100 型仪器, 用高分 辨TEM(HRTEM) 照片和选区电子衍射(SAED) 图案分析样品的局部微结构. 室温磁性测量用 Lake Shore 7304型振动样品磁强计(VSM)来完 成. 基于 MPMS XL 型超导量子干涉仪 (SQUID), 低温磁性的测量主要包括两方面: 1) 零场冷却 (ZFC)和场冷却(FC,从330 K用 $H_{FC} = 50$ kOe (1 Oe = $\frac{10^{-3}}{4\pi}$ A/m)的冷却场冷却至2 K)过程 下的5 K磁滞(M-H)回线; 2) 2—330 K 范围内的 ZFC和FC(300 Oe)磁化强度-温度(M-T)曲线.

表 1 不同煅烧时间下形成的 γ -Fe₂O₃/NiO 核 -壳纳米花样品的磁性参数 Table 1. Magnetic parameters of γ -Fe₂O₃/NiO core/shell nanoflower samples formed in different calcination time.

样品	时间/h	室温			T = 5 K			
		$M_{\rm s}/{\rm emu}\cdot{\rm g}^{-1}$	$M_{\rm r}/{\rm emu}\cdot{\rm g}^{-1}$	$H_{\rm C}/{\rm Oe}$	$M_{\rm s}/{\rm emu}\cdot{\rm g}^{-1}$	$H_{\rm C}({\rm ZFC})/{\rm Oe}$	$H_{\rm C}({\rm FC})/{\rm Oe}$	$H_{\rm E}/{\rm Oe}$
M1	3	28.62	5.87	120	45.41	235	252	20
M2	6	20.73	4.83	135	37.89	245	288	46

3 结果与讨论

使用XRD对所得粉末样品的结晶属性和相成 分进行了表征,结果如图1所示.标记为符号"#" 的衍射峰对应于NiO(JCPDS no. 04-0835), 而标 记为"•"的衍射峰来源于 γ-Fe₂O₃ (JCPDS no. 39-1346)^[24,25].在XRD图谱中没有检测到其他的结 晶杂质, 表明得到的样品是 γ -Fe₂O₃/NiO复合相. 对比3和6h煅烧的样品,发现随着煅烧时间的延 长, XRD 衍射峰逐渐变得窄而尖锐, 说明晶粒在 长大,结晶度也在提高.此外,煅烧时间对NiO(或 γ -Fe₂O₃)相含量有很大的影响.比如,随着煅烧时 间从3h延长到6h,所得样品的XRD衍射峰强度 比 $I_{NiO(111)}/I_{\gamma-Fe_2O_3(311)}$ 从0.19增大到0.32,这说 明6h煅烧样品的NiO含量要明显高于3h煅烧的 样品.考虑到 γ -Fe₂O₃和NiO分别属于铁磁性和反 铁磁性的材料^[26], NiO含量的不同将造成两个样 品之间的磁特性有很大差异,这在后文的磁性分析 中将得到证实. 综上所述, 不同的煅烧时间导致了 NiO相含量的改变,也影响了晶粒的生长.

图 1 (网刊彩色) 不同煅烧时间下形成的 γ-Fe₂O₃/NiO 核-壳纳米花样品的 XRD 图谱

Fig. 1. (color online) XRD patterns of γ -Fe₂O₃/NiO core/shell nanoflowers formed in different calcination time: (a) 3 h; (b) 6 h.

为更好地研究所得 γ -Fe₂O₃/NiO核-壳纳米 花的表面化学属性,对样品进行了XPS表征.在 测试分析时,C1s峰的结合能用284.3 eV作为参 考^[27].图2(a)中的全扫描 XPS 谱证实了样品中 存在有Fe, Ni, O和C四种元素. 其Ni峰的强度 要明显高于Fe峰,这也反映样品可能具有一种核 -壳结构. 图2(b)是样品在Fe 2p区域的XPS谱, 在结合能为712.1和722.9 eV附近出现的光电子峰 分别是铁氧化物的Fe $2p_{3/2}$ 和 $2p_{1/2}$ 谱的特征. 进 一步,在718.9 eV附近出现的卫星峰则是 γ -Fe₂O₃ 的特征峰^[28-30]. 图 2 (c) 中的 Ni 2p 谱包含了四 个容易辨认的特征峰: Ni 2p3/2 主峰及其卫星峰 在854.5和860.2 eV处, 而Ni 2p1/2 主峰及其卫星 峰位于 872.3 和 878.6 eV 附近. 这些特征峰证实了 NiO纳米片壳层中相应元素的存在^[31].在图2(d) 中529.5 eV附近出现的O 1s强峰是由一般氧化物 晶体 (O^{2-}) 中的O结合引起的^[27]. 由此可见, XPS 分析的结果进一步表明合成的纳米花样品是典型 的 γ -Fe₂O₃/NiO核-壳结构.

用 SEM 观测了所得 γ-Fe₂O₃/NiO 纳米花的形 貌,结果如图 3 所示,容易看出样品是一种核-壳分 层结构. 在样品的合成过程中,用先得到的 Fe₃O₄ 球作为核来促进 NiO 壳层的生长,从而最终形成 γ-Fe₂O₃/NiO 核-壳纳米花.其中,NiO 壳层是由许 多不规则的薄纳米片构成,并且这些纳米片是致密 地沉积在 γ-Fe₂O₃ 球的表面.随着煅烧时间从 3 h 延长到 6 h,所得纳米花样品的平均尺寸在增大,且 NiO 壳层的致密度也随之增加.由此可见,SEM 观 测的结果与 XRD 分析的结果相符合.

进一步用 TEM 探究了 γ-Fe₂O₃/NiO核-壳纳 米花样品的微结构、结晶度和相成分,结果如 图 4 中的 (a)—(c) 所示. 从图 4 (a) 中的 TEM 照片 观察到了清晰的粗糙度和明暗反差像,这说明壳 层沉积在核的表面,而且这些核-壳纳米花的尺寸 是相对均匀的. 作为核的 γ-Fe₂O₃ 球的平均直径 大约是 150 nm,而 NiO 壳层的厚度大约为60 nm. 图 4 (b) 中用红色虚线隔开的区域表示 γ-Fe₂O₃ 核, 其核 -壳分层结构非常明显. 图 4 (c) 中的 SAED 图 案表明所得样品具有复相的结构,其中的同心圆环 对应于 γ-Fe₂O₃ 核的多晶结构,而明亮的规则点阵 来自于单晶的 NiO 壳. 从 TEM 观测结果可以看出, 无论是结构还是形貌都与 XRD, XPS 和 SEM 分析 的结果保持一致.

图 2 γ -Fe₂O₃/NiO 核 -壳纳米花的 XPS 谱 (a) 全扫描 XPS 谱; (b) Fe 2p 谱; (c) Ni 2p 谱; (d) O 1s 谱 Fig. 2. XPS spectra of γ -Fe₂O₃/NiO core/shell nanoflowers: (a) Survey scan; (b) Fe 2p spectrum; (c) Ni 2p spectrum; (d) O 1s spectrum.

图 3 不同煅烧时间下形成的 γ -Fe₂O₃/NiO 核 -壳纳米花样品的 SEM 照片 (a) 3 h; (b) 6 h Fig. 3. SEM images of γ -Fe₂O₃/NiO core/shell nanoflowers formed in different calcination time: (a) 3 h; (b) 6 h.

实际上,分层结构起源于NiO壳层的形成, 而Fe₃O₄球在 γ -Fe₂O₃/NiO核-壳纳米花的形成过 程中发挥了重要的作用.如图4(d)所示,在 γ -Fe₂O₃/NiO核-壳结构形成之前得到的核-壳前驱 体是由Fe₃O₄/Ni(OH)₂组成.首先,形成的镍-乙 醇酸复合物以氢键结合的方式比较容易附着在 Fe₃O₄球的表面^[14,16].其次,在溶剂热(160°C, 8 h)的条件下,这些醇解的Ni²⁺聚集在一起并 通过水解作用转化成Ni(OH)₂纳米晶^[32-34]. 接着,在一连串的醇解反应和晶体生长过程中,作为晶体种子用的Ni(OH)₂纳米晶就在Fe₃O₄球的表面转化成了薄而致密的纳米片.最后,将得到的Fe₃O₄/Ni(OH)₂核-壳前驱体置于300°C的空气中煅烧3—6h,就形成了 γ -Fe₂O₃/NiO核-壳纳米花. 在此过程中,Ni(OH)₂壳层转化成NiO壳层,作为核用的Fe₃O₄球转变为 γ -Fe₂O₃球^[25,28,35].

Fig. 4. (color online) (a)–(c) Low and high magnification TEM images, and SAED pattern of γ -Fe₂O₃/NiO core/shell nanoflowers; (d) schematic illustration of the proposed formation mechanism of core/shell nanoflowers.

由于煅烧时间不仅改变 γ -Fe₂O₃/NiO 核-壳纳 米花样品的 NiO 含量,还影响其界面微结构,则可 能会对样品的磁性产生较大影响^[36].基于此,首 先利用 VSM 测量了两个样品的室温磁滞回线,结 果如图 5 所示.为了方便比较,两个样品的饱和磁 化强度 M_s 、剩余磁化强度 M_r 和矫顽力 H_C 的具体 数值已列于表 1 中.由图 5 可以看出,两个样品在 室温下均表现出(亚)铁磁性行为,这主要是因为两 个样品中都存在 γ -Fe₂O₃ 成分.特别是 3 h煅烧的 样品表现出了更好的铁磁性(如更高的 M_s 和更小 的 H_C),这是因为其更高的 γ -Fe₂O₃ 含量(或更低 的 NiO 含量).

在铁磁/反铁磁体系中,场冷却(FC)是产生交 换各向异性的必要条件.为了测量交换偏置场, 在50 kOe的外加磁场下,将煅烧3和6 h所得两 个 γ -Fe₂O₃/NiO核-壳纳米花样品从330 K (低于 块体NiO的 T_N ,523 K)冷却至2 K. 然后在5 K下 测量磁化强度*M*随着外加磁场*H*变化的磁滞回 线,得到的FC回线如图6所示.无论是ZFC还是 FC磁滞回线,煅烧3 h所得样品的饱和磁化强度 ($M_s = 45.41 \text{ emu/g}$)均要高于煅烧6 h所得的样 品 ($M_{\rm s} = 37.89 \text{ emu/g}$), 这主要是因为前者具有 更高的 γ -Fe₂O₃含量(或者说更低的NiO含量). 此 外, 如表1中所列, 磁化强度在5K下的数值要大 于室温, 这主要归因于热起伏在低温下的减弱或消 失^[37,38].

图 5 (网刊彩色)不同煅烧时间下形成的 γ-Fe₂O₃/NiO 核 -壳纳米花样品的室温磁滞回线

Fig. 5. (color online) Room-temperature hysteresis loops of γ -Fe₂O₃/NiO core/shell nanoflowers formed in different calcination time. Inset shows greater detail of the measurements around the origin.

煅烧3和6h所形成的两个样品的ZFC磁滞 回线均表现出了相对大的矫顽力, *H*_C(ZFC)大约 分别为235和245 Oe,这主要归因于样品中存在 γ-Fe₂O₃/NiO复相.前面的微结构分析已经表明, 在复合纳米花中有γ-Fe₂O₃相和NiO相的界面存 在.在外加磁场作用下,铁磁性γ-Fe₂O₃组分和反 铁磁性NiO组分之间的耦合相互作用使得自旋存 在多种磁化翻转路径,从而诱发样品具有较大的 矫顽力^[5,39].两个样品的矫顽力存在差异,这主要 取决于γ-Fe₂O₃相和NiO相的比例.γ-Fe₂O₃/NiO 样品中高含量的反铁磁NiO相可进一步提高其矫 顽力.

图 6 (网刊彩色) 不同煅烧时间下形成的 γ -Fe₂O₃/NiO 核 -壳纳米花样品的 5 K 磁滞回线 (a) 3 h; (b) 6 h Fig. 6. (color online) Hysteresis loops for the two γ -Fe₂O₃/NiO core/shell nanoflower samples at 5 K after zero field cooling (ZFC) and field cooling (FC) from 330 K in a field of $H_{\rm FC} = 50$ kOe: (a) 3 h; (b) 6 h. Insets show the enlarged loops displaying the corresponding exchange bias and enhanced coercivity.

对场冷下的磁滞回线而言,其交换偏置 H_E是由回线的偏移量决定的.大小可由公式 $H_{\rm E} = (H_{\rm C1} - H_{\rm C2})/2$ 来计算,这里的 $H_{\rm C1}$ 和 $H_{\rm C2}$ 分别代表负向和正向的矫顽场.如图6中的插图所示,两个 γ -Fe₂O₃/NiO样品的FC磁滞回线与ZFC磁滞回线有一定的区别.其中,ZFC磁滞回线是严格对称的,而FC回线中却观察到了水平方向上的偏移.这种不对称性证实了两个样品中均存在能够发生交换偏置的界面.实际上,由于铁磁性 γ -Fe₂O₃和反铁磁性NiO成分之间的耦合相互作用,煅烧3和6h所形成的 γ -Fe₂O₃/NiO样品均表现出了一定的交换偏置, $H_{\rm E}$ 分别为20和46 Oe.

在 300 Oe 的外加磁场下,通过零场冷 (ZFC) 和场冷 (FC) 过程得到了两个样品磁化强度 M 随着 温度 T 的变化曲线,如图 7 所示.可以看出, M_{FC} 与 M_{ZFC}之间的磁不可逆性有差异.随着温度的升高, M_{ZFC} 增大而 M_{FC} 减小,并且前者的变化较之 后者更加显著.正如 ZFC/FC 曲线中所见,到反铁

图 7 (网刊彩色) 不同煅烧时间下形成的 γ-Fe₂O₃/NiO 核 -壳纳米花样品的场冷/零场冷磁化曲线 (a) 3 h; (b) 6 h

Fig. 7. (color online) 300 Oe FC and ZFC magnetization curves of γ -Fe₂O₃/NiO core/shell nanoflowers formed in different calcination time: (a) 3 h; (b) 6 h.

磁相NiO的奈尔温度T_N为止(尽管在ZFC曲线中 并未反映出 T_N), 其 γ -Fe₂O₃成分仍保持为铁磁性. 这表明在该体系中诱导出了一种外加各向异性,它 满足 $K_{\rm U}V \gg k_{\rm B}T^{[4]}$ (K_U 是磁各向异性常量, V 表示磁性部分的体积, kB是玻尔兹曼常数). 在该 情形下,当体系处于NiO奈尔点以下的所有温度 时,铁磁性 γ -Fe₂O₃的磁矩都难以越过能量势垒, 从而使得 γ -Fe₂O₃/NiO核-壳纳米花保持为磁稳定 的状态. 在足够低的温度下, 反铁磁 NiO 的磁矩被 冻结成一种自旋玻璃态. 随着温度的上升, NiO区 域逐渐"解冻". 一旦NiO 壳层的净余磁矩可以与热 起伏相匹配,它们就开始被 γ -Fe₂O₃核的磁矩所极 化,这种效应在外加磁场的情况会出现.所以,最 终会在整个核-壳样品中倾向于形成一种铁磁性的 架构.因而铁磁性成分的极化抬高了ZFC曲线的 背底, 这与 M_{ZFC} 的上升趋势保持一致. 当然, 随着 冷却过程的重新开始,铁磁性磁矩仍然会被钉扎在 外场的方向上.因此, $M_{\rm FC}$ 的改变没有 $M_{\rm ZFC}$ 明显. 此外,在ZFC磁化曲线中没有观察到最大值,这意 味着体系的T_N要高于330 K (SQUID 测ZFC/FC 曲线时的极限温度),类似的现象在Ni-NiO体系中 也有报道^[18,40,41].

4 结 论

通过简单的溶剂热/热分解法合成出了微结构 可控的 γ -Fe₂O₃/NiO核-壳纳米花,并利用XRD, XPS, SEM, HRTEM, SAED, VSM 和 SQUID 对所 得粉末样品进行了系统的表征.研究结果发现, NiO壳层是由许多具有单晶结构的薄片所构成, 而且这些纳米片是堆积、包覆在 γ -Fe₂O₃球的表 面. 随着煅烧时间从3h延长到6h,纳米花的平 均尺寸变大, NiO相的含量提高, 其壳层也更加致 密.磁性分析表明,尺寸效应、反铁磁NiO的相含 量以及铁磁-反铁磁耦合相互作用对 γ -Fe₂O₃/NiO 核-壳纳米花的磁性有重大影响. 无论是在室温 还是在5 K的低温下, 饱和磁化强度和剩余磁化 强度均随着NiO含量的提高而减小,而矫顽力和 交换偏置却增大. 交换偏置现象的出现可归因 于铁磁性γ-Fe₂O₃和反铁磁性NiO成分之间的耦 合效应. 这种交换耦合效应使得自旋在磁化过程 中出现多种翻转路径,也就导致矫顽力的进一步 增强.

参考文献

- Lu A H, Salabas E L, Schüth F 2007 Angew. Chem. Int. Ed. 46 1222
- [2] Hao R, Xing R J, Xu Z C, Hou Y, Gao S, Sun S H 2010 Adv. Mater. 22 2729
- [3] Hou Y L, Xu Z C, Sun S H 2007 Angew. Chem. Int. Ed. 119 6445
- [4] Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J 2003 Nature 423 850
- [5] Kodama R H, Makhlouf S A, Berkowitz A E 1997 *Phys. Rev. Lett.* **79** 1393
- [6]~ Meiklejohn W H, Bean C P 1957 Phys. Rev. $\mathbf{105}$ 904
- [7] Meiklejohn W H, Bean C P 1956 *Phys. Rev.* **102** 1413
- [8] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S, Baró M D 2005 *Phys. Rep.* 422 65
- [9] Kavich D W, Dickerson J H, Mahajan S V, Hasan S A, Park J H 2008 Phys. Rev. B 78 174414
- [10] Sun X L, Huls N F, Sigdel A, Sun S H 2012 Nano Lett.
 12 246
- [11] Liu C, Cui J G, He X M, Shi H G 2014 J. Nanopart. Res. 16 2320
- [12] Shevchenko E V, Bodnarchuk M I, Kovalenko M V, Talapin D V, Smith R K, Aloni S, Heiss W, Alivisatos A P 2008 Adv. Mater. 20 4323
- [13] Xiong Q Q, Tu J P, Xia X H, Zhao X Y, Gu C D, Wang X L 2013 Nanoscale 5 7906
- [14] Wang Y, Li S K, Xing X R, Huang F, Shen Y, Xie A, Wang X, Zhang J 2011 *Chem. Eur. J.* **17** 4802
- [15] Liu J, Qiao S Z, Hartono S B, Lu G Q 2010 Angew. Chem. Int. Ed. 49 4981
- [16] Xi G C, Yue B, Cao J Y, Ye J 2011 Chem. Eur. J. 17 5145
- [17] Panagiotopoulos I, Basina G, Alexandrakis V, Devlin E, Hadjipanayis G, Colak L, Niarchos D, Tzitzios V 2009
 J. Phys. Chem. C 113 14609
- [18] Yao X J, He X M, Song X Y, Ding Q, Li Z W, Zhong W, Au C T, Du Y W 2014 Phys. Chem. Chem. Phys. 16 6925
- [19] Syed-Hassan S S A, Li C Z 2011 Appl. Catal. A ${\bf 405}$ 166
- [20] Varghese B, Reddy M V, Zhu Y W, Lit C S, Hoong T C, Subba Rao G V, Chowdari B V R, Wee A T S, Lim C T, Sow C H 2008 Chem. Mater. 20 3360
- [21] Ding S J, Zhu T, Chen J S, Wang Z, Yuan C, Lou X W 2011 J. Mater. Chem. 21 6602
- [22] Zhu G X, Xi C Y, Xu H, Zheng D, Liu Y, Xu X, Shen X 2012 RSC Adv. 2 4236
- [23] Song Z, Chen L F, Hu J C, Richards R 2009 Nanotechnology 20 275707
- [24] Deng H, Li X L, Peng Q, Wang X, Chen J, Li Y 2005 Angew. Chem. Int. Ed. 44 2782
- [25] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L J 2006 Adv. Mater. 18 2426
- [26] Cullity B D, Graham C D 2009 Introduction to Magnetic Materials (IEEE Press: New Jersey) pp151–194
- [27] Lo C K, Xiao D, Choi M M F 2007 J. Mater. Chem. 17 2418

- [28] Sun G B, Dong B X, Cao M H, Wei B, Hu C 2011 Chem. Mater. 23 1587
- [29] Teng X W, Black D, Watkins N J, Gao Y, Yang H 2003 Nano Lett. 3 261
- [30] Yamashita T, Hayes P 2008 Appl. Surf. Sci. 254 2441
- [31] Peck M A, Langell M A 2012 Chem. Mater. 24 4483
- [32] Zhu T, Chen J S, Lou X W 2012 J. Phys. Chem. C 116 6873
- [33] Song X F, Gao L 2008 J. Am. Ceram. Soc. 91 4105
- [34] Yang L X, Zhu Y J, Tong H, Liang Z H, Wang W W 2007 Cryst. Growth Des. 7 2716
- [35] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G X 2003 J. Am. Chem. Soc. **126** 273

- [36] Wang L J, Teng J, Yu G H 2006 Acta Phys. Sin. 55
 4282 (in Chinese) [王立锦,藤蛟, 于广华 2006 物理学报 55 4282]
- [37] Dutta D P, Garima S, Manna P K, Tyagi A K, Yusuf S M 2008 Nanotechnology 19 245609
- [38] Zhang H T, Chen X H 2005 Nanotechnology 16 2288
- [39] Feng J N, Liu W, Geng D Y, Ma S, Yu T, Zhao X T, Dai Z M, Zhao X G, Zhang Z D 2014 Chin. Phys. B 23 087503
- [40] Ahmadvand H, Salamati H, Kameli P, Razavi F S 2010 J. Supercond. Novel Magn. 23 1467
- [41] Sharma S K, Vargas J M, Knobel M, Pirota K R, Meneses C T, Kumar S, Lee C G, Pagliuso P G, Rettori C 2010 J. Appl. Phys. 107 725

Synthesis, microstructure, and magnetic properties of γ -Fe₂O₃/NiO core/shell nanoflowers^{*}

Li Zhi-Wen¹⁾ He Xue-Min¹⁾²⁾ Yan Shi-Ming¹⁾³⁾ Song Xue-Yin¹⁾ Qiao Wen¹⁾ Zhang Xing¹⁾ Zhong Wei^{1)†} Du You-Wei¹⁾

1) (National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China)

2) (School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

3) (College of Science, Henan University of Technology, Zhengzhou 450001, China)

(Received 11 April 2016; revised manuscript received 10 May 2016)

Abstract

The main purpose of this work is to explore the influences of microstructures on the magnetic properties, as well as the formation mechanism of γ -Fe₂O₃/NiO core/shell nanoflowers. The synthesis of nanoflower-like samples includes three processes. Firstly, Fe₃O₄ nanospheres are synthesized by the solvothermal reaction of FeCl₃ dissolved in ethylene glycol and NaAc. Secondly, Fe₃O₄/Ni(OH)₂ core/shell precursor is fabricated by solvothermal method through using the early Fe_3O_4 spheres and $Ni(NO_3)_2 \cdot 6H_2O$ in an ethanol solution. Finally, the precursor $Fe_3O_4/Ni(OH)_2$ is calcined in air at 300 °C for 3–6 h, and therefore resulting in γ -Fe₂O₃/NiO core/shell nanoflowers. Their microstructures are characterized by using XRD, XPS, SEM, HRTEM and SAED techniques. The results show that the final powder samples are γ -Fe₂O₃/NiO with typical core/shell structure. In this core/shell system, the γ -Fe₂O₃ sphere acts as core and the NiO acts as shell, which are comprised of many irregular flake-like nanosheets with monocrystalline structure, and these nanosheets are packed together on the surfaces of γ -Fe₂O₃ spheres. The calcination time of Fe₃O₄/Ni(OH)₂ precursor has significant influences on the grain growth, the NiO content and the compactness of NiO shells in the γ -Fe₂O₃/NiO core/shell system. VSM and SQUID are used to characterize the magnetic properties of γ -Fe₂O₃/NiO core/shell nanoflowers. The results indicate that the 3 h-calcined sample displays better ferromagnetic properties (such as higher $M_{\rm s}$ and smaller $H_{\rm C}$) because of their high γ -Fe₂O₃ content. In addition, as the coupling interaction between the FM γ -Fe₂O₃ and AFM NiO components, we observe that the γ -Fe₂O₃/NiO samples formed in 3 h and 6 h display certain exchange bias ($H_{\rm E} = 20$ and 46 Oe, respectively). Such a coupling effect allows a variety of reversal paths for the spins upon cycling the applied field, and thereby resulting in the enhancement of coercivity ($H_{\rm C}({\rm FC}) = 252$ and 288 Oe, respectively). Further, the values of $H_{\rm E}$ and $H_{\rm C}$ for the former are smaller than those of the latter, this is because of the AFM NiO content in 6 h-calcined sample much higher than that in 3 h-calcined sample. Especially, the temperature dependences of the magnetization M of the two samples under both ZFC and FC conditions indicate that an extra anisotropy is induced. In a word, the size effect, NiO phase content, and FM-AFM (where FM denotes the ferromagnetic γ -Fe₂O₃ component, while AFM is the antiferromagnetic NiO component) interface coupling effect have significant influence on the magnetic properties of γ -Fe₂O₃/NiO core/shell nanoflowers.

Keywords: phase content, hierarchical structure, interface coupling, exchange bias

PACS: 71.70.Gm, 75.70.Cn, 75.75.-c

DOI: 10.7498/aps.65.147101

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11174132, 11474151, U1232210), the National Basic Research Program of China (Grant Nos. 2011CB922102, 2012CB932304), and the Innovation Program for Doctoral Research of Jiangsu Province, China (Grant No. CXZZ13_0035).

[†] Corresponding author. E-mail: wzhong@nju.edu.cn