物理学报 Acta Physica Sinica

Institute of Physics, CAS

采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算

鲁桃 王瑾 付旭 徐彪 叶飞宏 冒进斌 陆云清 许吉

Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method

Lu Tao Wang Jin Fu Xu Xu Biao Ye Fei-Hong Mao Jin-Bin Lu Yun-Qing Xu Ji

引用信息 Citation: Acta Physica Sinica, 65, 210301 (2016) DOI: 10.7498/aps.65.210301 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.210301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I21

您可能感兴趣的其他文章 Articles you may be interested in

基于相干叠加态的非正交编码诱骗态量子密钥分发

Nonorthogonal decoy-state quantum key distribution based on coherent-state superpositions 物理学报.2016, 65(8): 080301 http://dx.doi.org/10.7498/aps.65.080301

悬链曲面上的点粒子动力学及扩展空间约束系统量子化

Dynamics of the particle on a catenoid and the quantization of the constrained system in the extended space

物理学报.2015, 64(24): 240305 http://dx.doi.org/10.7498/aps.64.240305

对应负二项式光场的热真空态及其应用

Thermo-vacuum state in a negative binomial optical field and its application 物理学报.2015, 64(19): 190301 http://dx.doi.org/10.7498/aps.64.190301

二项-负二项组合光场态的光子统计性质及其在量子扩散通道中的生成

Statistical properties of binomial and negative-binomial combinational optical field state and its generation in quantum diffusion channel

物理学报.2015, 64(8): 080303 http://dx.doi.org/10.7498/aps.64.080303

相空间中对应量子力学基本对易关系的积分变换及求Wigner函数的新途径

An integral-transformation corresponding to quantum mechanical fundamental commutative relation and its application in deriving Wigner function

物理学报.2015, 64(5): 050301 http://dx.doi.org/10.7498/aps.64.050301

采用密度泛函理论与分子动力学对聚甲基丙烯酸 甲酯双折射性的理论计算*

鲁桃 王瑾† 付旭 徐彪 叶飞宏 冒进斌 陆云清 许吉

(南京邮电大学光电工程学院,南京 210023)

(2016年6月13日收到;2016年7月20日收到修改稿)

双折射性是各种光学材料的重要性能之一,具有高双折射率的光学材料在诸多研究及工业领域的应用越来越广泛.然而,作为常用的光学薄膜及光波导材料之一的聚合物材料的双折射性通常却很弱,只能通过实验对其双折射率进行大致的表征,缺乏对其双折射率的系统性理论计算,从而限制了提高聚合物双折射性的研究.本文建立了从聚合物的单体分子结构到多分子链的系统性的双折射率理论计算方法,并借助此方法研究了导致聚合物弱双折射性的限制因素.以聚甲基丙烯酸甲酯(PMMA)为研究对象,运用密度泛函理论研究了其本征双折射率,这里的本征双折射率是指分子链完全取向时其单体单元的双折射率.计算结果表明其本征双折射率高达0.0738左右,并且通过计算给出了PMMA单体单元的平均双折射率色散曲线.采用分子动力学方法研究了该聚合物(包含20个分子链)的材料双折射率.理论计算结果表明,尽管该聚合物具有较大的本征双折射率,但是由于聚合物中分子链取向度极低,聚合物材料最终表现出来的双折射率只有0.00052.本文建立的研究方法及研究结果为研究增强聚合物材料双折射性提供了理论依据.

关键词:聚甲基丙烯酸甲酯,双折射性,密度泛函理论,分子动力学 PACS: 03.65.-w, 31.15.es, 42.25.Lc DOI: 10

DOI: 10.7498/aps.65.210301

1引言

双折射性是各类光学材料中非常重要的效应, 即材料对不同偏振光场的折射特性不一样.除常规 的晶体外,液晶、半导体、硅基、铁电材料及人工结 构材料都可显示出双折射性^[1-5].采用高双折射性 材料制备的光学薄膜和光子器件,可以在微型尺寸 上实现矢量光束产生^[6]等独特功能,也可用于偏振 检测^[7]、全息视屏显示^[8,9]、高灵敏度生物传感^[10] 等新兴技术.然而,基于上述材料制备光子器件需 要先进的微细加工设备,生产成本较高.

聚合物材料具备很多优良的特性,如制备工艺 简单、折射率易调整、透明性好^[11],如果也表现出 高的双折射性,将可低成本地制备众多新功能光子 器件.然而在通常情况下,绝大多数的聚合物材料 是以无定型形式存在的,表现出较低的双折射性, 这极大地限制了聚合物材料的发展与应用范围.为 了增强聚合物的双折射性,需要系统地研究聚合物 材料中双折射性产生的原因和影响因素.在过去, 对聚合物材料双折射性的研究主要是以实验表征 材料的双折射率为主,而在微观分子层面上对聚 合物材料双折射性的研究不多^[12–16],就作者所知, 尚没有从聚合物的单体分子结构到多分子链的系 统性研究.

本 文 以 聚 甲 基 丙 烯 酸 甲 酯 (poly-methyl methacrylate, PMMA) 为例,利用密度泛函理论 (density-functional theory, DFT)^[17,18]与分子动 力学 (molecular dynamics, MD)^[19]相结合的方法 系统地研究了聚合物双折射产生的原因以及影响 因素. 首先构建了 PMMA 单体单元的初始结构,

* 国家自然科学基金 (批准号: 61575096) 和江苏省基础研究计划 (批准号: BK20131383) 资助的课题.

© 2016 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: jinwang@njupt.edu.cn

然后采用DFT对单体单元的初始结构进行几何优 化,并在DFT中对分子进行柔性势能面扫描以获 得稳定的单体单元分子结构,在此基础上计算了 PMMA单体单元的本征双折射率.进一步,本文采 用MD方法构造了全原子PMMA材料模型,然后 实施一系列动力学过程获得了体系稳定的PMMA 材料模型,在此基础上计算了PMMA的材料双折 射率,并根据结果分析了PMMA单体单元分子结 构及取向度对材料双折射率的影响.

2 PMMA本征双折射率计算

2.1 PMMA单体单元模型的建立及优化

在众多聚合物材料中, PMMA 是一种常见的 聚合物, 也被称为有机玻璃, 是由甲基丙烯酸酯聚 合 (MMA) 作为单体单元重复连接而成. PMMA 通常为无定型材料, 具有良好的光学特性, 例如透 过性高、在通信波段传输损耗小等. 在本文中, PMMA 单体单元的初始结构是通过 Cambridge Crystallographic Data Centre (CCDC)^[20]获得的, 然后在量子化学软件 Gaussian 09 中几何优化后获 得 PMMA 单体单元稳定的分子结构.

研究聚合物材料单体单元的本征双折射性首 先要获得其在各个方向上的折射率分量,这些分 量可通过单体单元在各个方向上的分子极化率获 得^[21],

$$\frac{n_{ij}^2 - 1}{n_{ii}^2 + 2} = \frac{\rho N_{\rm A} \alpha_{ij}}{3M\varepsilon_0},\tag{1}$$

式中n表示折射率; α表示分子极化率; 下标i和j 可以分别为直角坐标系中X, Y和Z三个方向, 当 i = j时, n_{ij} 和 α_{ij} 分别表示在坐标轴上折射率和 分子极化率的分量, 当 $i \neq j$ 时, n_{ij} 和 α_{ij} 分别表示 在平面上折射率和分子极化率的分量; ρ 表示密度; N_A 表示阿伏伽德罗常数; M表示分子的相对摩尔 质量, ε_0 则表示真空介电常数. 在获得这些折射率 分量后,聚合物材料单体单元的本征双折射率可通 过下式计算得到:

$$\Delta n_0 = n_\perp - n_{//},\tag{2}$$

其中 $n_{//}$ 是Y轴方向上的折射率分量, n_{\perp} 是XZ平面上的折射率分量,可通过(1)式由相对应的分子极化率 $\alpha_{//}$ 和 α_{\perp} 计算获得,

$$\alpha_{//} = \alpha_{yy}, \ \ \alpha_{\perp} = \frac{\alpha_{xx} + \alpha_{zz}}{2}.$$
 (3)

本文在Gaussian 09软件中建立重复单元的 全原子模型,同时,由于分子的极化率对分子几 何结构比较敏感,所以对所建立的模型进行几何 优化以及振动频率分析,以确保得到合理的几何 结构.在Gaussian 09软件中,几何优化方法选择 B3LYP杂化密度泛函,基组选择劈裂价键基组6-311 G++(d,p)^[12].在几何优化后,对得到的分子 结构做频率振动分析以确定结构的稳定性,其中振 动分析的基组和几何优化的基组保持一致,均为劈 裂价键基组6-311 G++(d,p).需要指出的是,基组 类型的选择和计算方法基本决定了计算的精度及 收敛标准,而且所有分子键振动频率的计算值均为 非负数(即不包含虚频)时,计算结果才是合理的.

优化前和优化后的 PMMA 单体单元分子结构 如图1所示,而优化后的部分结构参数如表1所列. 图1中红色原子表示氧原子,白色原子表示氢原子,

图 1 PMMA 单体单元分子结构图 (a) 优化前; (b) 优化后

Fig. 1. Molecular structure of PMMA monomer unit: (a) Before optimization; (b) after optimization.

210301-2

灰色原子表示碳原子,坐标原点为2号碳原子C2的中心,Y轴沿着单体单元的聚合方向,即聚合后的单键方向.从表1可以看到,优化后的PMMA单体单元分子结构的键长(包含两个原子)、键角(包含三个以上原子)与CCDC初始结构给出的键长、键角的差异绝大部分在1%以下,特别是键长的差异基本不超过0.3%.但是C4—O16比较例外,优化后结构的键长与CCDC初始结构给出的键长相差大约3.4%,相应的优化后结构的C3—C4—O16键角与CCDC初始结构给出的数值也相差大约2%.这表明该分子可能只是处于能量曲面的局部极小值点而非全局最小值点,因此,还需进一步判断优化后的分子结构是否合理.

表 1 优化后 PMMA 单体单元部分结构参数 (键长单位 Å, 键角和二面角单位 (°))

Table 1. Part of the structural parameters of PMMA monomer unit after optimization (Bond length, Å; angle or dihedral, (°)).

参数	优化后结果	CCDC 中数值
H1—C2	1.0935	1.09
C2—C3	1.5425	1.54
C3—H7	1.5202	1.53
C3—C4	1.5315	1.52
C4—O16	1.2075	1.25
C4—O5	1.3529	1.35
O5—C6	1.4397	1.42
H12—C2—C3	110.6735	109.7
C3—C4—O16	125.6974	127.9
O16—C4—O5	123.0051	124.0
H12—C2—C3—C7	62.6261	60.1

为了进一步确定 PMMA 单体单元分子结构的 稳定性,需要对优化后的分子结构进行柔性势能 面扫描找出分子能量曲面的最小值点,即分子构 型最稳定的点^[22],以判断分子结构是否合理.由 于未涉及的羰基(—C=O—)的键长、键角等参数 与 CCDC 数据库中的值均符合得较好^[20],因此本 文中的柔性势能面扫描是将 PMMA 单体单元中的 C=O 键长逐渐增大,观察键长与能量变化曲线, 最终找到能量最小值点所对应的 C=O键长.柔 性势能面扫描后的 PMMA 单体单元分子能量与 C=O键长的关系如图 2 所示.从图 2 可以看到,在 分子中C=O键长为1.21 Å时单体单元分子能量 最小.这一计算结果与表1中优化后的C=O键长 1.2075 Å非常接近,考虑到柔性势能面扫描的步长 为0.1 Å,可以认为之前优化后的分子结构合理,分 子处于能量曲面最小值点.至此,建立了稳定的 PMMA单体单元结构模型.

图 2 PMMA 单体单元能量与 C=O 键长变化曲线 Fig. 2. The molecular energy of PMMA monomer unit vs. the C=O bond length.

2.2 PMMA单体单元极化率及本征双折 射率的计算结果与分析

利用 (1), (2) 和 (3) 式, 通过获得 PMMA 单体 单元的各极化率分量可以计算 PMMA 单体单元的 本征双折射率.为了获得单体单元各极化率分量, 需要将上小节中优化后的 PMMA 单体单元分子结 构导入至 Gaussian 09 软件中进行含频率的极化率 计算. PMMA 单体单元的各极化率分量的计算结 果如表 2 所列, 其中极化率单位采用的是原子单位 制 (a.u).

表 2 PMMA 单体单元在不同波长入射光下各极化率分量 Table 2. Polarizability of monomer units of PMMA at different wavelengths.

极化率/a.u	入射波长 λ /nm				
	1530	1540	1550	1560	1570
α_{xx}	70.9815	70.9781	70.9640	70.9713	70.9679
$lpha_{yy}$	73.9563	73.9526	73.9651	73.9455	73.9419
α_{zz}	59.8942	59.8917	59.8826	59.8869	59.8846

根据表2模拟得到各极化率分量的数据, 将 $a_0 = 0.52917$ Å, M = 0.102 g/mol, $\rho =$ 1170 kg/m³, $N_A = 6.022 \times 10^{23}$ 代入(1), (2)和 (3) 式分别得到PMMA在Y轴方向上的折射率分 量, XZ平面上的折射率分量以及PMMA的本征 双折射率 $\Delta n_0 = n_{\perp} - n_{//}$, 计算结果如表3所列, 计算得到的PMMA在1550 nm处的平均折射率与 文献[23]中的数值基本相符, 误差为1%. 这也进一 步证实了PMMA 单体结构优化的合理性.

聚合物单体单元的色散是通过不同波长下的 单体单元平均折射率来表示的^[20].表3也给出了 聚合物单体单元的平均折射率 n 的计算结果, 这是 通过单体单元的平均极化率 ā 计算得到的, 其定义 为^[24]

$$\overline{\alpha} = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3}.$$
 (4)

本文所计算的 PMMA 单体单元的色散曲线如 图 **3** 所示. 经过线性拟合得到 PMMA 单体单元的 色散值是 -2.77×10^{-6} nm⁻¹, 与文献 [25] 的结果 基本一致.

表 3 不同波长下 PMMA 单体单元双折射率 Table 3. Refractive index of monomer unit of PMMA at different wavelengths.

$\lambda/{ m nm}$	$n_{//}$	n_{\perp}	\bar{n}	$\Delta n = n_\perp - n_{//}$
1530	1.546916349	1.473070821	1.497236112	0.073845528
1540	1.546883366	1.473045938	1.497208633	0.073837428
1550	1.54699480	1.472948096	1.497178007	0.074046704
1560	1.546820076	1.472997017	1.497155109	0.073823059
1570	1.546787986	1.472972978	1.497128492	0.073815008

值得指出的是,本文建立的模型也适用于对极 性分子或铁磁性分子的计算.当然,需要在Gaussian 09软件中对于极化率的计算进行修正,即对自 旋多重度、分子的总电荷数和核自旋转动项等参数 设置与上述材料对应的值.

3 PMMA材料的双折射率计算

除了聚合物分子单体单元的本征双折射性, 聚 合物材料中分子链的取向程度也是影响材料双折 射性的重要因素.聚合物材料的双折射率 Δ*n*与分 子链的取向的关系由 (5)式给出^[12,26]:

$$\Delta n = \Delta n_0 P_2(\cos \theta), \tag{5}$$

其中, Δn_0 是本征双折射率, θ 表示聚合物分子链段 与取向方向的夹角, $P_2(\cos\theta)$ 为聚合物材料分子在 某一方向 (本文取 X 轴方向)上的取向度, 可用 (6) 式计算^[12]:

$$P_2(\cos^2\theta) = \frac{1}{2} \left(3\frac{1}{N} \sum_i \left\langle \cos^2\theta \right\rangle - 1 \right), \quad (6)$$

式中*N*为分子链数目,*i*为链的序号, ⟨cos² θ⟩ 是每 条链中分子链段 cos θ 的均方值.因此,为了计算 PMMA 材料的双折射率,需要计算出聚合物材料 分子链的平均取向度,而分子链的平均取向度可通 过建立聚合物材料的全原子模型来获得.

3.1 PMMA材料模型建立

本文的PMMA材料模型是将前文在Gaussian 09软件中优化后的单体单元结构导入到Material Studio,然后经过MD模拟而得到的,其过程包括 建立单体单元模型、建立聚合物分子模型、建立具 有周期性边界条件的聚合物体系等.

为了确保在分子动力学模拟中单体单元模型的合理性,仍然需要在Material Studio中对结构进行几何优化.几何优化的泛函选择B3LYP杂化密度泛函,而用于量子化学计算的基组选择了增加极化函数的双数值基组DNP(double numeric with

polarization),对分子的范德瓦耳斯力采用DFT-D 的方法修正(即对密度泛函进行色散修正)^[27],并 用DIIS和smearing来加速自洽场(SCF)收敛^[27], 其中能量收敛标准为10⁻⁵ Ha,SCF收敛标准为 10⁻⁸ eV/atom.需要指出的是,这里的能量收敛 值已远小于PMMA单体单元的能量值,见图2;而 SCF 收敛标准的选择已高于一般MD计算的精度, 以符合PMMA材料体系的要求.优化完成后,采 用相同的泛函和基组对优化后的分子结构进行振 动分析,振动分析结果同样表明两种单体单元结构 均不包含虚频,且处于能量极小值点.

为了获得比较合理的分子链结构,需要在分子 链生成时设定聚合物PMMA的聚合度(聚合物大 分子中重复结构单元的数目,即分子链数)以及分 子构型,并对PMMA分子链进行几何优化.在本文 中,PMMA聚合物的聚合物度设置为20,并采用无 规构型,几何优化参数设置如下^[12]:几何优化算法 为smart,根据PMMA聚合物体系自动选择共轭梯 度法或最速下降法来计算,单体单元能量收敛标准 为2×10⁻⁵ Ha,原子最大位移收敛标准为10⁻⁵ Å, 这两个收敛值也远小于PMMA单体单元的能量值 及分子键长;力场选择可准确模拟凝聚态结构并 适用于高分子材料的COMPASSII力场,静电力和 范德瓦耳斯力均采用适用于非周期性体系的Atom based原子截断方式,其中截断半径为18.5 Å,其他 均为默认设置.优化后的分子结构如图4所示.

图 4 优化后的 PMMA 分子链模型 Fig. 4. The optimized molecular chain models of PMMA.

为了建立 PMMA 材料模型, 需要针对优化后的 PMMA 分子链采用蒙特卡洛法生成一个包含 20 条分子链的模拟盒子. 这个生成过程利用的模块为

Amorphous Cell, 具体模拟参数为^[12]:聚合物密度设置为0.05, 温度为298 K, 力场为COMPASSII, 静电力采用适用于周期性体系的Ewald方法, 三维周期性边界条件, 其他采用默认设置.生成的初始PMMA材料模型如图5所示, 图中的白框表示模拟盒子边界, 其他为PMMA分子, 下文均是如此.初始聚合物模型的盒子体积很大, 密度很小, 所以在图5中, 各个分子链之间间隔较远.尽管该初始PMMA材料结构与实际有较大的出入, 但通过下文合理的分子动力学可以得到与真实密度值接近的聚合物材料体系.

图 5 PMMA 材料的初始模型 Fig. 5. Initial material model of PMMA.

为了得到合理的PMMA材料结构,需要对得 到初始结构做 MD 模拟, 整个 MD 模拟按顺序包含 了高温弛豫、退火、数据采集三个阶段. 高温弛豫 是将聚合物体系的温度升到一个较高温度,并在该 温度下做一定时间的分子动力学模拟,其目的是 平衡聚合物体系. 根据文献 [11], 并考虑 PMMA 材 料体系本身的特性, 高温弛豫的参数如下: 系综选 择正则系综NVT,温度设置为1000 K,步长为1 fs, 动力学时间150 ps, 控温方法选择Nosé-Hoover-Langevin (NHL), Q值取0.1, 衰减常数取10.0 ps, 力场选择COMPASSII, 电荷由力场自动分配, 静 电力和范德瓦耳斯力均采用适用于周期性体系的 Group based 电荷组截断方式计算分子之间的相互 作用势,其中截断半径均设置为15.5Å,并对范德 瓦耳斯力采用长程校准. 高温弛豫后的聚合物体系 结构如图6所示. 需要指出的是, 在我们的模拟计 算中,在120 ps的MD模拟后PMMA材料体系基 本达到平衡. 高温弛豫完成后, 由于此时体系的温 度极高,所以分子的运动十分剧烈,从图6可以看

到许多分子链已经运动至模拟盒子外面,但是由于 周期性边界条件的应用,对模拟并无影响.

图 6 高温弛豫后的 PMMA 聚合物体系结构 Fig. 6. The material model of PMMA after a high temperature relaxation.

图 7 退火后得到的 PMMA 聚合物材料结构 Fig. 7. Material structure of PMMA after annealing.

为了得到常温下PMMA聚合物的结构,需要将弛豫后得到的结构退火至常温.本文采用多次退火,退火过程的参数设置如下^[11,12]:系综选择等温等压系综NPT,目标温度设置为298 K,步长1 fs,动力学时间450 ps,控温方法选择NHL,Q值取0.1,衰减常数取10.0 ps,控压方法选择Parrinello,压力设置为0.0001 GPa,晶胞时间常数取1.0 ps,力场选择COMPASSII,电荷由力场自动分配,静电力和范德瓦耳斯力均采用Group based方式,截断半径设置为15.5 Å,并对范德瓦耳斯力采用长程校准.退火后的PMMA材料结构如图7所示.通过退火使得聚合物材料逐渐冷却,聚合物分子链充分地松弛,其之间间隔明显缩小,如图7所示,从而带来聚

合物分子的模拟盒子体积急剧缩小,聚合物分子密 度也相应迅速增大.

图 8 模拟得到的 PMMA 材料全原子模型

图 9 PMMA 聚合物体系 (a) 平均密度变化图; (b) XRD 图

Fig. 9. The polymer system of PMMA: (a) The density-time curve; (b) XRD graph.

为了获取PMMA聚合物体系的性质及数据, 需要继续对退火后的PMMA材料结构进行分子动 力学模拟,以获得体系稳定的PMMA材料的全原 子模型.本文中对退火后的PMMA材料结构做了 150 ps的NVT系综下的分子动力学模拟及200 ps的NPT系综下的分子动力学模拟,温度298 K,步长0.1 fs,其他参数保持不变.分子动力学完成后PMMA的全原子模型与密度如图8和图9所示.

由图8可以看到,最终获得的PMMA的分子 间距离由于温度的降低而变得很小,体现在密 度上就是其密度从初始的0.05 g/cm³增大到了 1.0992 g/cm³左右,图9(a),这一数值与文献[28] 实验结果1.18 g/cm³相差不大. 其中微小的差 异可能是由于实验中的PMMA聚合物并非是无 定型的,而从图9(b)对本文PMMA材料的X射线 衍射(XRD)分析结果可以看到,本文模拟得到的 PMMA材料无尖锐的衍射峰,是近似完全无定型 的.然而,PMMA的密度改变时,在分子链取向度 不变的情况下,密度对于双折射率的影响微乎其 微.至此,完成了PMMA材料模型的建立.

同样,针对其他材料如极性分子或铁磁性分子材料模型的建立,也需要在Material Studio中的 Gaussian 模块下Spin选项中设置与上述材料对应的参数值.

3.2 PMMA双折射率理论计算结果

得到体系稳定的PMMA材料模型后,就可以 计算出PMMA材料中分子链取向度,代入(5)和 (6)式从而得到其双折射率.计算分子链取向度所 需的各个分子链的 (cos² θ) 通过统计PMMA材料 模型中主链上的碳原子坐标来获得.从(6)式可知, 当取向度 $P_2(\cos^2\theta)$ 为0时,每条分子链 $\langle\cos^2\theta\rangle$ 应 等于1/3.从表4给出的每条分子链的 $\langle\cos^2\theta\rangle$ 值可 以看到,每条链的 $\langle\cos^2\theta\rangle$ 均在1/3附近,但数值有 差异.这说明每条分子链的取向度都较低,这是因 为在各个分子链中的链段是基本无序排列的,而 且每条分子链排列也是基本无序的.将表4的数 据代入(5)和(6)式则有 $P_2(\cos^2\theta) = -0.0071$,从 而得到PMMA材料在不同波长下的双折射率,如 表5所列.

表 4 PMMA 材料模型中每条分子链的 $\langle \cos^2 \theta \rangle$ Table 4. $\langle \cos^2 \theta \rangle$ of each moleculr chain of PMMA.

链序号	$\langle \cos^2 \theta \rangle$	链序号	$\langle \cos^2 \theta \rangle$
1	0.33152	11	0.30809
2	0.33569	12	0.30232
3	0.34453	13	0.33956
4	0.33821	14	0.31825
5	0.33465	15	0.32371
6	0.32539	16	0.31834
7	0.32225	17	0.34275
8	0.34802	18	0.33824
9	0.32963	19	0.31976
10	0.33275	20	0.31907

表 5 PMMA 材料不同波长下的双折射率 Table 5. Refractive index of PMMA material.

			$\lambda/{ m nm}$		
	1530	1540	1550	1560	1570
Δn_0	0.073845528	0.073837428	0.074046704	0.073823059	0.073815008
$\Delta n = \Delta n_0 P_2(\cos \theta)$	-0.00052430	-0.00052424	-0.00052573	-0.00052414	-0.00052408

值得指出的是, PMMA 的双折射性受其聚集 态类型和处理方法的影响.本文的 PMMA 材料是 无定形态聚合物,其双折射性弱于晶态和取向态的 聚合物材料.而增强 PMMA 材料的双折射性可采 用合适的处理方法(比如外加电场、剪切作用等)来 提高其中分子链的取向度来实现.但是,本文的计 算得到 PMMA 材料的本征双折射率并不是很高, 因此,后续工作将选取高本征双折射率的聚合物材 料并对其采用合适的处理方法,实现合适的分子链 聚集态以提高取向度,进而通过材料制备进行实验 研究.

4 结 论

本文将DFT与MD相结合,建立了从聚合物 的单体分子结构到多分子链的系统性的双折射率 理论计算方法. 在构建 PMMA 单体单元模型的基 础上, 计算了其在不同波长下本征双折射率; 然后 采用 MD 方法构造了全原子 PMMA 材料模型, 并 计算了包含多分子链的 PMMA 在不同波长下的材 料双折射率. 计算结果表明 PMMA 分子在不同波 长下的本征双折射率达到了 0.0738 到 0.0740 之间, 而 PMMA 材料在不同波长下所表现出来的双折射 率均在 0.00052 左右, 与文献 [13—15] 中的测量值 在同一个数量级. 其中的数值误差可能来自于原测 量中的不确定性, 以及计算机内存资源对全原子模 型中分子链数目的限制而导致的. 然而, 这个计算 结果在一定程度上表明了结合两种模拟方法来计 算聚合物材料双折射性的适用性.

从研究结果中可以看到,聚合物材料的双折射 率同时受到单体单元本征双折射率和材料中分子 链取向度的影响.在本文中,尽管PMMA单体单 元具有较大的本征双折射率,但是由于PMMA分 子链中的单体单元以及分子链本身的排列具有随 机性,使其取向度较低,从而导致PMMA材料最终 所表现出的双折射率非常小.因此,若要获得双折 射性较强的聚合物材料,一方面通过选择或设计具 有较高极化率的聚合物单体单元来提高聚合物的 本征双折射率,另一方面需通过合适的途径(比如 外加电场、剪切作用等)提高聚合物材料中分子链 的取向度.本文为研究增强聚合物材料双折射性的 途径与有效手段提供了适用的理论计算方法.

参考文献

- Beeckman J, James R, Fernández A F 2009 J. Lightwave. Technol. 27 3812
- [2] Niculescu E C, Burileanu L M, Radu A 2011 J. Lumin.131 1113
- [3] Timoshenko V Y, Osminkina L A, Efimova A I 2003 *Phys. Rev. B* 67 113405
- [4] Xu Y 2013 Ferroelectric Materials and Their Applications (North-Holland: Elsevier) pp73–99
- [5] Elser J, Wangberg R, Podolskiy V A 2006 Appl. Phys. Lett. 89 261102

- [6] Zhan Q 2009 Adv. Opt. Photon. **1** 1
- $[7]\,$ Arabanian A S, Massudi R 2013 Appl. Opt. 52 4212
- [8] Smalley D E, Smithwick Q Y J, Bove V M 2013 Nature 498 313
- [9] Arakawa Y, Kuwahara H, Sakajiri K 2015 Liq. Cryst.
 42 1419
- [10] Álvarez J, Bettotti P, Kumar N, Suárez I, Hill D, Martínez-Pastor J 2012 SPIE BiOS San Francisco, USA, January 21–22, 2012 p821209
- [11] Ma H, Jen A K Y, Dalton L R 2002 Adv. Mater. 14 1339
- [12] Brown D, Clarke J H R 1991 Macromolecules 24 2075
- [13] Hayakawa D, Ueda K 2015 Carbohydr. Res. 402 146
- [14] Iwasaki S, Satoh Z, Shafiee H, Tagaya A, Koike Y 2013
 J. Appl. Polym. Sci. 130 138
- [15] Iwasaki S, Satoh Z, Shafiee H, Tagaya A, Koike Y 2012 Polymer 53 3287
- [16] Hahn B R, Wendorff J H 1985 Polymer 26 1619
- [17] Grimme S, Antony J, Ehrlich S 2010 J. Chem. Phys. 132 154104
- [18] Parr R G, Yang W 1989 Density-functional Theory of Atoms and Molecules (New York: Oxford University Press) pp101–103
- [19] Salahub D R, Zerner M C 1989 The Challenge of d and f Electrons (Washington: ACS) pp165–179
- [20] Kusanagi H, Chatani Y, Tadokoro H 1994 Polymer 35 2028
- [21] Blythe A R, Bloor D 2005 Electrical Properties of Polymers (Cambridge: Cambridge University Press) pp37–58
- [22] Foresman J, Frish E 1996 Exploring Chemistry with Electronic Structure Methods (USA: Pittsburg) pp39–40
- [23] Luo Q Q, Zheng C T, Huang X L, Wang X B, Zhang D M, Wang Y D 2015 Acta Photon. Sin. 44 0713001 (in Chinese) [罗倩倩, 郑传涛, 黄小亮, 王希斌, 张大明, 王一丁 2015 光子学报 44 0713001]
- [24] Balamurugan N, Charanya C, Sampath Krishnan S 2015 Spectrochim. Acta Part A 137 1374
- [25] Kasarova S N, Sultanova N G, Ivanov C Di, Nikolov I D 2007 Opt. Mater. 29 1481
- [26] Turzi S S 2011 J. Math. Phys. 52 053517
- [27] Zhang H Y, Wang Y Y, Tao G Q 2011 Acta Chim. Sin.
 69 2053 (in Chinese) [张宏玉, 王艳艳, 陶国强 2011 化学
 学报 69 2053]
- [28] Jones D M, Brown A A, Huck W T S 2002 Langmuir 18 1265

Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method^{*}

Lu Tao Wang Jin[†] Fu Xu Xu Biao Ye Fei-Hong Mao Jin-Bin Lu Yun-Qing Xu Ji

(School of Opto-Electronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China) (Received 13 June 2016; revised manuscript received 20 July 2016)

Abstract

The birefringence is one of the most important properties of all kinds of optical materials. and is widely used in many basic researches and industrial fields. By utilizing high birefringent materials or waveguides, a variety of unique and interesting optical features or functions can be achieved, such as in manipulating the polarization of an optical beam in a miniaturized way and providing the organic electro-luminescence display. Crystals, liquid crystals, semiconductor, silicon, ferroelectric material and polymer can exhibit their birefringences. While polymer materials are commonly used to fabricate optical films and waveguides, most polymer materials show relatively weak birefringences, and thus they are restricted in realizing novel functional photonics devices. In the past, such a weak birefringence has been roughly characterized in experiment. There is a lack of systematic method to theoretically calculate the birefringences of polymer materials, especially at a molecular level. This restricts the research on enhancing the birefringences of polymer materials. To study the birefringences in fluorinated polymers and find the way to enhance them, the origin of the birefringence in fluorinated polymer should be investigated in depth and the birefringence should be exactly calculated. In this paper, a theoretical method is established to calculate the birefringence of polymer systematically from the monomer unit to the molecular chain. Based on this method, the limiting factor that leads to a weak birefringence in polymer material is investigated. Taking the polymethyl methacrylate (PMMA) for example, the density functional theory (DFT) is first used to study the intrinsic birefringence of PMMA, where the intrinsic birefringence value is indeed the birefringence of the monomer unit and is also a maximum birefringence of the polymer material when the molecular chains are fully oriented. In the DFT, a stable structure of the PMMA monomer unit is constructed, and the intrinsic birefringence of this PMMA monomer unit structure is calculated. The calculation result shows that the intrinsic birefringence of PMMA monomer unit can reach up to 0.0738, the dispersion curve of the average birefringence of the monomer unit is also given. Furthermore, the molecular dynamics is used to study the material birefringence of the PMMA material consisting of 20 molecular chains. The calculation results show that although the intrinsic birefringence is much larger, the material birefringence of the PMMA is only 0.00052, due to the low degree of orientation of molecular chain in the PMMA. It is found that the molecular structure and the molecular orientation of the polymer are the two main factors influencing the birefringence. The theoretical method established in this work and the calculation results provide a research basis for enhancing the birefringences of polymer materials.

Keywords:poly-methyl methacrylate, birefringence, density functional theory, molecular dynamicsPACS:03.65.-w, 31.15.es, 42.25.LcDOI:10.7498/aps.65.210301

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61575096) and the Jiangsu Provincial Research Foundation for Basic Research, China (Grant No. BK20131383).

[†] Corresponding author. E-mail: jinwang@njupt.edu.cn