## 物理学报 Acta Physica Sinica



两层星形网络的特征值谱及同步能力 徐明明 陆君安 周进

Synchronizability and eigenvalues of two-layer star networks

Xu Ming-Ming Lu Jun-An Zhou Jin

引用信息 Citation: Acta Physica Sinica, 65, 028902 (2016) DOI: 10.7498/aps.65.028902 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.028902 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I2

### 您可能感兴趣的其他文章 Articles you may be interested in

### 网络集聚性对节点中心性指标的准确性影响研究

Effect of variable network clustering on the accuracy of node centrality 物理学报.2016, 65(2): 028901 http://dx.doi.org/10.7498/aps.65.028901028901 基于联合矩阵分解的节点多属性网络社团检测 Community detection based on joint matrix factorization in networks with node attributes 物理学报.2015, 64(21): 218901 http://dx.doi.org/10.7498/aps.64.218901

#### 负荷作用下相依网络中的级联故障

Load-induced cascading failure in interdependent network 物理学报.2015, 64(4): 048901 http://dx.doi.org/10.7498/aps.64.048901

基于局部路由策略的复杂网络拥塞控制

Congestion control in complex network based on local routing strategy 物理学报.2014, 63(24): 248901 http://dx.doi.org/10.7498/aps.63.248901

基于节点间依赖度的社团结构划分方法

Partitioning community structure in complex networks based on node dependent degree 物理学报.2014, 63(17): 178901 http://dx.doi.org/10.7498/aps.63.178901

# 两层星形网络的特征值谱及同步能力<sup>\*</sup>

徐明明 陆君安 周进†

(武汉大学数学与统计学院,武汉 430072)

(2015年8月7日收到;2015年10月17日收到修改稿)

多层网络是当今网络科学研究的一个前沿方向.本文深入研究了两层星形网络的特征值谱及其同步能力 的问题.通过严格导出的两层星形网络特征值的解析表达式,分析了网络的同步能力与节点数、层间耦合强 度和层内耦合强度的关系.当同步域无界时,网络的同步能力只与叶子节点之间的层间耦合强度和网络的层 内耦合强度有关;当叶子节点之间的层间耦合强度比较弱时,同步能力仅依赖于叶子节点之间的层间耦合强 度;而当层内耦合强度比较弱时,同步能力依赖于层内耦合强度;当同步域有界时,节点数、层间耦合强度和 层内耦合强度对网络的同步能力都有影响.当叶子节点之间的层间耦合强度比较弱时,增大叶子节点之间的 层间耦合强度会增强网络的同步能力,而节点数、中心节点之间的层间耦合强度和层内耦合强度的增大反而 会减弱网络的同步能力;而当层内耦合强度比较弱时,增大层内耦合强度和层内耦合强度的增大反而 改变耦合强度的增大会减弱网络的同步能力.进一步,在层间和层内耦合强度都相同的基础上,讨论了如何 改变耦合强度更有利于同步.最后,对两层BA无标度网络进行数值仿真,得到了与两层星形网络非常类似的 结论.

关键词: 多层网络, 星形网络, 同步, 特征值谱 PACS: 89.75.Fb, 89.75.-k, 89.75.Hc, 89.70.-a

#### **DOI:** 10.7498/aps.65.028902

## 1引言

近几年,随着对复杂网络研究的深入,人们认 识到现实中大多数网络并不是独立存在的,而是 与其他网络在结构或功能上相互依存,形成多层 网络<sup>[1-3]</sup>.目前越来越多的与多层网络相关的问 题都己引起重视,比如同步<sup>[4-8]</sup>、拓扑结构和动力 学<sup>[9]</sup>、扩散动力学<sup>[10]</sup>、特征值<sup>[11]</sup>、疾病传播和信息 传播<sup>[12-15]</sup>、级联故障<sup>[16,17]</sup>、鲁棒性<sup>[18]</sup>等.研究结 果表明,多层网络的性质和传统复杂网络的性质存 在很大差异.尽管多层网络在实际中大量存在,但 现在的研究还处于起步阶段<sup>[2,3]</sup>.

同步<sup>[19]</sup>是网络中的普遍现象,它在生物振子<sup>[20-23]</sup>和大脑认知<sup>[24]</sup>等领域中起着重要作用,

对人类的生产生活产生了积极或消极的作用.目前对单个复杂网络的同步已经有比较成熟的研究<sup>[25-39]</sup>,但对多层网络的同步则很少涉及<sup>[4-6]</sup>.

星形网络是典型的规则网络之一. 文献 [4] 探 讨了两个完全相同的星形网络通过层间一条边耦 合的两层网络的特征值谱,并考虑了层间耦合方式 不同时的同步能力. 受文献 [4] 启发,本文研究了更 一般的两层星形网络的同步能力. 对于中心节点与 中心节点相连、叶子节点之间相连的两层星形网络, 从理论上严格导出了特征值的解析表达式,并进一 步分析了网络的同步能力与节点数、层间耦合强度 和层内耦合强度的关系. 研究发现,当整个网络的 同步域无界时,网络的同步能力只与叶子节点之间 的层间耦合强度和网络的层内耦合强度有关,与中 心节点之间的层间耦合强度和节点数无关. 具体

<sup>\*</sup> 国家自然科学基金(批准号: 61374173, 11172215)资助的课题.

<sup>†</sup>通信作者. E-mail: jzhou@whu.edu.cn

<sup>© 2016</sup> 中国物理学会 Chinese Physical Society

地, 当层内耦合强度比较弱时, 网络的同步能力仅 与层内耦合强度有关; 而当叶子节点之间的层间耦 合强度比较弱时,网络的同步能力仅与叶子节点之 间的层间耦合强度有关. 另外, 当整个网络的同步 域有界时,节点数、层间耦合强度和层内耦合强度 对网络的同步能力都有影响.具体来说,当层内耦 合强度比较弱时, 层内耦合强度的增加会增强网络 的同步能力,而节点数、中心节点之间的层间耦合 强度的增加会使网络的同步能力变弱;而当叶子节 点之间的层间耦合强度比较弱时,叶子节点之间的 层间耦合强度的增加会增强网络的同步能力,节点 数、层内耦合强度和中心节点之间的层间耦合强度 的增加都会使网络的同步能力变弱.进一步,给定 相同的层间和层内耦合强度及三种不同方式耦合 强度变化情况,结合数值仿真探讨如何选择更有利 于同步. 最后, 根据BA无标度网络和星形网络均 具有中心节点的特性,对两层BA无标度网络进行 数值仿真,得到与两层星形网络非常类似的结论.

2 预备知识

M层网络中第K层第i个节点的动力学方程<sup>[10]</sup>为

$$\dot{x}_{i}^{K} = f(x_{i}^{K}) + a_{K} \sum_{j=1}^{N} w_{ij}^{K} \Gamma(x_{j}^{K}) + \sum_{L=1}^{M} d_{i}^{KL} \Gamma(x_{i}^{L}),$$
(1)

其中1  $\leq i \leq N$ , 1  $\leq K \leq M$ ;  $x_i^K \in \mathscr{R}^n$  是第 K层第i个节点的状态变量;  $f : \mathscr{R}^n \to \mathscr{R}^n$  是节 点的动力学方程;  $a_K$ 为第K层的层内耦合强度;  $W^K = (w_{ij}^K) \in \mathscr{R}^{N \times N}$ 是第K层耦合矩阵, 若节 点i与节点 $j(i \neq j)$ 相连, 有 $w_{ij}^K = 1$ ; 否则 $w_{ij}^K = 0$ ; 且

$$w_{ii}^K = -\sum_{j=1, j\neq i}^N w_{ij}^K.$$

 $L^{K} = -a_{K}W^{K}$ 是第K 层的 Laplace 矩阵.  $d_{i}^{KL}$ 是第K层和第L 层的第i个节点的层间耦合强度,  $D = (d_{i}^{KL}) \in \mathscr{R}^{M \times M}$ 是层间的负 Laplace 矩阵,  $\Gamma$ 是网络节点的层内和层间内联函数.

令**ℒ**表示*M* 层网络的 Supra-Laplace 矩阵, **ℒ**<sup>I</sup> 为层间 Supra-Laplace 矩阵, **ℒ**<sup>L</sup> 是层内 Supra-Laplace 矩阵<sup>[10]</sup>, 则有

$$\mathcal{L} = \mathcal{L}^{\mathrm{I}} + \mathcal{L}^{\mathrm{L}}.$$
 (2)

令 $L^{I}$ 表示网络的层间的 Laplace 矩阵,则层间的 Supra-Laplace 矩阵 $L^{I}$ 可表示为

$$\mathcal{L}^{\mathrm{I}} = \mathcal{L}^{\mathrm{I}} \bigotimes \mathcal{I}. \tag{3}$$

其中 $\bigotimes$ 为 Kronecker 乘积, I为单位矩阵. 层内 Supra-Laplace 矩阵 $\mathcal{L}^{L}$ 表示为

$$\boldsymbol{\mathcal{L}}^{\mathrm{L}} = \begin{pmatrix} L^{1} & 0 & \cdots & 0 \\ 0 & L^{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & L^{M} \end{pmatrix}$$
$$= \bigoplus_{K=1}^{M} \boldsymbol{L}^{K}. \tag{4}$$

其中 $1 \leq K \leq M$ ,  $L^K$ 为第K层网络的 Laplace 矩阵.

$$\begin{vmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} \end{vmatrix} = |\mathbf{A} + \mathbf{B}||\mathbf{A} - \mathbf{B}|.$$
(5)

## 3 主要内容

根据主稳定函数方法<sup>[41-43]</sup>,模型(1)的同步 能力由 $\mathcal{L}$ 的非零最小特征值 $\lambda_2$ 和最大特征值 $\lambda_{max}$ 决定.根据(2)式, $\mathcal{L}$ 由 $\mathcal{L}^{I}$ 和 $\mathcal{L}^{L}$ 得到.以下将分别 讨论两层星形网络的中心节点和叶子节点之间的 层间耦合强度不同和相同时的网络的同步能力的 情形.

## 3.1 中心节点和叶子节点之间的层间耦合 强度不同的情形

考虑两个单层网络节点数均为N的星形网络, 层间按照中心节点与中心节点、叶子节点之间一 一对应连接成两层网络.两层网络的节点的动 力学如(1)式中M = 2的情形.层内耦合强度为  $a_1 = a_2 = a$ ,中心节点之间的层间耦合强度是 $d_0$ , 叶子节点之间的层间耦合强度是d,如图1.当层 内耦合强度为 $a_1 = a_2 = 1$ ,中心节点之间的层间 耦合强度是 $d_0$ ,叶子节点之间的层间耦合强度是 d = 0时,即为参考文献[4]中研究的中心节点与中 心节点之间一条边连接的情形.

由(2)式知,两层网络的Supra-Laplace矩阵为

|     | $(N-1)a+d_0$ | -a    |         | -a    | $-d_0$         | 0     |       | 0     |   |     |
|-----|--------------|-------|---------|-------|----------------|-------|-------|-------|---|-----|
|     | -a           | a + d | •••     | 0     | 0              | -d    | •••   | 0     |   |     |
|     | ÷            | :     |         | ÷     | :              | ÷     |       | ÷     |   |     |
| с — | -a           | 0     | • • • • | a + d | 0              | 0     | •••   | -d    |   | (6) |
| ~ - | $-d_0$       | 0     | •••     | 0     | $(N-1)a + d_0$ | -a    | •••   | -a    |   | (0) |
|     | 0            | -d    | • • •   | 0     | -a             | a + d | • • • | 0     |   |     |
|     | ÷            | ÷     |         | ÷     | :              | ÷     |       | :     |   |     |
|     | 0            | 0     | • • •   | -d    | -a             | 0     | •••   | a + d | ) |     |

经推导得**L**的特征多项式为 $|\lambda I - L| = \lambda(\lambda - a)^{N-2}(\lambda - a - 2d)^{N-2}(\lambda - Na)((\lambda - a - 2d)(\lambda - 2d_0) - (N - 1)a(\lambda - 2d)),$ 故特征值为0, <u>a,...,a, a+2d,...,a+2d</u>, Na, (2d\_0+2d+Na - Na) (Na - 2d + 2d\_0)^2 + 8a(d - d\_0))/2, (2d\_0 + 2d + Na + \sqrt{(Na - 2d + 2d\_0)^2 + 8a(d - d\_0)})/2, (2d\_0 + 2d + Na + \sqrt{(Na - 2d + 2d\_0)^2 + 8a(d - d\_0)})/2.

$$\lambda_{\rm I} = (2d_0 + 2d + Na) - \sqrt{(Na - 2d + 2d_0)^2 + 8a(d - d_0)})/2,$$

由于实际网络的节点数目是非常大的,总可以假设  $N \gg a, d, d_0$  时,于是做线性展开得

$$\begin{split} \lambda_{\rm I} &= \frac{1}{2} N a \left[ 1 + \frac{2d_0 + 2d}{Na} \right. \\ &- \sqrt{\left( 1 + \frac{2d_0 - 2d}{Na} \right)^2 + \frac{8a(d - d_0)}{(Na)^2}} \right] \\ &= \frac{1}{2} N a \left[ 1 + \frac{2d_0 + 2d}{Na} - \sqrt{1 + \frac{2(2d_0 - 2d)}{Na}} \right] \\ &= \frac{1}{2} N a \left[ 1 + \frac{2d_0 + 2d}{Na} - (1 + \frac{(2d_0 - 2d)}{Na}) \right] \\ &= 2d. \end{split}$$

同理,令

$$\lambda_{\rm II} = (2d_0 + 2d + Na + \sqrt{(Na - 2d + 2d_0)^2 + 8a(d - d_0)})/2,$$

线性展开后有 $\lambda_{\text{II}} = Na + 2d_0$ . 故 $\lambda_2 = \min\{a, 2d\}$ ,  $\lambda_{\text{max}} = Na + 2d_0$ .

为了方便分析,按同步域为无界和有界两种情形,将 $\lambda_2$ 和 $r = \lambda_{\text{max}}/\lambda_2$ 归纳为表1.



图 1 两层星形网络,层内耦合强度分别为 a<sub>1</sub>, a<sub>2</sub>,中心 节点之间的层间耦合强度是 d<sub>0</sub>,叶子节点之间的层间耦合 强度是 d

Fig. 1. A two-layer star networks. The intra-coupling strengths are  $a_1, a_2$ , respectively, the inter-coupling strength between hub nodes is  $d_0$  and that between leaves nodes is d.

表 1  $\lambda_2$ ,  $r = \lambda_{\max}/\lambda_2$  随 N, a,  $d_0$ , d 的变化 Table 1. Change of N, a,  $d_0$ , d for  $\lambda_2$ ,  $r = \lambda_{\max}/\lambda_2$ .

|                                   |        | 随N增大 | 随 a 增大 | 随 d <sub>0</sub> 增大 | 随d增大 |
|-----------------------------------|--------|------|--------|---------------------|------|
| $\lambda_0 = \min\{a, 2d\}$       | a < 2d | 不变   | 增大     | 不变                  | 不变   |
| $\lambda_2 = \min\{u, 2u\}$       | a > 2d | 不变   | 不变     | 不变                  | 增大   |
| $r = \frac{Na + 2d_0}{Na + 2d_0}$ | a < 2d | 增大   | 减小     | 增大                  | 不变   |
| $h = \min\{a, 2d\}$               | a > 2d | 增大   | 增大     | 增大                  | 减小   |

从表1中可以得出:

1) 对于同步域为无界情形,当a < 2d时,  $\lambda_2 = a$ ;当a > 2d时, $\lambda_2 = 2d$ ,这说明网络的同步能力与a或2d有关;当a比较小时,网络的同步能力由a决定;当2d比较小时,网络的同步能力 由d决定;a或d的增大都会增加网络的同步能力 这说明网络的同步能力在层内耦合强度比较弱时, 只与层内耦合强度有关,当层间耦合强度比较弱时, 网络的同步能力只与层间耦合强度有关,也就 是说,层内耦合强度和层间耦合强度两者之间,弱 者决定同步能力;

2) 对于同步域为有界情形, 当a < 2d时,  $r = (Na + 2d_0)/a$ ; 当a > 2d时,  $r = (Na + 2d_0)/(2d)$ ; 这说明当a比较小时, a增大会增强网络的同步 能力,  $N, d_0$ 的增大反而会使网络的同步能力变 弱; 当2d比较小时, 增大d会增强网络的同步能力,  $N, a, d_0$ 的增大会使网络的同步能力变弱.

数值仿真结果如下.

 开始有 $\lambda_2 = a = 1$ ,所以网络的同步能力先 增强后不变.对于同步域有界的情形,当d很 小时, $r = (Na + 2d_0)/(2d)$ ,r随着d的增大而 减小,当d > a/2 = 1/2后,由于 $N \gg a, d_0, d,$  $r = (Na + 2d_0)/a \approx Na/a = N$ ,所以网络的同步 能力先增强后几乎不变.说明了无论同步域是无界 还是有界,当d从0增大到a/2时,网络的同步能力 迅速增强,而在d超过a/2后,网络的同步能力基本 不变.也就是说,d在a/2处可使网络的同步能力 达到最大,过大的d对于网络的同步能力而言是没 有必要的.

2) 取 N = 200, a = 1, d = 1 (a < 2d), 变化  $d_0$ , 得到 $\lambda_2$ 和r (图3). 取 N = 200, a = 2, d = 1/2(a > 2d), 变化 $d_0$ , 得到 $\lambda_2$ 和r (图4). 对于同步域 无界情形, 无论a < 2d或 $a > 2d, d_0$ 的变化基本不 改变 $\lambda_2$ 的值, 也就是说网络的同步能力基本不变. 而对于同步域有界的情形, 当a < 2d时, r值接近 于Na, r随着 $d_0$ 的增大略有增大, 网络的同步能力 略微变弱; 而当a > 2d时, r同样接近于Na, r随着  $d_0$ 的增大略有减小, 网络的同步能力略有增强.



图 2 (a)  $\lambda_2$ , (b) $r = \lambda_{\text{max}}/\lambda_2$  随两层星形网络的叶子节点之间的层间耦合强度 d 的变化 Fig. 2. (a)  $\lambda_2$ , (b)  $r = \lambda_{\text{max}}/\lambda_2$  changes with the interlayer coupling strength between the leaf nodes of the two-layer star networks d, respectively.



图 3 (a < 2d) (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随两层星形网络的中心节点之间的层间耦合强度  $d_0$  的变化 Fig. 3. (a < 2d). (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  changes with the interlayer coupling strength between the hub nodes of the two-layer star networks  $d_0$ , respectively.



图 4 (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随两层星形网络的中心节点之间的层间耦合强度  $d_0$  的变化, a > 2dFig. 4. (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  changes with the interlayer coupling strength between the hub nodes of the two-layer star networks  $d_0$ , respectively, a > 2d.

3) 取 N = 200,  $d_0$  = 2, d = 1, 变化 a, 得到  $\lambda_2 \pi r$  (图 5). 对于同步域无界情形, 当 a 很小时,  $\lambda_2 = a, \lambda_2$ 随着 a 的增大而增大. 当 a 增大到 a = 2 后,  $\lambda_2 = 2d = 2, \lambda_2$  的值不再随 a 变化, 故网络的 同步能力先增强后不变. 对于同步域有界情形, a 很小时,  $r = (Na + 2d_0)/a, r$  随 a 的增大而减小. 当 a 增大到 a = 2 时,  $r = (Na + 2d_0)/2d, r$  随着 a 的增大迅速增大, 故网络的同步能力先增强后迅速 减弱. 之所以当 a 增大时会产生这种现象, 是因为 层内耦合强度远超过层间耦合强度, 使得两层网络 的结构类似于两个聚类的社团网络(聚类块内连接 紧密,块间连接稀疏),同步能力变得很弱.

4) 取  $d_0 = 2, d = 1, a = 1(a < 2d)$ , 变化 N, 得  $\lambda_2 \, \pi r(\mathbb{B}\,6)$ . 固定  $d_0 = 2, d = 1/2, a = 2(a > 2d)$ , 变化 N, 得  $\lambda_2 \, \pi r$  (图 7). 对同步域无界情形, 无论 a < 2d 或 a > 2d, N 的变化基本不影响  $\lambda_2$  的值, 网 络的同步能力基本不受影响. 对同步域有界情形, 对于 a < 2d 和 a > 2d, 都有 r 随着 N 的增大而增 大, 网络的同步能力变弱.





图5 (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随两层星形网络的层内耦合强度 a 的变化





图 6 (a)  $\lambda_2$ , (b)  $r = \lambda_{\text{max}}/\lambda_2$  随星形网络的规模 N 的变化, a < 2d

Fig. 6. (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  changes with the size of star networks N, respectively, a < 2d.





## 3.2 中心节点和叶子节点之间的层间耦合 强度相同的情形

假设节点之间相连的层间耦合强度均为  $d_i^{KL} = d.$  由(2)和(6)式知,  $\mathcal{L}$ 的特征多项式为

$$\begin{aligned} |\lambda \boldsymbol{I} - \boldsymbol{\mathcal{L}}| &= \lambda (\lambda - 2d) (\lambda - a)^{N-2} (\lambda - a - 2d)^{N-2} \\ &\times (\lambda - Na) (\lambda - Na - 2d), \end{aligned}$$

故两层网络的特征值为

0, 2d, 
$$\underbrace{a, \cdots, a}_{N-2}$$
,  $\underbrace{a+2d, \cdots, a+2d}_{N-2}$ , Na, Na+2d

所以

 $\lambda_2 = \min\{2d, a\}, \ \lambda_{\max} = Na + 2d.$ 

此时,对于同步域无界的情形,网络的同步能 力取决于2d或a.当2d较大时,网络的同步能力取 决于a,而当a较大时,取决于2d,即两者之中弱者 决定网络的同步能力.对于同步域有界的情形,网 络的同步能力与N,d,a有关,随N的增大,网络的 同步能力减弱.当d较大时,网络的同步能力随d 的增大而减弱,a的增大会增强网络的同步能力,当 a较大时,网络的同步能力随a的增大而减弱但随d 的增大而增大.故同步域有界时,d和a有相反的作 用.所以我们得到,当N增大时,通过减小a或增 大d可以使得网络的同步能力保持不变.当N固定 时,d增大时可以通过增大a使得网络的同步能力 保持不变.

对于  $M(M \ge 3)$  层网络, 若层与层之间的耦合 强度均相同且每层的层内耦合强度也相同, 那么经 过计算, 其 Supra-Laplace 矩阵  $\overline{\mathcal{L}}$  的特征多项式为

$$|\lambda \boldsymbol{I} - \overline{\boldsymbol{\mathcal{L}}}| = \lambda (\lambda - a)^{N-2} (\lambda - Md)^{M-1} \\ \times (\lambda - a - Md)^{(M-1)(N-2)}$$

$$\times (\lambda - Na)(\lambda - Na - Md)^{M-1},$$

故M(M ≥ 3)层网络的特征值为

$$0, \underbrace{a, \cdots, a}_{N-2}, \underbrace{Md, \cdots, Md}_{M-1}, \underbrace{a + Md, \cdots, a + Md}_{(M-1)(N-2)},$$
$$Na, \underbrace{Na + Md, \cdots, Na + Md}_{M-1}.$$

所以

 $\lambda_2 = \min\{a, Md\}, \ \lambda_{\max} = Na + Md.$ 

对于 *M* 层网络的同步域无界的情形,其同步 能力取决于 *a* 或 *Md*. 当 *Md* > *a* 时,网络的同步 能力取决于 *a*,即层内耦合强度的增加会使网络的 同步能力增强,而此时对于网络的同步域有界时,

$$r = \frac{Na + Md}{a} = N + \frac{Md}{a},$$

也就是说,增加层内耦合强度会增强网络的同步能力,但网络的节点数、网络的层数和层间的耦合强度的增加反而会减弱网络的同步能力.当*Md* < *a*时,网络的同步能力取决于*Md*,网络的层数和层间耦合强度对网络的同步能力起一致的作用,增加网络的层数和层间耦合强度会使同步能力增强.此时对于同步域有界的网络,

$$r = \frac{Na + Md}{Md} = 1 + \frac{Na}{Md},$$

所以网络的节点数和层内耦合强度的增加会减弱 网络的同步能力,网络的层数和层间的耦合强度的 增加会使网络的同步能力增强.

### 3.2.1 改变耦合强度来改变网络的同步能力

当网络的节点数 N 固定时, 层内耦合强度和层间耦合强度会影响网络的同步能力. 那么我们问, 如何改变网络的耦合强度, 更有利于同步. 为此我

们给出以下三种方式,这三种方式均在耦合强度为 1的基础上改变.

方式(I): 固定一层的层内耦合强度 $a_2 = 1$ 和 层间耦合强度d = 1,改变另一层的层内耦合强度 $a_1 = a$ .

方式 (II): 固定层间耦合强度 d = 1, 改变层内 耦合强度  $a_1 = a_2 = a$ .

方式(III):固定网络的层内耦合强度 $a_1 = a_2 = 1$ ,改变层间耦合强度d.

3.2.2 三种改变方式的理论解析解

方式(I): 固定 *a*<sub>2</sub> = 1 和 *d* = 1, 改变 *a*<sub>1</sub> = *a*. 这时可以导出 *L* 的特征值多项式为

$$\begin{aligned} \lambda \boldsymbol{I} - \boldsymbol{\mathcal{L}} &| = \lambda (\lambda - 2) [\Delta_2 - \Delta_1 - (N - 2)] \\ &\times (\Delta_3 + \Delta_4) [(\Delta_2 - \Delta_3)^{N-2}], \end{aligned}$$

其中

$$\begin{aligned} \Delta_1 &= -(\lambda - 2a - 1) + (N - 3)a, \\ \Delta_2 &= -(\lambda - 2)(\lambda - 2a - 1) + 1 - a, \\ \Delta_3 &= (\lambda - 2)a - a, \\ \Delta_4 &= -(\lambda - 2a - 1) + (N - 3)a. \end{aligned}$$

故两层网络的特征值为

$$0, \underbrace{\lambda_{\alpha}, \cdots, \lambda_{\alpha}}_{N-2}, 2, \underbrace{\lambda_{\beta}, \cdots, \lambda_{\beta}}_{N-2}, \lambda_{\gamma}, \lambda_{\delta},$$

其中

$$\begin{split} \lambda_{\alpha} &= (a+3-\sqrt{(a-1)^2+4})/2,\\ \lambda_{\beta} &= (a+3+\sqrt{(a-1)^2+4})/2,\\ \lambda_{\gamma} &= (Na+a+2-\sqrt{N^2(a-1)^2+4})/2,\\ \lambda_{\delta} &= (Na+a+2+\sqrt{N^2(a-1)^2+4})/2.\\ \text{对于所有的} a, \, \bar{\eta} \, \lambda_{\alpha} < 2, \, \text{所以此时方式} (I) \, \text{的} \end{split}$$

 $\lambda_2^1 = \lambda_\alpha = (a + 3 - \sqrt{(a - 1)^2 + 4})/2,$ 

 $\lambda_{\max}^1 = \lambda_\delta = (Na + a + 2 + \sqrt{N^2(a-1)^2 + 4})/2.$ 方式(II): 固定 d = 1, 改变 a<sub>1</sub> = a<sub>2</sub> = a. 应用

(5) 式得**\mathcal{L}**的特征值多项式为

$$\begin{aligned} |\lambda \boldsymbol{I} - \boldsymbol{\mathcal{L}}| &= \lambda (\lambda - a)^{N-2} (\lambda - 2) (\lambda - a - 2)^{N-2} \\ &\times (\lambda - Na) (\lambda - Na - 2). \end{aligned}$$

所以特征值是

0, a,...,a, 2, a+2,...,a+2, Na, Na+2,  
所以方式(II)的
$$\lambda_2^2 = \min\{a, 2\}, \lambda_{\max}^2 = Na+2.$$

方式 (III): 固定  $a_1 = a_2 = 1$ , 改变 d. 应用 (5) 式计算得 **\mathcal{L}** 的特征多项式为

$$\begin{split} |\lambda - \mathcal{L}| &= \lambda (\lambda - 2d) (\lambda - 1)^{N-2} (\lambda - 1 - 2d)^{N-2} \\ &\times (\lambda - N) (\lambda - N - 2d). \end{split}$$

故网络的特征值为

0, 2d, 
$$\underbrace{1, \dots, 1}_{N-2}$$
,  $\underbrace{1+2d, \dots, 1+2d}_{N-2}$ , N, N+2d.

所以方式 (III) 的  $\lambda_2^3 = \min\{2d, 1\}, \lambda_{\max}^3 = N + 2d.$ 下面研究改变相同大小的耦合强度,使两层网 络的同步能力达到最大,应该选择哪一种方式.

对同步域无界的情形,上述三种方式对应 的 $\lambda_2$ 分别为: $\lambda_2^1 = (a + 3 - \sqrt{(a-1)^2 + 4})/2$ ,  $\lambda_2^2 = \min\{a, 2\}, \lambda_2^3 = \min\{2d, 1\}$ .通过计算比较 得到:当 $a = d < (2 - \sqrt{2})/2$ 时, $\lambda_2^1 > \lambda_2^3 > \lambda_2^2$ ; 当 $(2 - \sqrt{2})/2 < a = d < 1$ 时, $\lambda_2^3 > \lambda_2^1 > \lambda_2^2$ ; 当a = d > 1时, $\lambda_2^2 > \lambda_2^1 > \lambda_2^3$ .所以当改 变的 $a = d < (2 - \sqrt{2})/2$ 时,选择方式(I);当  $(2 - \sqrt{2})/2 < a = d < 1$ 时,选择方式(III);当 a = d > 1时,选择方式(III);当

对同步域有界的情形, 三种方式对应的r的取 值是:

$$r^{1} = \frac{Na + a + 2 + \sqrt{N^{2}(a-1)^{2} + 4}}{a + 3 - \sqrt{(a-1)^{2} + 4}},$$
  

$$r^{2} = \max\{(Na + 2)/a, (Na + 2)/2\},$$
  

$$r^{3} = \max\{(N + 2d)/2d, N + 2d\},$$

且 $r^1$ ,  $r^2$ ,  $r^3$ 随着a = d的变化会有交点. 交点 处说明三种方式有相等的r,即在交点处网络 的同步能力相同. 假设交点分别是o1 < o2 <  $o_3 < o_4 < o_5 < o_6 < o_7 < o_8$ . 通过计算得  $\mathfrak{Y}_{0_3} = (N-4)/(2N-4), \ o_4 = o_5 = o_6 = 1,$  $o_8 = (2N-2)/(N-4), \ m o_1, \ o_2, \ o_7$  的 值 很 难 计算,在此不对其进行计算. 当 $a = d < o_1$ 时,  $r^1 < r^2 < r^3$ ;  $\exists o_1 < a = d < o_2$   $\exists t, r^2 < r^1 < r^3$ ; 当 $o_2 < a = d < o_3$ 时,  $r^2 < r^3 < r^1$ ; 当 $o_3 < a =$ d < 1 时, 有  $r^3 < r^2 < r^1$ ; 当 1 < a = d < o\_7 时,  $r^2 < r^1 < r^3$ ; 当 $o_7 < a = d < o_8$ 时,  $r^2 < r^3 < r^1$ ;  $\exists a = d > o_8$   $\forall, r^3 < r^2 < r^1$ . 说明当改变的 $a = d < o_1$ 时,选择方式(I);当  $o_1 < a = d < o_3$ 和1 <  $a = d < o_8$ 时,选择方式 (II); 当 $o_3 < a = d < 1$ 和 $a = d > o_8$ 时,选择方式 (III).

3.2.3 数值仿真

单层星形网络的节点数是N = 200, 层内耦合强度是 $a_1 = a_2 = a = 1$ , 层间耦合强度是d = 1.按照三种方式进行数值仿真, 得到图8.

从图 8 中可以看出当a = d = 1时, 三种方式的 $\lambda_2 \pi r = \lambda_{\text{max}}/\lambda_2$ 相同.所以假设在a = d = 1的基础上,改变耦合强度来改变网络的同步能力.从图 8 (a)中看出,对于同步域无界的情形,按照

三种方式减小耦合强度时,当0 《 a = d < 1时,  $\lambda_2^3 > \lambda_2^1 > \lambda_2^2$ ,此时应选择方式(III);当 $a = d \ll 1$ 时,  $\lambda_2^1 > \lambda_2^3 > \lambda_2^2$ ,应选择方式(I);但当增大耦合 强度时, $\lambda_2^2 > \lambda_2^1 > \lambda_2^3$ ,选择方式(II).对于同步 域有界的情形,从图8(b)可得,当 $a = d < o_1$ 时,  $r^1 < r^2 < r^3$ ,应选择方式(I),当 $o_1 < a = d < o_2$ 和 $1 < a = d < o_3$ 时, $r^2 < r^1 < r^3$ 或 $r^2 < r^3 < r^1$ , 选择方式(II),当 $o_2 < a = d < 1$ 和 $a = d > o_3$ 时,  $r^3 < r^2 < r^1$ ,选择方式(III).



图 8 两层星形网络的 $\lambda_2(a)$  和  $r = \lambda_{\max}/\lambda_2(b)$  与耦合强度的关系

Fig. 8. The relations between coupling strength and  $\lambda_2(a)$  and  $r = \lambda_{\max}/\lambda_2(b)$  of two-layer star networks.

上述结论告诉我们,对于星形的两层网络,增 强或削弱网络的同步能力,想要采用方式(I),(II) 或者(III),要根据层内耦合强度和层间耦合强度的 大小来决定,并没有完全统一的方式.

#### 3.3 两层 BA 无标度网络

BA 无标度网络能够较好地刻画现实中许多真 实网络的特征,本小节我们分析一种特殊的 BA 两 层网络,它在一定意义下接近于上述两层星形网 络.这种两层网络的单层是 BA 无标度网络,节点 数 N = 200,初始网络是  $m_0 = 3$  的全连接网络,每 次新增加一个节点增加 m = 3条边.单层网络层间 按照度大与度大的节点,度小与度小的节点一一对 应连接成两层网络.不妨将 10% N 度大的节点看作 hub 节点,其余为叶子节点.

1) 取  $N = 200, a = 1, d_0 = 2, 改变 d, 得到 \lambda_2$ 和 r (图 9). 对于同步域无界的情形, d较小时,  $\lambda_2$ 随 d的增大而增大, 当 d达到 a/2 = 1/2 附近时,  $\lambda_2$ 不再随 d的增大而变化, 即网络的同步能力先增强 后不变. 对于同步域有界的情形, d较小时, r 随 d 的增大而减小,当d达到a/2 = 1/2附近后,r随d的增大基本不变,网络的同步能力先增强后基本保持不变.这说明d在a/2附近可使网络的同步能力达到最大.

2) 取 N = 200, a = 1, d = 1(a < 2d) 和a = 2, d = 1/2(a > 2d),改变 $d_0$ ,得到 $\lambda_2$ 和r(图10和 图11).对于同步域无界的情形,当a < 2d时, $d_0$ 不 影响 $\lambda_2$ 的值,网络的同步能力不变;当a > 2d时,  $d_0$ 的增大会增加 $\lambda_2$ 的值,网络的同步能力略有增 强.对同步域有界的情形,当a < 2d时,r随着 $d_0$ 的增大而略有增加,同步能力略微变弱;当a > 2d时,r随着 $d_0$ 的增大而变小,网络的同步能力增强.

3) 取  $N = 200, d_0 = 2, d = 1$ , 改变a, 得到 $\lambda_2$ 和r (图 12). 对于同步域无界的情形, 当a较小时,  $\lambda_2$ 随a的增大而增大. 当a增大到a = 2附近时,  $\lambda_2$ 的值不再改变, 网络的同步能力先增强后不变. 对 于同步域有界的情形, a较小时, r随a的增大而减 小, 当a增大到a = 2附近时, r随a的增大而迅速 增大, 网络的同步能力先增强后迅速变弱.



Fig. 9. (a)  $\lambda_2$ , (b)  $r = \lambda_{\text{max}}/\lambda_2$  changes with the interlayer coupling strength between the leaf nodes of the two-layer BA networks d, respectively.



图 10 (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随两层 BA 网络的中心节点之间的层间耦合强度  $d_0$  的变化, a < 2d Fig. 10. (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  changes with the interlayer coupling strength between the hub nodes of the two-layer BA networks  $d_0$ , respectively, a < 2d.



图 11 (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随两层 BA 网络的中心节点之间的层间耦合强度  $d_0$  的变化, a > 2dFig. 11. (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  changes with the interlayer coupling strength between the hub nodes of the two-layer BA networks  $d_0$ , respectively, a > 2d.



图 12 (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随两层 BA 网络的层内耦合强度 a 的变化

Fig. 12. (a)  $\lambda_2$ , (b)  $r = \lambda_{\text{max}}/\lambda_2$  changes with the intralayer coupling strength of the two-layer BA networks a, respectively.

028902-9



图 13 (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随 BA 网络的规模 N 的变化, a < 2d

Fig. 13. (a)  $\lambda_2$ , (b)  $r = \lambda_{\text{max}}/\lambda_2$  changes with the size of BA networks N, respectively, a < 2d.



图 14 (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  随 BA 网络的规模 N 的变化, a > 2dFig. 14. (a)  $\lambda_2$ , (b)  $r = \lambda_{\max}/\lambda_2$  changes with the size of BA networks N, respectively, a > 2d.

4) 取  $d_0 = 2$ , d = 1, a = 1(a < 2d) 和 d = 1/2, a = 2(a > 2d), 改变 N, 得到  $\lambda_2$  和 r (图 13 和 图 14). 从图 13 和图 14 中得出, 对于同步域无界的 情形, N 基本不影响  $\lambda_2$  的值, 网络的同步能力基本 不变; 当同步域有界时, r 随着 N 的增大有增大的 趋势, 但在小范围内基本不改变网络的同步能力, 网络的同步能力总体变弱. 通过改变耦合强度可以改变网络的同步能力. 下面假设  $a_1 = a_2 = a = 1, d = d_0 = 1, 按照三种$ 方式进行数值仿真, 得到图 15.

从图 **15** 中可以看出当a = d = 1时, 三种方式 的 $\lambda_2$ 和 $r = \lambda_{max}/\lambda_2$ 的值相等. 对于同步域无界的 情形, 从图 **15**(a) 中看出, 在a = d = 1的基础上, 按 照三种形方式减小耦合强度时, 当0《a = d < 1时,



图 15 两层 BA 无标度网络的  $\lambda_2(a)$  和  $r = \lambda_{max}/\lambda_2(b)$  与耦合强度的关系

Fig. 15. The relations between coupling strength and  $\lambda_2(a)$  and  $r = \lambda_{\max}/\lambda_2(b)$  of two-layer BA networks.

 $\lambda_2^3 > \lambda_2^1 > \lambda_2^2$ ,故此时应该选择方式(III);当  $a = d \ll 1$ 时, $\lambda_2^1 > \lambda_2^3 > \lambda_2^2$ ,应选择方式(I); 但当在a = d = 1的基础上增大耦合强度时,  $\lambda_2^3 < \lambda_2^1 < \lambda_2^2$ ,选择方式(II).对于网络同步域有界 的情形,从图15(b)可得,在a = d = 1的基础上, 当 $a = d < o_1$ 和1 <  $a = d < o_2$ 时,  $r^2 < r^1 < r^3$ 或 $r^2 < r^3 < r^1$ ,选择方式(II),当 $o_1 < a = d < 1$ 和 $a = d > o_2$ 时,  $r^3 < r^2 < r^1$ ,选择方式(III).

将图2至图9分别与图10至图15比较,发现 两层 BA 无标度网络和两层星形网络的同步能力 与*N*, *a*, *d*, *d*<sub>0</sub>的关系非常类似,这正是因为星形网 络和 BA 无标度网络都是典型的异质网络的缘故.

## 4 讨论与结论

本文在理论上严格导出了两层星形网络当中 心节点和叶子节点层间耦合强度不同和相同时的 特征值谱的解析表达式,并在此基础上分析了对于 不同的网络同步域,节点数、层间耦合强度和层内 耦合强度对网络的同步能力的影响.对于同步域无 界的情形,网络的同步能力与叶子节点的层间耦合 强度和网络的层内耦合强度有关. 当层内耦合强 度比较弱时,网络的同步能力仅依赖于层内耦合强 度; 当网络的叶子节点之间的层间耦合强度弱时, 网络的同步能力仅依赖于叶子节点之间的层间耦 合强度. 即网络的同步能力由层内耦合强度和叶 子之间的层间耦合强度比较弱的一方决定. 对于 网络同步域有界的情形,网络的同步能力与节点 数、层间耦合强度和层内耦合强度都有关系. 当层 内耦合强度比较弱时,层内耦合强度的增大会增强 网络的同步能力,而节点数、层间耦合强度的增大 反而使网络的同步能力变弱;当叶子节点之间的 层间耦合强度比较弱时,叶子节点之间的层间耦合 强度的增大会增强网络的同步能力,而节点数、层 内耦合强度和中心节点之间的层间耦合强度的增 大会减弱网络的同步能力.为了探讨更有利于同 步的耦合方式,在层内耦合强度和层间耦合强度相 同的基础上 ( $a = d = d_0 = 1$ ), 给出了三种不同方 式耦合强度的变化. 要增强同步域无界网络的同 步能力, 当 $a = d \ll 1$ 时, 改变某一层的层内耦合 强度; 当0  $\ll a = d < 1$ , 改变层间耦合强度; 当 a = d > 1, 改变两个单层网络的层内耦合强度. 而 对于同步域有界的情形,要增强网络同步能力,当  $a = d < o_1$ 时,应改变某一层的层内耦合强度;当

o<sub>1</sub> < a = d < o<sub>2</sub>和a = d > o<sub>3</sub>时,应改变层间耦合 强度;其他情形则选择改变两个单层网络的层内耦 合强度.最后,针对一类两层 BA 无标度网络,给 出了上述问题的数值仿真结果.由于两层星形网络 与两层 BA 无标度网络都具有中心节点,因此在性 质上有相似性.同时也告诉我们,由于两层星形网 络的特征值我们已经导出解析表达式,而两层 BA 无标度网络无法导出,所以我们可以通过两层星 形网络的精确结果来理解两层 BA 无标度网络的 性质.

到目前为止,对多层网络的研究仍然存在许多 问题没有解决. 基于本文涉及的多层星形网络的特 征值谱及同步能力而言,譬如当网络的中心节点之 间的层间耦合强度和叶子节点之间的层间耦合强 度不相同时,在改变了中心节点之间的层间耦合强 度后,如何改变叶子节点之间的层间耦合强度才能 使网络的同步能力不变化,即本文中如果中心节点 之间的层间的耦合强度do增大或减小,我们应该怎 样变化叶子节点之间的层间耦合强度d,才能使整 个两层网络的同步能力不变. 又譬如目前对多层网 络的研究很多都是在两层网络上进行的,那么两层 网络的哪些结论可以直接推广到多层网络上,哪些 结论必须进行有效的验证和推导,甚至无法推广到 多层网络上,比如文中的特征值解析表达式,当层 与层之间的耦合强度相同时,多层星形网络特征值 的一般表达式包含两层的结论.

#### 参考文献

- Mucha P J, Richardson T, Macon K, PorterM A, Onnela J P 2010 Science 328 876
- D'Agostino G, Scala A 2014 Networks of Networks: The Last Frontier of Complexity (Berlin: Springer International Publishing) pp53–73
- [3] Kivelä M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y, Porter M A 2014 J. Com. Net. 2 203
- [4] Aguirre J, Sevilla-Escoboza R, Gutiérrez R, Papo D, Buldú J M 2014 Phys. Rev. Lett. 112 248701
- [5] Um J, Minnhagen P, Kim B J 2011 Chaos **21** 5712
- [6] Lu R Q, Yu W W, Lü J H, Xue A K 2014 IEEE T. Neur. Net. Lear. 25 2110
- [7] Zhang X Y, Boccaletti S, Guan S G, Liu Z H 2015 *Phys. Rev. Lett.* **114** 038701
- [8] Xu M M, Zhou J, Lu J A, Wu X Q 2015 Eur. Phys. J. B 88 1
- [9] Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, Zanin M 2014 Phys. Rep. 544 1

- [10] Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente C J, Moreno Y, Arenas A 2013 Phys. Rev. Lett. 110 028701
- [11] Solé-Ribalta A, De Domenico M, Kouvaris N E, Díaz-Guilera A, Gómez S, Arenas A 2013 Phys. Rev. E 88 032807
- [12] Bauch C T, Galvani A P 2013 Science 342 47
- [13] Wang W, Tang M, Yang H, Do Y, Lai Y C, Lee G W 2014 Sci. Rep. 4 2154
- [14] Granell C, Gómez S, Arenas A 2013 Phys. Rev. Lett. 111 128701
- [15] Wang H J, Li Q, D'Agostino G, Havlin S, Stanley H E, Van Mieghem P 2013 Phys. Rev. E 88 022801
- [16] Ouyang B, Jin X Y, Xia Y X, Jiang L R, Wu D P 2014 Acta Phys. Sin. 63 218902 (in Chinese) [欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡 2014 物理学报 63 218902]
- [17] Peng X Z, Yao H, Du J, Wang Z, Ding C 2015 Acta Phys. Sin. 64 048901 (in Chinese) [彭兴钊, 姚宏, 杜军, 王哲, 丁超 2015 物理学报 64 048901]
- [18] Chen S M, Lü H, Xu Q G, Xu Y F, Lai Q 2015 Acta Phys. Sin. 64 048902 (in Chinese) [陈世明, 吕辉, 徐青刚, 许云飞, 赖强 2015 物理学报 64 048902]
- [19] Blekhman I I 1988 Synchronization in Science and Technology (American Society of Mechanical Engineers Press) pp1–255
- [20] Buck J 1988 Q. Revs. Biol. 63 265
- [21] Walker T J 1969 Science 166 891
- [22] Hansel D, Sompolinsky H 1992 Phys. Rev. Lett. 68 718
  [23] Peskin C S 1975 Mathematical Aspects of Heart Physi-
- ology (New York: New York University) pp1–278
- [24] Uhlhaas P J, Singer W 2006 Neuron **52** 155
- [25] Liu H, Chen J, Lu J A, Cao M 2010 Physica A 389 1759

- [26] Lu W L, Liu B, Chen T P 2010 Chaos 20 013120
- [27] Chen L, Lu J A, Tse C K 2009 IEEE Trans. Circuits Syst.-II 56 310
- [28] Suykens J A K, Osipov G V 2008 Chaos 18 037101
- [29] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C 2008 Phys. Rep. 469 93
- [30] Wu W, Chen T P 2008 IEEE T. Neur. Net. 19 319
- [31] Han X P, Lu J A, Wu X Q 2008 Int. J. Bifurcat. Chaos 18 1539
- [32] Zhou J, Lu J A, Lü J H 2008 Automatica 44 996
- [33] Liu Q, Fang J Q, Li Y 2007 Commun. Theor. Phys. 47 752
- [34] Zhou J, Lu J A, Lü J H 2006 IEEE T. Autmat. Contr. 51 652
- [35] Lu X B, Wang X F, Fang J Q 2006 Physica A 371 841
- [36] Lu W L, Chen T P, Chen G R 2006 Physica D 221 118
- [37] Nishikawa T, Motter A E, Lai Y C, Hoppensteadt F C 2003 Phys. Rev. Lett. 91 014201
- [38] Barahona M, Pecora L M 2002 Phys. Rev. Lett. 89 716
- [39] Kocarev L, Parlitz U 1996 Phys. Rev. Lett. 76 1816
- [40] The Algebra Group of Teaching and Research Section of Algebra and Gemotry, Mathematics Department, Beijing University 2003 Advanced Algebra (Third Edition) (Beijing: Higher Education Press) pp43-82 (in Chinese)
  [北京大学数学系几何与代数教研室代数小组 2003 高等代 数(第三版)(北京,高等教育出版社)第43—82 页]
- [41] Pecora L M, Carroll T L 1998 Phys. Rev. Lett. 80 3956
- [42] Pecora L M, Carroll T L, Johnson G, Mar D, Fink K S 2000 Int. J. Bifurcat. Chaos 10 273
- [43] Tang L K, Lu J A, Lü J H, Yu X H 2012 Int. J. Bifurcat. Chaos 22 1250282

## Synchronizability and eigenvalues of two-layer star networks<sup>\*</sup>

Xu Ming-Ming Lu Jun-An Zhou Jin<sup>†</sup>

(School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)
 (Received 7 August 2015; revised manuscript received 17 October 2015)

#### Abstract

From the study of multilayer networks, scientists have found that the properties of the multilayer networks show great difference from those of the traditional complex networks. In this paper, we derive strictly the spectrum of the Supra-Laplace matrix and the synchronizability of two-layer star networks by applying the master stability method. Through mathematical analysis of the eigenvalues of the Supra-Laplace matrix, we study how the node number, the inter-layer and the intra-layer coupling strengths influence the synchronizability of a two-layer star network. We find that when the synchronous region is unbounded, the synchronizability of a two-layer star network is only related to the intra-layer coupling strength between the leaf nodes or the inter-layer coupling strength of the entire network. If the synchronous region of a two-layer star network is bounded, not only the inter-layer coupling strength of the network and the intra-layer coupling strength between the leaf nodes, but also the intra-layer coupling strength between the hub nodes and the network size have influence on the synchronizability of the networks. Provided that the same inter-layer and intralayer coupling strengths are concerned, we would further discuss the optimal ways of strengthening the synchronizability of a two-layer star network. If the inter-layer and intra-layer coupling strengths are far less than unity, changing the intra-layer coupling strength is the best way to enhance the synchronizability no matter what the synchronous region is. While if the coupling strengths are the same as, less than or more than unity, there will be different scenarios for the network with bounded and unbounded synchronous regions. Besides, we also discuss the synchronizability of the multilayer network with more than two layers. And then, we carry out numerical simulations and theoretical analysis of the two-layer BA scale-free networks coupled with 200 nodes and obtain very similar conclusions to that of the twolayer star networks. Finally, conclusion and discussion are given to summarize the main results and our future research interests.

Keywords: multilayer networks, star networks, synchronization, eigenvalue spectrum PACS: 89.75.Fb, 89.75.-k, 89.75.Hc, 89.70.-a DOI: 10.7498/aps.65.028902

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant Nos. 61374173, 11172215).

<sup>†</sup> Corresponding author. E-mail: jzhou@whu.edu.cn