物理学报 Acta Physica Sinica

氮掺杂石墨烯纳米片的制备及其电化学性能 王桂强 侯硕 张娟 张伟

Preparation and electrochemical performance of nitrogen-doped graphene nanoplatelets

Wang Gui-Qiang Hou Shuo Zhang Juan Zhang Wei

引用信息 Citation: Acta Physica Sinica, 65, 178102 (2016) DOI: 10.7498/aps.65.178102 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.178102 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I17

您可能感兴趣的其他文章 Articles you may be interested in

基于石墨烯互补超表面的可调谐太赫兹吸波体

Tunable terahertz absorber based on complementary graphene meta-surface 物理学报.2016, 65(1): 018101 http://dx.doi.org/10.7498/aps.65.018101

含石墨烯临界耦合谐振器的吸收特性研究

Study on the absorbing properties of critically coupled resonator with graphene 物理学报.2015, 64(23): 238103 http://dx.doi.org/10.7498/aps.64.238103

单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究

Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular

物理学报.2015, 64(19): 198102 http://dx.doi.org/10.7498/aps.64.198102

石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究

Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures 物理学报.2015, 64(7): 078101 http://dx.doi.org/10.7498/aps.64.078101

石墨烯衍生物作为有机太阳能电池界面材料的研究进展

Recent progress in graphene and its derivatives as interfacial layers in organic solar cells 物理学报.2015, 64(3): 038103 http://dx.doi.org/10.7498/aps.64.038103

氮掺杂石墨烯纳米片的制备及其电化学性能<mark>*</mark>

王桂强^{1)†} 侯硕¹) 张娟²) 张伟¹)

1) (渤海大学新能源学院, 锦州 121013)

2) (山东理工大学化工学院, 淄博 255049)

(2016年4月22日收到;2016年6月16日收到修改稿)

以石墨片为原料,在氮气气氛下,通过机械针磨法制备了氮掺杂石墨烯纳米片.扫描电子显微镜和比表面积分析表明机械针磨过程可以有效地将大尺寸石墨片破碎成石墨烯纳米片.在石墨片的破碎过程中,会引起C—C键的破坏.因此,在破坏的边缘位置能够产生碳活性点.这些碳活性点可以与氮反应实现氮元素的掺杂.X射线光电子能谱分析表明碳活性点与氮反应使氮元素掺入石墨烯结构边缘,形成吡咯型氮和吡啶型氮. 电化学阻抗谱分析表明所制备的氮掺杂石墨烯纳米片对 I₃还原反应具有较高的电催化活性,循环伏安与恒流充放电测试表明氮掺杂石墨烯纳米片具有较好的电容性能.较高的比表面积和边缘氮掺杂结构是氮掺杂石墨烯纳米片具有优异电化学性能的主要原因.因此,氮掺杂石墨烯纳米片可以应用于染料敏化太阳能电池对电极和超级电容器电极.

关键词: 氮掺杂石墨烯纳米片, 电催化活性, 电容性能 PACS: 81.05.ue, 82.45.Yz, 82.47.Jk

DOI: 10.7498/aps.65.178102

1引言

由于具有比表面积大、机械强度高及导电和导热性好等特点,石墨烯材料被广泛应用于微电子和光电子器件、能量储存与转换及电催化等领域^[1-4].石墨烯材料的物理、化学特性对石墨烯器件的性能具有较大的影响^[5].因此,通过对石墨烯材料进行改性提高相应器件的性能成为目前的研究热点^[6-9].理论模拟和实验结果证明对石墨烯材料进行掺杂是一种有效的调控其物理化学性能的方法^[10-12].将氮元素掺入石墨烯材料中,氮元素与碳元素电负性的差异会在材料内产生电荷极化,同时氮中的孤对电子可以与石墨烯材料中,氮元素生共轭效应,这能够极大改善石墨烯材料的电导性能、电催化性能及表面浸润性能^[13-17].因此,氮掺杂石墨烯材料在染料敏化太阳能电池、超级电容

器、燃料电池等领域具有光明的应用前景.

目前, 氮掺杂石墨烯材料的制备方法主要有化 学气相沉积^[18,19]、氨气气氛下氧化石墨的高温处 理^[20] 及氮等离子体处理石墨烯^[21]等.这些方法 往往需要较高的温度、较长的时间及对环境有害的 气体 (如氨气等), 因此不适合于氮掺杂石墨烯材料 的大量制备.一种简单、低价、高效制备氮掺杂石墨 烯材料的方法对于推动其广泛应用具有较大的意 义.本文以天然石墨片为原料, 通过磁力研磨机在 氮气气氛下针磨石墨片制备氮掺杂石墨烯纳米片. 所制备的氮掺杂石墨烯纳米片具有较高的比表面 积, 掺杂的氮原子处于石墨烯结构的边缘, 而石墨 烯内部的结构没有被破坏.这些特点使所制备的氮 掺杂石墨烯纳米片具有较优异的电化学性能, 可以 作为电极材料应用于超级电容器和染料敏化太阳 能电池对电极.

^{*} 国家自然科学基金(批准号: 21273137)资助的课题.

[†]通信作者. E-mail: wgqiang@bhu.edu.cn

^{© 2016} 中国物理学会 Chinese Physical Society

2 实验部分

2.1 氮掺杂石墨烯纳米片的制备

将15g天然石墨片(200目)和500g钢针(长度5mm,直径0.1mm)加入密封的容器中,充入 氮气(压力为0.3 MPa). 然后将容器固定到磁力研 磨机上,启动磁力研磨机,使正转和反转交替进行, 正、反转时间分别为30min,研磨时间为7h.磁力 研磨机转动过程中,磁力驱动钢针将大尺寸石墨片 研磨为石墨烯纳米片(如图1所示),同时石墨烯纳 米片与氮气反应,生成氮掺杂石墨烯纳米片.

2.2 样品表征与分析

用扫描电子显微镜 (SEM, FEI Sirion 200) 和 透射电子显微镜 (TEM, JEM-2011) 分析样品形貌 特征. 用X射线光电子能谱 (XPS, ESCAlab 200I- XL))分析样品中氮的掺杂状态. 拉曼光谱用 Renishaw inVia Reflex 共聚焦拉曼光谱仪在常温下测 量, 激光波长为 514 nm.

电化学分析在 PARSTAT 4000 电化学工作站 上进行. 将氮掺杂石墨烯纳米片沉积到 FTO 导 电玻璃上制备测量电极,将电极组装成对称薄 层电池,电解质为0.4 M 1-甲基-3-丙基咪唑碘 (1 M = 1 mol/L), 0.3 M LiI, 0.05 M I₂及0.4 M 4-叔丁基吡啶的3-甲氧基丙腈溶液. 通过对称薄层 电池的电化学阻抗谱研究电极对 I_3^- 还原反应的 催化活性.

将所制备的氮掺杂石墨烯纳米片与聚四氟乙 烯按95:5(质量比)比例混合后,在300 kg/cm² 压力下压入钛网中,真空干燥后制成测试电极. 以1 M H₂SO₄溶液为电解质,以Pt片为对电极, Ag/AgCl为参比电极,采用三电极体系的循环伏安 和恒流充放电试验研究氮掺杂石墨烯纳米片的电 容性能.

图1 (网刊彩色)针磨法制备氮掺杂石墨烯纳米片的过程示意图

Fig. 1. (color online) Schematic illustration of the preparation of nitrogen-doped graphene nanoplatelets.

3 结果与讨论

如图2所示,针磨过程使大尺寸石墨片破碎成 石墨烯纳米片,石墨片的破碎过程伴随C—C键的 破坏,同时在破坏的边缘处产生活性点,这些活性 点与氮气反应,使氮掺入石墨烯纳米片.石墨片破 碎过程产生的活性点有两类(如图2所示),分别与 氮气反应生成5元环的吡咯型氮和6元环的吡啶型 氮.通过XPS对所制备的氮掺杂石墨烯纳米片的 氮掺杂状态进行了分析.图3(a)是原始石墨片和 氮掺杂石墨烯纳米片的XPS扫描全谱.由图3(a) 可以看出,原始天然石墨片XPS扫描谱中只有C 1s峰和较弱的O1s峰.而所制备的氮掺杂石墨烯 纳米片XPS扫描谱中除C1s和O1s峰外,还有明 显的N1s峰.表明针磨过程成功将氮元素掺入碳 结构.如图3(b)所示,氮掺杂石墨烯纳米片的N1s 峰可以在结合能为398.2和399.3 eV处被分为两个 峰,分别对应吡咯型氮和吡啶型氮^[22].从分峰面积 计算吡咯型氮和吡啶型氮的比例大约为2.5:1,表 明图 2 中所示的 (B) 过程是主要的破碎反应过程. 吡咯型氮和吡啶型氮都处于碳结构的边缘, 易于与 电解质等反应物质接触, 这有利于改善氮掺杂碳材 料的电化学性能.

图 2 (网刊彩色)石墨片的破碎及氮掺杂反应示意图

Fig. 2. (color online) Schematic illumination of mechanochemical cracking of pristine graphite as a result of pin-grinding in the presence of nitrogen.

图 3 (网刊彩色) (a) 原始石墨片与氮掺杂石墨烯纳米片的 XPS 扫描谱; (b) 氮掺杂石墨烯纳米片的 XPS N 1s 峰 Fig. 3. (color online) (a) XPS scan survey spectra of the pristine graphite and nitrogen-doped graphene nanoplatelets; (b) the high-resolution N 1s spectrum of nitrogen-doped graphene nanoplatelets.

图 4 (a) 和图 4 (b) 是原始石墨片与氮掺杂石墨 烯纳米片的 SEM 照片.对比图 4 (a) 和图 4 (b),可 以看出所制备氮掺杂石墨烯纳米片的尺寸明显小 于原始石墨片.图 4 (c) 表明所制备的氮掺杂石墨 烯纳米片是多层结构,厚度为8 nm 左右.使用 Micromeritics ASAP 2020 物理吸附仪通过 N₂ 吸附 法测得的原始石墨片的BET (Brunauer-Emmett-Teller)比表面积为0.27 m²/g,所制备氮掺杂石墨 烯纳米片的BET比表面积为674.7 m²/g.尺寸的 显著减小和比表面积的明显增加表明针磨过程可 以有效地将大尺寸的石墨片研磨成小尺寸的石墨 烯纳米片.

图 4 原始石墨的 SEM 照片 (a) 与氮掺杂石墨烯纳米片的 SEM (b) 和 TEM (c) 照片 Fig. 4. SEM image of pristine graphite (a), SEM (b) and TEM (c) images of nitrogen-doped graphene nanoplatelets.

图5是原始石墨片和所制备氮掺杂石墨烯纳 米片的拉曼光谱. 由图5可以看出, 原始石墨片和 氮掺杂石墨烯纳米片的拉曼光谱在1345,1587及 2705 cm⁻¹ 处都有三个峰,分别对应D峰、G峰和 2D峰. D峰反应碳结构中的缺陷或sp²碳原子区 域的不规则结构; G峰是 sp²碳原子的 E_{2g} 振动模 式,反应碳材料的石墨化程度^[23].由图5可以看出, 氮掺杂石墨烯纳米片的G峰强度明显高于原始石 墨片. 原始石墨片的 I_D/I_G(D峰与G峰强度比)为 0.1, 而氮掺杂石墨烯纳米片的 I_D/I_G 为1.01. 这表 明针磨过程一方面导致石墨片的尺寸急剧减小,另 一方面也导致氮掺入碳结构而在石墨烯纳米片中 引入缺陷.这些结果与XPS和SEM分析结果一致. 拉曼光谱中的2D峰形状能够反应石墨烯材料的层 数. 与单层石墨烯的2D峰相比, 氮掺杂石墨烯的 2D峰宽,而且强度小,表明所制备的氮掺杂石墨烯 纳米片是多层结构^[24].这与TEM分析结果一致.

较高的比表面积和边缘氮掺杂使氮掺杂石墨 烯纳米片具有优异的电化学性能,可以应用于催 化、太阳能电池、电化学电容器及燃料电池等领 域. 本文通过研究氮掺杂石墨烯纳米片的电容性 能以及对I₃还原为I-的催化活性,分析其在染料 敏化太阳能电池对电极和超级电容器中的潜在应 用. I-/I3 是染料敏化太阳能电池电解质中传输电 荷的氧化还原对. I-在光阳极还原氧化态染料生 成I₃, I₃ 扩散到对电极, 在对电极接受外电路电子 被还原为I-. 因此染料敏化太阳能电池对电极对 I3 还原反应需具有较高的催化活性. 目前常用的 Pt 对电极价格较高, 而且在 I^-/I_3^- 电解质中易被腐 蚀.因此,寻找一种价格便宜、稳定性好、催化活性 高的材料代替Pt制备对电极,对染料敏化太阳能 电池的发展具有较大的意义. 将所制备的氮掺杂 石墨烯纳米片喷涂到FTO导电玻璃表面,然后在 300°C下处理15 min, 制备出对电极, 氮掺杂石墨 烯纳米片厚度控制在6 µm 左右. 用对称薄层电池 的电化学阻抗谱研究氮掺杂石墨烯纳米片电极的 电催化性能.为了比较,通过在FTO导电玻璃表面 热分解 H_2 PtCl₆制备了Pt电极. 图 6(a)是原始石 墨片电极、氮掺杂石墨烯纳米片电极及Pt电极的 Nyquist曲线. Pt 电极和氮掺杂石墨烯纳米片电极 的Nyquist曲线由两个半团圆组成,高频部分的半 圆对应电极/电解质界面的电荷迁跃过程,低频部 分的半圆对应氧化还原对在电解质中的扩散阻抗. 原始石墨片电极的 Nyquist 曲线只有一个对应电 极/电解质界面电荷迁跃过程的半圆,表明原始石 墨片对 I_3 还原反应的催化活性较弱. 图6(b)是对 称薄层电池相应的等效电路,其中R_{ct}表示电极/电 解质界面的电荷迁跃电阻, CPE表示常数相元素, $R_{\rm s}$ 表示系列电阻, $Z_{\rm N}$ 表示 Nernst 扩散阻抗. $R_{\rm ct}$ 是表征电极电催化活性的一个参数,可由Nyquist 曲线高频部分半圆的直径求得. Rct 值越小, 电极 的电催化活性越高. 由图 6(a) 可以看出, 原始石墨 片电极的 $R_{\rm ct}$ 为165.4 Ω ·cm², 而氮掺杂石墨烯纳米 片电极的 R_{ct} 只有 1.1 $\Omega \cdot cm^2$, 与 Pt 电极的 R_{ct} 值 (0.9 $\Omega \cdot cm^2$)相近,表明氮掺杂石墨烯纳米片电极对 I_3^- 还原反应的电催化活性与 Pt 电极相当.因此,所 制备的氮掺杂石墨烯纳米片可以代替 Pt 应用于染 料敏化太阳能电池对电极.

图 6 (a) 原始石墨、氮掺杂石墨烯及 Pt 电极的 Nyquist 曲线; (b) 相应的等效电路

Fig. 6. (a) Nyquist plots of pristine graphite, nitrogendoped graphene nanoplatelets, and Pt electrodes;(b) equivalent circuit.

将氮掺杂石墨烯纳米片涂到钛网上,在 300 kg/cm² 压力下压制成电极, 以1 M (mol/L) H₂SO₄溶液为电解质,用三电极体系的循环伏安 和恒流充放电曲线研究其电容性能,结果如图7所 示. 由图7(a)可以看出, 氮掺杂石墨烯纳米片电极 的循环伏安曲线呈准矩形,即使扫描速率增加到 300 mV/s, 循环伏安曲线仍然保持较好的准距形, 这表明所制备的氮掺杂石墨烯纳米片具有较好的 电容性能. 另外, 在循环伏安曲线上有明显的氧化 还原峰,表明氮掺杂石墨烯电极的电容由双电层电 容和赝电容两部分组成. 图7(b)显示充放电电流 密度为0.3 A/g时氮掺杂石墨烯电极的恒流充放电 曲线. 由图7(b)可以看出, 氮掺杂石墨烯电极的恒 流充放电曲线呈略变形的三角形结构,表明在氮掺 杂点能够引起氧化还原反应,而产生赝电容.这与 循环伏安曲线分析的结果一致. 根据恒流充放电曲

线,由(1)式可以计算出氮掺杂石墨烯纳米片电极的比电容(*C*)^[25].

$$C = \frac{I \times \Delta t}{m \times \Delta V},\tag{1}$$

其中I为放电电流 (A), Δt 为放电时间 (s), m为电 极活性材料质量 (g), ΔV 为放电过程的电压范围 (V). 当充放电流密度为0.3 A/g时, 由 (1) 式计算 出氮掺杂石墨烯纳米片电极的比电容为202.8 F/g. 较高的比电容表明氮掺杂石墨烯纳米片也是一种 性能优异的超级电容器电极材料.

图 7 (网刊彩色) (a) 氮掺杂石墨烯纳米片电极的循环伏 安曲线; (b) 恒电流充放电曲线

Fig. 7. (color online) (a) CV curves of nitrogen-doped graphene nanoplatelets at different scan rates; (b) the galvanostatic charge-discharge curves of nitrogen-doped graphene nanoplatelets at a current density of $0.3 \text{ A} \cdot \text{g}^{-1}$.

4 结 论

以石墨片为原料,在氮气气氛下,通过简单的 机械针磨法制备了氮掺杂石墨烯纳米片.较高的比 表面积和边缘氮掺杂结构使氮掺杂石墨烯纳米片 具有较好的电容性能和较高的电催化活性.同时, 机械针磨法简单、易于大规模生产.因此,氮掺杂石 墨烯纳米片可以作为低价、高效电极材料应用于能 量转换(染料敏化太阳能电池)及储存(如超级电容 器)等领域中.

参考文献

- [1] Wang H, Hu Y 2012 Energy Environ. Sci. 5 8182
- [2] Sun Y, Wu Q, Shi G 2011 Energy Environ. Sci. 4 1113
- [3] Bonaccorso F, Sun Z, Hasan T, Ferrari A 2010 Nat. Photonics 4 611
- [4] Liang Z J, Liu H X, Niu Y X, Yin Y H 2016 Acta Phys. Sin. 65 138501 (in Chinese) [粱振江, 刘海霞, 牛燕雄, 尹 贻恒 2016 物理学报 65 138501]
- [5] Park S, An J, Jung I, Piner R, An S, Li X, Ruoff R 2009 *Nano Lett.* 9 1593
- [6] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G 2009 Nano Lett. 9 1752
- [7] Li X, Wang H, Robinson J, Diankov G, Dai H 2009 J. Am. Chem. Soc. 131 15939
- [8] Long M, Liu E, Wang P, Gao A, Xiao H, Luo W, Wang B, Ni Z, You Y, Miao F 2016 *Nano Lett.* 16 2254
- [9] Liu X W, Zhu C Y, Dong H, Xu F, Sun L T 2016 Acta Phys. Sin. 65 118802 (in Chinese) [刘学文, 朱重阳, 董辉, 徐峰, 孙立涛 2016 物理学报 65 118802]
- [10] Yu D, Nagelli E, Du F, Dai L 2010 J. Phys. Chem. Lett. 1 2165

- [11] Jung S, Choi I, Lim K, Ko J, Lee J, Kim H, Baek J 2014 Chem. Mater. 26 3586
- [12] Zhai P, Wei T, Chang Y, Huang Y, Su H, Feng S 2014 Small 10 3347
- [13] Zhang M, Dai L 2012 Nano Energy 1 514
- [14] Jeon I, Choi H, Ju M, Lim K, Kim J, Shi D, Kim H, Jung S, Seo J, Park N, Dai L, Beak J 2013 *Sci. Rep.* **3** 2260
- [15] Han J, Xu G, Ding B, Pan J, Dou H, Macfarlane D 2014 J. Mater. Chem. A 2 5352
- [16] Luo Q, Hao F, Wang S, Shen H, Zhao L, Gratzel M, Lin H 2014 J. Phys. Chem. C 118 17010
- [17] Hao S, Cai X, Wu H, Yu X, Peng M, Yan K, Zou D 2013 Energy Environ. Sci. 6 3356
- $[18]\,$ Jin Z, Yao J, Kittrell C, Tour J 2011 ACS Nano 5 4112
- [19] Qu L, Liu Y, Beak J, Dai L 2010 ACS Nano 4 1321
- [20] Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Dong S, Cui G 2011 J. Mater. Chem. 21 5430
- [21] Wang Y, Shao Y, Matson D, Li J, Lin Y 2010 ACS Nano 4 1790
- [22] Yang D, Kim C, Song M, Park H, Lee J, Ju M, Yu J 2014 J. Phys. Chem. C 118 16694
- [23] Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W, Fu Q, Xue Q, Bao X 2011 Chem. Mater. 23 1188
- [24] Kudin K, Ozbas B, Schniepp H, Aksay I, Car R 2008 Nano Lett. 8 36
- [25] Zhao L, Fan L, Zhou M, Guan H, Qiao S, Antonietti M, Titirici M 2010 Adv. Mater. 22 5202

Preparation and electrochemical performance of nitrogen-doped graphene nanoplatelets^{*}

Wang Gui-Qiang^{1)†} Hou Shuo¹⁾ Zhang Juan²⁾ Zhang Wei¹⁾

1) (School of New Energy, Bohai University, Jinzhou 121013, China)

2) (School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China)

(Received 22 April 2016; revised manuscript received 16 June 2016)

Abstract

The highly desirable properties of nitrogen-doped graphene nanomaterial, such as high surface area, good hydrophilicity, and enhanced electrocatalytic activity and charge-transfer property, make it an ideal candidate for electrode materials used in the field of energy conversion and storage. Up to now, methods of synthesizing nitrogen-doped graphene nanomaterials mainly include chemical vapor deposition, thermal annealing graphite oxide with NH_3 , and graphene treated with nitrogen plasma. However, these methods of producing the nitrogen-doped graphene nanomaterials are either costly for practical applications or involving environmently hazardous reagents, and the full potentials of nitrogen-doped graphene materials are hard to achieve without scalable production at low cost. Therefore, a simple and cost-effective method of producing the nitrogen-doped graphene nanomaterial is desirable.

In this paper, nitrogen-doped graphene nanoplatelets are prepared by a simple and eco-friendly mechanochemical pin-grinding process under N_2 atmosphere through using natural graphite flake as the precursor at room temperature. The as-prepared nitrogen-doped graphene sample is characterized by X-ray photoelectron spectroscopy, Raman spectra, nitrogen adsorption, SEM, and TEM. The images of SEM and BET (Brunauer-Emmett-Teller) surface area measurements demonstrate an effective and spontaneous delamination of the starting graphite into small graphene nanoplatelets even in the solid state by pin-grinding process. The cleavage of graphitic C—C bonds by pin grinding creates numerous active carbon species, which can directly react with nitrogen. X-ray photoelectron spectroscopy measurements indicate that the active carbon species react with nitrogen to form the aromatic C-N in pyrazole and pyridazine rings at the fresh broken edges of the graphitic frameworks. Both pyrrolic nitrogen and pyridinic nitrogen are at the edge of carbon framework, which can provide chemically active sites to improve the electrochemical performance of carbon material. Electrochemical impedance spectroscopy indicvates that nitrogen-doped graphene nanoplatelets possess excellent electrocatalytic activity for the redox reaction between iodide and triiodide ions, used in dye-sensitized solar cells. The charge-transfer resistance of nitrogen-doped graphene nanoplatelet electrode is $1.1 \ \Omega \cdot cm^2$, which is comparable to that of Pt electrode. The capacitance properties of the as-prepared nitrogen-doped graphene nanoplatelets are also investigated. Cyclic voltammetry and galvanostatic charge-discharge curves show that nitrogen-doped graphene nanoplatelets have good capacitive performance. At a current density of 0.3 A/cm², the specific capacitance of nitrogen-doped graphene nanoplatelets is 202.8 F/g. The good electrochemical performance of nitrogen-doped graphene nanoplatelet can be attributed to its high surface area and doping nitrogen at the edge. The simple and eco-friendly preparation procedure, low cost, and good electrochemical performance allow the as-prepared nitrogen-doped graphene nanoplatelets to be a promising candidate for the electrode materials in dye-sensitized solar cells and supercapacitors.

Keywords: nitrogen-doped graphene nanoplatelets, electrocatalytic activity, capacitive performancePACS: 81.05.ue, 82.45.Yz, 82.47.JkDOI: 10.7498/aps.65.178102

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 21273137).

[†] Corresponding author. E-mail: wgqiang@bhu.edu.cn