物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

利用啁啾脉冲光谱滤波和非线性偏振旋转技术实现高稳定性和开机自启动的全光纤掺 Yb³⁺ 光纤锁模激 光器

张攀政 汪小超 李菁辉 冯滔 张志祥 范薇 周申蕾 马伟新 朱俭 林尊琪

Highly stable and self-started all-fiber Yb³⁺ doped fiber laser mode-locked by chirped pulse spectral filtering and nonlinear polarization evolution

Zhang Pan-Zheng Wang Xiao-Chao Li Jing-Hui Feng Tao Zhang Zhi-Xiang Fan Wei Zhou Shen-Lei Ma Wei-Xin Zhu Jian Lin Zun-Qi

引用信息 Citation: Acta Physica Sinica, 65, 214207 (2016) DOI: 10.7498/aps.65.214207 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.214207 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I21

您可能感兴趣的其他文章 Articles you may be interested in

203W 全光纤全保偏结构皮秒掺铥光纤激光器

203 W all-polarization-maintaining picosecond thulium-doped all-fiber laser 物理学报.2016, 65(19): 194208 http://dx.doi.org/10.7498/aps.65.194208

342 W 全光纤结构窄线宽连续掺铥光纤激光器

342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser 物理学报.2016, 65(19): 194209 http://dx.doi.org/10.7498/aps.65.194209

基于多层电介质光栅光谱合成的光束质量

Beam quality in spectral beam combination based on multi-layer dielectric grating 物理学报.2016, 65(10): 104203 http://dx.doi.org/10.7498/aps.65.104203

超长腔碳纳米管锁模多波长掺镱光纤激光器

Ultra-long cavity multi-wavelength Yb-doped fiber laser mode-locked by carbon nanotubes 物理学报.2015, 64(20): 204205 http://dx.doi.org/10.7498/aps.64.204205

石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波

Dark pulses and harmonic mode locking in graphene-based passively mode-locked Yb³⁺-doped fiber laser with all-normal dispersion cavity 物理受报 2015 64(10): 104205 http://dx.doi.org/10.7408/app.64.104205

物理学报.2015, 64(19): 194205 http://dx.doi.org/10.7498/aps.64.194205

利用啁啾脉冲光谱滤波和非线性偏振旋转技术 实现高稳定性和开机自启动的全光纤掺Yb³⁺ 光纤锁模激光器*

张攀政¹) 汪小超^{1)†} 李菁辉¹) 冯滔¹) 张志祥¹) 范薇¹) 周申蕾¹) 马伟新²) 朱俭²) 林尊琪¹)

1)(中国科学院上海光学精密机械研究所,中国科学院高功率激光物理重点实验室,上海 201800)2)(中国工程物理研究院上海激光等离子体研究所,上海 201800)

(2016年6月4日收到; 2016年7月2日收到修改稿)

建立理论模型,讨论了非线性偏振旋转全光纤锁模激光器的锁模过程、谐波过程以及导致激光器锁模运 行难以稳定的影响因素.讨论了采用啁啾脉冲光谱滤波产生脉冲自振幅调制、增加激光器锁模稳定性和自 启动能力的机理以及非线性偏振旋转与啁啾脉冲光谱滤波相结合实现锁模的物理过程和脉冲演化过程.研 制出全光纤结构的超短脉冲掺 Yb³⁺ 光纤环形激光器,采用非线性偏振旋转和啁啾脉冲光谱滤波相结合的锁 模技术,实现了激光器锁模的开机自启动和高稳定运行.对激光器进行了长期运行稳定性、锁模开机自启动 能力、锁模输出参数可重复性监测.锁模脉冲中心波长 1052.9 nm,谱宽 9.1 nm,脉冲能量 4.25 nJ,脉冲宽度 17.8 ps. 运行期间,各参数波动均小于 0.3%.开机自启动能力和可重复性测试显示,激光器可实现一键自启 动,启动后各参数可重复精度在 0.55% 以内.

关键词: 掺 Yb³⁺ 光纤激光器, 自启动锁模, 全光纤, 稳定性 PACS: 42.55.Wd, 42.60.Fc, 42.60.Lh, 42.65.-k

DOI: 10.7498/aps.65.214207

1引言

完全由光纤器件构成的全光纤掺 Yb³⁺ 光纤锁 模激光器由于其体积小、易调节、高稳定性、封闭 式的波导结构等优点以及在1μm波段支持高能量 超短脉冲的优越性,受到国内外很多科研组的关 注. 尤其在惯性约束核聚变 (inertial confinement fusion, ICF)激光驱动装置中,利用全光纤掺 Yb³⁺ 光纤激光器实现1053 nm、高脉冲能量、高稳定性、 可开机自启动、高重复性的超短脉冲作为"种子光 源",是其前端系统的主要研究课题之一^[1,2].

目前已见报道的全光纤掺Yb³⁺光纤锁模激 光器主要有非线性偏振旋转效应 (nonlinear polarization evolution, NPE)^[3,4]、可饱和吸收镜(saturable mirror, SA)^[5,6], NPE与SA相结合^[7], SA 与啁啾脉冲光谱滤波(chirped pulse spectral filtering, CPSF)相结合^[8], NPE与CPSF相结合^[9–11] 几种实现锁模的方式. SA全光纤锁模激光器输出 脉冲能量一般较低^[5,6],且存在SA退化问题. NPE 主要利用光纤的偏振特性^[12],能够输出高质量的 锁模脉冲,可以得到较宽的输出光谱,有利于脉冲 的进一步腔外压缩.但光纤偏振对温度变化及机 械应变十分敏感,所以很难实现锁模激光器的长时 间稳定运行和开机一键自启动(本文中所有提到的 "一键自启动"均是指激光器开机时只需按下抽运 的电源按键,不需要任何其他调节,激光器可自行 实现锁模). Kieu 和Wise^[8]于 2008年通过SA与

© 2016 中国物理学会 Chinese Physical Society

^{*} 中国科学院青年创新促进会项目和国家自然科学基金(批准号: 61205103)资助的课题.

[†]通信作者. E-mail: smiles26@163.com

CPSF相结合的方式, 实现了中心波长在 1030 nm、脉冲能量为3 nJ的锁模, 但激光器运行几天之后, SA 便出现了退化现象. 此后, Michael 等^[9]利用波分复用器 (wavelength division multiplexer, WDM)的光谱滤波作用结合 NPE 实现了中心波长 1040 nm 的锁模输出, 有效避免了 SA 带来的退化 问题. 但激光器效率较低, 抽运功率 488 mW时仅 得到了 1.8 nJ 的最大脉冲能量, 且对激光器的运行 稳定性、自启动能力以及启动输出参数可重复性并 未展开相应研究.

本文对NPE全光纤掺Yb3+光纤锁模激光器 的锁模过程、多次谐波的形成过程进行了理论模 拟,理论研究了抽运功率、偏振态扰动等因素对激 光输出及稳定的影响,得出了全光纤激光器NPE 锁模难以实现一键自启动和稳定运行的结论.理 论分析了CPSF产生脉冲自振幅调制 (pulse selfamplitude modulation, PSAM) 与NPE相结合增 加锁模稳定性和自启动能力的机理;模拟了CPSF 结合NPE实现锁模的物理过程和脉冲演化过程: 实验研究了 NPE 单独锁模以及 NPE 与 CPSF 相结 合锁模的全光纤Yb³⁺锁模激光器.在正常群速度 色散(group velocity dispersion, GVD) NPE环形 腔内加入光谱滤波器 (spectral filter, SF) 对啁啾脉 冲进行光谱滤波,产生新的PSAM,同时有效抑制 了 Yb³⁺ 离子 1030 nm 强发射峰对激光器 1053 nm 锁模运行的影响,提高了激光器在1053 nm的锁模 自启动能力和运行稳定性,同时,抑制了NPE过驱 动导致的脉冲分裂,提高了输出的脉冲能量.激 光器锁模中心波长、光谱带宽、脉冲宽度、脉冲能 量都具有很高的稳定性,运行期间,中心波长波动 值 0.01 nm, 其他各参数的波动 RMS 值均不超过 0.3%. 在反复几十次的一键开关机实验中, 激光器 均实现锁模自启动, 且锁模输出参数具有高重复 性:中心波长RMS值0.01 nm;光谱带宽RMS值 0.55%; 脉冲宽度保持不变; 脉冲能量 RMS 值 0.1%. 具有作为主振荡器应用于ICF激光驱动器前端系 统的重要价值.

2 实验装置及原理

2.1 实验装置

实验装置如图1所示,掺Yb³⁺全光纤环形 腔主要由高掺杂浓度(对979 nm光的吸收率为 975 dB/m)的Yb³⁺光纤、偏振无关光隔离器(optical isolator, ISO)、在线偏振器(in-line polarizer, ILP)、两个偏振控制器(polarization controller, PC) PC1 和 PC2、SF、980 nm/1053 nm WDM、 输出耦合器组成. 腔内器件全部是尾纤输出并直 接熔接形成具有封闭式波导结构的全光纤环形腔, 所用光纤全部为普通石英单模光纤, 纤芯直径为 6 µm. 抽运源是输出波长为980 nm的二极管激 光器, 抽运光经980 nm/1053 nm WDM 耦合进入 Yb³⁺光纤.为了充分提取腔内能量,增加输出功 率^[13],在增益光纤之后熔接耦合器作为激光器输 出端, ISO 保证了环形腔的单方向运行, 插入损耗 为0.95 dB. PC1和PC2为三环式偏振控制器,用 来调节脉冲的偏振态. ILP 用来实现对脉冲偏振态 的选择性通过,结合光束在光纤中的非线性偏振旋 转,将与腔内光强相关的非线性相位调制转化为脉 冲的自振幅调制,从而形成等效的快可饱和吸收 体^[14,15]. SF透过光谱中心波长1053 nm, 透过带 宽10 nm, 如图2所示. 腔内SF主要起到以下几方 面的作用: 1)在正常GVD腔内, 脉冲光谱被展宽 并具有很强的频率啁啾;利用 SF 对啁啾脉冲进行

图 1 锁模激光器结构原理示意图 Fig. 1. The schematic of the mode-locking fiber laser.

图 2 10 nm 滤波器透过率光谱

Fig. 2. The spectral transmission of the 10 nm filter.

光谱滤波,可降低脉冲边缘能量,有效压缩脉冲,从 而产生新的PSAM^[16];在NPE产生PSAM作用的 基础上进一步加强了激光器的锁模机理,提高了激 光器的自启动能力;2)因为自相位调制(self-phase modulation, SPM),GVD导致的脉冲啁啾和SF的 滤波作用受温度变化及机械应变的影响小,CPSF 能提供稳定的脉冲振幅调制,使得激光器能够有效 克服温度及机械应变带来的影响,相对于NPE独 立锁模的方式具有更高的稳定性;3)通过光谱滤波 抑制了Yb³⁺离子在1030 nm的强发射峰^[17],进一 步提高了激光器在1053 nm的锁模自启动能力和 运行稳定性;4)由于CPSF产生的PSAM的存在, 可以降低激光器实现锁模对NPE振幅调制的要求, 有效抑制NPE过驱动导致的脉冲分裂^[18],增加了 锁模输出的脉冲能量.

2.2 原理及理论模型

腔内光脉冲演化的动力学过程从一个幅度较 小的噪声脉冲,经历SPM、正常GVD、增益介质(掺 Yb³⁺光纤)、腔损耗的共同作用,再结合PSAM作 用,在腔内经过数百次循环后,最终达到稳态,实现 锁模输出.实验中产生自PSAM的原理包括NPE 和CPSF两种. NPE产生PSAM的基本原理如下: 经过ILP和ISO的线偏振光经偏振控制器PC2的 调节变为椭圆偏振光,该椭圆偏振光可以看作是两 个相互垂直、具有不同强度的线偏光的合成. 这两 个偏振方向不同的线偏振光在腔内传输并得到放 大的同时经历克尔效应,引起SPM,得到与光强有 关的不同非线性相移. 脉冲峰值部分比脉冲前后沿 经历更多的相移,因而在相干叠加后产生更多的偏 振旋转,偏振控制器PC1主要用于调整相干叠加 后光脉冲各部分的偏振方向,使得脉冲峰值部分通 过ILP时经历最小的损耗,而前后沿被削掉,光脉 冲发生窄化,将与强度相关的非线性相位调制转化 为PSAM,从而形成等效快可饱和吸收体. CPSF 产生PSAM的基本原理如下:脉冲在光纤中传输, SPM 引起脉冲的频率啁啾, 在正常 GVD 引入线性 啁啾的共同作用下,脉冲不断有新的频率分量产 生,脉冲光谱得到极大展宽,且展宽部分的能量主 要分布在脉冲的前后沿^[19];通过CPSF对该啁啾 脉冲进行光谱滤波, 消除边缘光谱成分, 可减小脉 冲前后沿能量, 使脉冲得到压缩, 产生PSAM. 与 NPE相比, CPSF产生PSAM的最大优点是受环境 影响小,且无过驱动现象,能够实现更高的稳定性 和更大的单脉冲能量.

为了研究造成NPE单独锁模不稳定性的影响 因素和NPE结合CPSF实现锁模的机理,在图1所 示实验装置的基础上进行了模拟分析.

脉冲在单模光纤中的传输过程用非线性薛定 谔方程 (nonlinear Schrodinger equation, NLS)^[19] 来描述:

$$\frac{\partial A(z,t)}{\partial z} + \frac{\mathrm{i}}{2}\beta_2 \frac{\partial^2 A(z,t)}{\partial t^2} = \mathrm{i}\gamma \left|A(z,t)\right|^2 A(z,t),\tag{1}$$

式中, A(z,t)为脉冲电场包络; z, t分别为群时延坐 标系中的空间坐标和时间坐标; β_2, γ 分别为光纤 GVD系数和光克尔非线性系数.

增益光纤中,脉冲在经历GVD和SPM的同时 得到增益放大,其传输方程为

$$\frac{\partial A(z,t)}{\partial z} + \frac{i}{2}\beta_2 \frac{\partial^2 A(z,t)}{\partial t^2}$$
$$= \left(i\gamma \left|A(z,t)\right|^2 + g\right) A(z,t), \tag{2}$$

式中g为光纤增益系数^[20,21],

$$g = \frac{g_0}{1 + \frac{1}{P_{\text{sat}}a} \int_{-\frac{1}{2}a}^{\frac{1}{2}a} |A(z,t)|^2 \,\mathrm{d}t},\tag{3}$$

其中, g_0 为小信号增益系数,由Yb³⁺光纤掺杂浓 度及注入抽运功率共同决定^[20]; a是脉冲在腔内传 输一周所需时间; P_{sat} 是增益饱和功率^[15],

$$P_{\rm sat} = \frac{h\nu S}{\sigma\tau},\tag{4}$$

这里h为普朗克常数,v为载波频率,S为增益光纤 有效模场面积, σ , τ 分别为Yb³⁺离子发射截面积 和上能级寿命.

根据NPE原理, NPE导致的PSAM表现为经过ILP时的透过率 $T_{A(z,t)}$ 与脉冲瞬时功率相关:

$$T_{A(z,t)} = \sin^2 \left[\frac{1}{6} \gamma L_{\text{eff}} \left| A(z,t) \right|^2 \cos(2\theta) \right] \\ \times \sin^2(2\theta), \tag{5}$$

其中, θ为光纤初始信号偏振方向与光纤慢轴方向 的夹角; L_{eff}为光纤有效长度, 包含了光纤损耗及 增益对非线性效应的影响. 忽略普通单模传输光纤 的损耗, L_{eff} 表示为

$$L_{\rm eff} = L_0 + \frac{\exp(gL_{\rm D}) - 1}{g},$$
 (6)

其中, L₀为腔内普通传输光纤长度, L_D为增益光 纤长度, g为增益系数.

根据激光器的组成结构,模拟计算中 CPSF 引起 PSAM 的作用主要表现为其透过率函数对 ILP之后脉冲光谱的调制作用. 计算中采用的 CPSF 透过率函数由实验直接测定,如图 2 所示. 另外,还须考虑输出耦合损耗(20%)和ISO 的插 入损耗(0.95 dB). 结合具体实验,计算时各参数 取值如下: $\sigma = 0.34$ (pm)^{2 [17]}, $\tau = 0.8$ ms^[17], $\beta_2 = 23$ ps²/km^[22], $\gamma = 0.0047$ (W·m)^{-1 [22]}.

采用分步傅里叶法对方程(1)和(2)数值求 解,并依次引入方程(1)、方程(5),ISO插入损耗、 CPSF、方程(2)、输出耦合损耗的作用来描述NPE 与CPSF相结合锁模激光器脉冲在腔内一周的动 力学过程.去掉CPSF作用,则为NPE单独锁模的 脉冲腔内动力学过程.

3 模拟结果

模拟分析了NPE锁模的演化过程. 首先模拟 分析了不同抽运功率下脉冲在光纤环形腔内的 演化过程. 取输出耦合比20%,忽略机械振动等 导致的腔内偏振态抖动的影响,抽运功率取值在 200—300 mW之间变化.

结果如图3所示: 200 mW 抽运时,由于腔内 增益小于损耗无法起振; 抽运功率增加至220 mW 时激光器开始输出稳定锁模; 抽运功率进一步增加 到240 mW时, 激光器开始表现出 NPE 过驱动现 象, 锁模自启动过程变得缓慢,自启动能力下降,且 在锁模启动初期出现脉冲分裂和双脉冲竞争现象. 因为 GVD 的作用导致脉冲具有啁啾, 分裂后的两 个脉冲具有不同的中心波长, 在腔内经历的偏振旋 转量不同, 所以经过 ILP 时两个脉冲经历的损耗不 同, 损耗较大的脉冲最后无法起振, 损耗小的脉冲 最后形成锁模输出, 图 3 (c3) 中输出脉冲在时间坐 标轴上偏离 0 位置且脉冲形状严重变形正是这一现 象的体现.

随着抽运功率的增加,介质光纤增益增大,腔 内脉冲峰值功率进一步增加,NPE过驱动越发严 重,NPE对脉冲峰值的限制作用和增益光纤对脉 冲的迅速放大形成了矛盾的相互作用力.当抽运 功率增大到260 mW后,激光器无法形成稳定锁模, 输出脉冲峰值开始波动,图3(d1)和图3(d2)显示 了该抽运功率下锁模启动过程中的脉冲分裂过程、 分裂脉冲的竞争过程和锁模脉冲的波动情况.随着 抽运功率的增大,这种锁模脉冲波动愈加剧烈,脉 冲宽度不断增大,直到290 mW抽运功率时锁模脉 冲发生分裂,激光器出现谐波锁模.

可以看出, NPE锁模激光器的输出状态随抽运功率的变化会出现明显不同的输出状态.即使不考虑偏振态抖动的影响, 能够输出稳定的单脉冲锁模的抽运范围也只有20 mW.随着抽运能量的增大, NPE过驱动导致了锁模脉冲的波动和多次谐波的出现, 成为限制单脉冲能量和稳定性的主要因素.

温度变化、机械振动等环境的波动, 会直接影 响脉冲在腔内的偏振状态, 成为影响 NPE 锁模激 光器稳定性的又一重要因素.为了分析这一现象, 在固定抽运功率 220 mW 不变的情况下, 模拟了脉 冲在光纤激光腔内偏振态抖动造成的影响.用脉 冲进入 ILP 之前与 ILP 偏振态夹角的变化来体现 偏振态抖动, 取值范围 6π/38 到 14π/38, 取值间隔 π/38.

输出结果如图4所示,激光器实现稳定的单脉冲锁模所允许的偏振夹角变化范围为9π/38— 10π/38. 夹角超出此变化范围,激光器锁模状态就 会被破坏. 说明NPE锁模激光器的输出状态对偏 振态敏感,偏振态的微小变化就会对激光器的输出 状态产生影响,意味着实际应用中该激光器对环境 稳定性具有非常严格的要求.

偏振状态主要是通过影响腔内脉冲不同偏振 分量间的非线性相位差,从而影响脉冲到达ILP时 的偏振状态实现的,而且影响程度会随着激光器腔 长、抽运能量的增加进一步加剧.这种偏振状态引 起的不稳定性是NPE光纤锁模激光器的固有特点, 是由其根本的锁模机理所决定的,只通过对腔结构 参数如Yb³⁺光纤长度、腔长、抽运能量、输出耦合 比等进行优化只能在一定程度上减小这种不稳定 性,不能从根本上有效解决这一问题.

在NPE的数值模型中加入SF的作用,可得到 典型的NPE结合CPSF锁模的脉冲演化过程.如 图5所示:在最初的几圈里,脉冲幅度迅速上升,这 是因为噪声脉冲很小,经历较高的小信号增益,增 益远远大于损耗的缘故;随着脉冲的不断增强,开 始出现增益饱和,当增益与损耗相同时,脉冲振幅 达到最大值;随着脉冲的传输,SPM导致脉冲光谱 极大展宽,CPSF开始发挥作用,脉冲一部分能量

图 3 (网刊彩色)不同抽运功率下脉冲在光纤激光腔内的演化过程、脉冲峰值能量随腔内传输圈数的变化过程和最终输出的脉冲 形状 (第一列为脉冲演化过程,第二列为脉冲峰值功率演化过程,第三列为输出脉冲形状) (a) 抽运功率 200 mW; (b) 抽运功率 220 mW; (c) 抽运功率 240 mW; (d) 抽运功率 260 mW; (e) 抽运功率 290 mW

Fig. 3. (color online) The evolution of the pulse and the pulse peak power in laser cavity and the output pulse shape with different pumping power: (a) With pumping power of 200 mW; (b) with pumping power of 220 mW; (c) with pumping power of 240 mW; (d) with pumping power of 260 mW; (e) with pumping power of 290 mW. The first column is the pulse evolution. The second column is the pulse peak power evolution. The third column is the output pulse shape.

被 CPSF 阻挡, 引起损耗的增加; 同时, NPE 引起的脉冲 SAM 也开始增强, 进一步加大了脉冲能量的损耗, 脉冲振幅开始缓慢下降; 下降了的脉冲振幅又同时减弱了增益饱和, 增益升高, 腔内增益与

损耗的差值越来越小,脉冲的减小速度逐渐缓慢,脉冲振幅、宽度、光谱逐渐趋于稳定.经历上百圈的 变化以后,脉冲增益和损耗达到平衡,激光器进入 稳定的锁模状态.

214207-6

物理学报 Acta Phys. Sin. Vol. 65, No. 21 (2016) 214207

图 4 (网刊彩色) 不同偏振状态下脉冲在腔内的演化过程及输出状态 (a1)—(a9) 脉冲在腔内的演化过程; (b1)—(b9) 激 光器脉冲功率峰值的演化; (c1)—(c9) 激光器输出脉冲形状

Fig. 4. (color online) The evolution of the pulse in laser cavity with different initial polarization: (a1)–(a9) The evolution of the pulse in laser cavity; (b1)–(b9) the evolution of pulse peak power; (c1)–(c9) the output pulse shape.

图 5 (网刊彩色) 激光器脉冲形状及脉冲峰值功率的演化 (a) 脉冲的演化; (b) 脉冲峰值功率的演化 Fig. 5. (color online) The evolution of (a) the pulse shape and (b) the pulse peak power.

图 6 为激光器稳定锁模以后,脉冲在激光器各部分的光谱图.可以看出,经 CPSF 之后的脉冲频谱 (划线)相比滤波之前的脉冲频谱 (点线)明显变 窄,表明 CPSF 在锁模启动过程中确实起到了重要的作用.输出端锁模脉冲频谱图 (实线)具有陡峭的边沿,并在边缘附近存在略微凸起的尖峰.这主要是由单模光纤中 SPM 和 CPSF 共同作用产生,是

CPSF 实现锁模的典型特征之一^[16].

4 实验结果

4.1 NPE锁模实验结果

采用如图1所示的实验装置,去掉腔内的光 谱滤波器,搭建了典型的NPE锁模全光纤环形激 光器.环形腔总长为13.6 m,对应的脉冲重复频率和GVD值分别为 15.25 MHz和0.300 ps².激光器采用较高掺杂浓度(对979 nm光的吸收率为975 dB/m)的两段长30 cm的Yb³⁺光纤作为增益介质.抽运源是两台输出波长为978 nm的二极管激光器,最大输出功率分别为350 mW (抽运1)和270 mW (抽运2),抽运光经980 nm/1053 nm WDM分别耦合进入Yb³⁺光纤.在增益光纤之后熔接耦合器作为激光器输出端,耦合器输出耦合比为20%.

图 6 脉冲在锁模激光器不同位置处的光谱图 Fig. 6. Spectrum of the pulse in different positions in the mode-locked laser cavity.

增加抽运能量并仔细调节PC1, PC2, 得到连 续锁模输出.用高速探测器(8 GHz)结合12 GHz 示波器观测输出锁模脉冲序列,结果如图7所示, 锁模脉冲间隔约65.6 ns, 与腔长相符合.锁模脉冲 光谱如图8(a)所示,初始中心波长为1053.44 nm, 光谱宽度为10 nm.输出平均功率1.24 mW, 对应 平均单脉冲能量约为82 pJ.

图 7 NPE 锁模激光器输出锁模脉冲序列

Fig. 7. Output pulse train of the laser mode-locked by NPE.

此时,如继续增大抽运能量,激光器很快出现 过驱动现象,进入锁模不稳定区.进一步增大抽运 能量,则出现二次谐波. 在激光器锁模状态下,保持抽运功率不变(抽运1,274 mW;抽运2,267 mW),观察锁模输出随时间的变化情况.如图8所示,激光器1053 nm锁模无法长时间稳定运行,随着运行时间的增加,1030 nm噪声信号对锁模的冲击越来越明显,150 min以后,以1036 nm为中心波长的噪声信号已经占据大部分的输出能量,激光器失锁.

上述的激光器运行稳定性观测结果说明,该 激光器在1053 nm锁模的运行状态只是暂时稳定 的.随着运行时间的增加,激光器本身温度的变化 以及外界环境的波动会对初始锁模时的平衡态产 生破坏,1030 nm噪声变得越来越强,直至激光器 失锁.这一现象进一步证明了在激光腔内加入另 一种既能克服外界干扰增加锁模稳定性,又能抑制 1030 nm分量的PSAM作用的必要性.而CPSF技 术正好具备这些优点,与NPE相结合,可以大幅提 高锁模激光器的自启动能力、输出性能及运行稳 定性.

4.2 NPE与CPSF相结合实现锁模的 实验结果

在NPE单独锁模实验装置的基础上保持其他 条件不变,在偏振控制器PC2之后加入一个光纤光 谱滤波器,则形成典型的NPE结合CPSF锁模的 全光纤环形腔.滤波器通带中心波长1053 nm,通 带宽度10 nm,如图2所示.

通过调节 PC 状态,激光器较易实现1053 nm 中心波长的稳定锁模. 锁模阈值抽运功率为 480 mW (抽运1,310 mW;抽运2,170 mW). 输 入抽运总能量为760 mW时,激光器输出平均功率 为68.88 mW (图9(a)),对应单脉冲能量为4.25 nJ, 相比 NPE单独锁模有大幅的提高. 锁模脉冲序 列稳定(图9(b)),脉冲间隔61.6 ns. 锁模中心波 长1053 nm,光谱带宽为9.1 nm,具有啁啾脉冲光 谱滤波锁模的典型特征: 陡峭的前后边沿以及边 缘处的小尖峰(图9(c)). 输出脉冲宽度为17.8 ps (图9(d)).

激光器锁模运行稳定,微小振动或小范围的温 度变化不会对锁模产生影响.在锁模状态下,固定 抽运功率及PC状态不变,不做其他任何调节,环 境温度保持(20±1)°C,对激光器的稳定性进行了 测试.测试内容包括锁模中心波长、光谱带宽、输出 功率、脉冲宽度.

图 8 NPE 锁模光纤激光器输出光谱随运行时间的变化 (a) 初始输出光谱; (b) 15 min 后的输出光谱; (c) 30 min 后的输 出光谱; (d) 45 min 后的输出光谱; (e) 60 min 后的输出光谱; (f) 150 min 后的输出光谱 Fig. 8. The evolution of the output spectrum of the mode-locked laser by NPE with operation time: (a) The initial output spectrum; (b) output spectrum after 15 minutes operating; (c) output spectrum after 30 minutes operating; (d) output spectrum after 45 minutes operating; (e) output spectrum after 60 minutes operating; (f) output spectrum after 150 minutes operating.

如图10(a)所示,锁模中心波长平均值为1052.9 nm,波动RMS值0.02 nm(测试用光栅光 谱仪的测量精度0.02 nm).如图10(b)所示,光谱 带宽平均值为9.1 nm,跳动RMS值为0.03 nm,占 光谱带宽的0.3%.如图10(c)所示,输出功率平均 值36.1 mW,跳动RMS值为0.02 mW,仅占平均值 的0.06%.

利用自相关仪对脉冲宽度进行监测,如图10(d)所示.为了能够测量脉冲的真实宽度和脉冲宽度的稳定性,分别采用150 ps扫描范围和50 ps扫描范围对脉宽进行监测.自相关仪扫描范围采用150 ps时,测得脉冲宽度始终为17.8 ps,在

观测时间内不发生跳动. 换成50 ps 扫描范围, 测得的脉冲宽度平均值为16.9 ps, 脉宽跳动的 RMS 值小于 0.05 ps. 如图 11 (a) 所示, 150 ps 扫描范围 可以测到完整的脉冲自相关曲线, 能够得出脉冲 宽度的真实值, 但分辨率相对文中激光器的稳定 性显得不够. 如图 11 (b) 所示, 50 ps 扫描范围具有 更高的测量分辨率, 测到了 RMS 0.05 ps 的宽度波动, 但由于文中脉宽正好处于这一扫描范围可测量 的最大值附近, 脉冲前后沿基底部分的自相关数据 可能会丢失, 所以测得的脉冲宽度与真实宽度有一定差别. 所以文中激光器输出的脉冲宽度应该为 17.8 ps, 宽度抖动 RMS 值为 0.05 ps.

图 9 (网刊彩色) NPE 与 CPSF 相结合的锁模激光器输出状态 (a) 平均功率随抽运能量的变化; (b) 输出脉冲序列图; (c) 输出光谱; (d) 锁模脉冲自相关曲线图

Fig. 9. (color online) Output parameters of the laser mode-locked by NPE and CPSF: (a) Output power evolution with pumping power; (b) pulse train; (c) output spectrum; (d) autocorrelation of the output pulse.

图 10 (网刊彩色)激光器锁模运行稳定性测试结果 (a)锁模中心波长稳定性; (b)锁模光谱带宽稳定性; (c)锁模 输出功率稳定性; (d)脉冲宽度稳定性

Fig. 10. (color online) The operating stability of the mode-locked laser: (a) Stability of the central wavelength; (b) stability of the spectral width; (c) stability of the output power; (d) stability of the pulse width.

图 11 自相关仪不同扫描范围的脉冲自相关曲线 (a) 150 ps 扫描范围; (b) 50 ps 扫描范围 Fig. 11. The autocorrelation of the pulse with different scanning range: (a) With scanning range of 150 ps; (b) with scanning range of 50 ps.

保持相同的抽运功率及环境条件,对激光器的 开机自启动能力和启动输出参数重复性进行了测 试.具体测试方法如下:在激光器锁模运行状态下 直接关闭抽运的供电电源,待冷却一段时间后重新 打开抽运电源(只需按下抽运的电源开关键,不进 行任何调节),测试激光器是否自行启动锁模并记 录每次锁模输出的参数.为了将冷却时间对激光器 的影响也包括在内,开机和关机之间的时间间隔随 机分布. 该测试持续总时间两周,在此期间,对激 光器PC状态、抽运能量等不进行任何调节,环境温 度保持在(20±1)°C.

测试结果如图12所示,激光器在几十次的开 关机实验中都能实现1053 nm中心波长的自启动 锁模,且锁模输出参数不发生明显变化,具有很好 的开机自启动能力和可重复性.

开机自启动测试实验共进行了48次,前20次进行中心波长和光谱宽度的测试,后28次进行了锁模输出功率和脉冲宽度的测试.中心波长开机测试结果如图12(a)所示,20次开机实验中,自启动锁模输出中心波长平均值为1052.9 nm,重复精

图 12 激光器锁模一键开机自启动后输出参数的变化 (a) 锁模中心波长; (b) 锁模光谱带宽; (c) 锁模输出功率; (d) 锁模脉冲宽度

Fig. 12. The output parameters of the mode-locked laser after one-key self-started: (a) Central wavelength; (b) width of spectrum; (c) output power; (d) width of pulse.

度 0.01 nm, 小于光栅光谱仪测量精度 (0.02 nm). 光谱带宽开机测试结果如图 12 (b)所示, 20次开 机实验中, 自启动锁模输出光谱带宽平均值为 9.1 nm, 重复精度 0.05 nm, 为平均光谱带宽的 0.55%. 输出功率开机测试结果如图 12 (c)所示, 28 次开机实验中, 自启动锁模输出平均功率的平均值 为36.1 mW, 重复精度 0.04 mW, 占平均值的 0.1%. 在输出脉冲宽度的测试实验中, 为了能够观测是否 有多次谐波出现, 将自相关仪的扫描范围设定为 150 ps, 测试结果如图 12 (d)所示, 28次开机实验 中, 激光器自启动锁模为单脉冲锁模, 锁模脉冲宽 度均为 17.75 ps.

5 结 论

通过理论和实验研究了NPE锁模全光纤掺 Yb³⁺ 光纤环形激光器在1053 nm 的锁模开机自启 动和稳定性特点,证明了该激光器在1053 nm 锁模 运行不稳定和开机自启动难是由其锁模机理所决 定的必然特征. 在全正常色散 NPE 环形腔内加入 光纤光谱滤波器, 在抑制 1030 nm 噪声信号干扰的 同时,利用CPSF产生的PSAM可以有效改善激光 器的锁模运行稳定性和自启动能力,同时也可以 有效抑制NPE 过驱动导致的脉冲分裂, 增加输出 脉冲能量. 理论研究了NPE结合CPSF锁模的动 力学原理和脉冲在腔内的演化过程. 搭建了采用 NPE结合CPSF锁模技术的全光纤掺Yb³⁺单模光 纤环形激光器,获得了中心波长1052.9 nm, 3 dB 带宽 9.1 nm, 脉冲能量 4.25 nJ, 脉宽 17.8 ps 的单 脉冲锁模. 激光器锁模运行稳定, 运行期间中心 波长波动值0.01 nm,其他各参数波动RMS均小于 0.3%. 激光器具有较强的自启动能力和输出参数 可重复性,中心波长重复精度为0.01 nm,其他各参 数的重复精度均在0.55%以内.具有作为主振荡器 应用于ICF激光驱动器前端系统的重要价值.

参考文献

 Dawson J W, Liao Z M, Jovanovic I, Wattellier B, Beach R, Payne S A, Barty C P J 2003 Proc. SPIE UCRL-JC-152561

- [2] Dawson J W, Liao Z M, Mitchell S, Messerly M, Beach R, Jovanovic I, Brown C, Payne S A, Barty C P J 2005 *Proc. SPIE* UCRL-CONF-209779
- [3] Yang L Z, Chen G F, Wang Y S, Zhao W, Ding G L, Xiong H J 2005 *Chin. J. Lasers* **32** 153 (in Chinese) [杨 玲珍,陈国夫,王屹山,赵卫,丁广雷,熊红军 2005 中国激 光 **32** 153]
- [4] Lin H H, Sui Z, Li M Z, Wang J J 2006 High Power Laser and Particle Beams 18 825 (in Chinese) [林宏奂, 隋展, 李明中, 王建军 2006 强激光与粒子束 18 825]
- [5] Gu Q Y, Hou J, Cheng X A, Xu X J 2008 Chin. J. Lasers 3 5 (in Chinese) [谷庆元, 侯静, 程相爱, 许晓军 2008 中国激光 3 5]
- [6] Zhang P Z, Fan W, Wang X C, Lin Z Q 2011 Chin. J. Lasers 8 3 (in Chinese) [张攀政, 范薇, 汪小超, 林尊琪 2011 中国激光 8 3]
- [7] Prochnow O, Ruehl A, Schultz M, Wandt D, Kracht D 2007 Opt. Express 15 6889
- [8] Kieu K, Wise F W 2008 Opt. Express 16 11453
- [9] Michael S, Heike K, Oliver P, Doeter W, Uwe M, Dietmar K 2008 Opt. Express 16 19562
- [10] Zhang P Z, Fan W, Wang X C, Lin Z Q 2010 Chin. Opt. Lett. 8 8
- [11] Zhang P Z, Fan W, Wang X C, Lin Z Q 2011 Acta Phys.
 Sin. 60 024206 (in Chinese) [张攀政, 范薇, 汪小超, 林尊 琪 2011 物理学报 60 024206]
- [12] Luo Z C, Xu W C, Song C X, Luo A P, Chen W C 2009 Chin. Phys. B 18 1674
- [13] Bale B G, Kutz J N, Chong A, Renninger W H, Wise F
 W 2008 J. Opt. Soc. Am. B 25 1763
- [14] Ilday F Ö, Buckley J R, Lim H, Wise F W, Clark W G 2003 Opt. Lett. 28 1365
- [15] Komarov A, Leblond H, Sanchez F 2005 *Phys. Rev. A* 71 053809
- [16] Chong A, Buckley J, Renninger W, Wise F 2006 Opt. Express 14 10095
- [17] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Elect. 33 1049
- [18] Buckley J, Chong A, Zhou S, Renninger W, Wise F W 2007 J. Opt. Soc. Am. B 24 1803
- [19] Agrawal G P (translated by Jia D F, Yu Z H, Tan B, Hu Z Y) 2002 Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics (Beijing: Publishing House of Electronics Industry) pp26–31, 64–71, 132–140 (in Chinese) [Agrawal G P 著 (贾东方, 余震虹, 谈斌, 胡智勇译) 2002 非线性光纤光学原理及应用 (北京: 电子工业出版社) 第 26—31, 64—71, 132—140 页]
- [20] Wang Y H, Ma C S, Li D L, Zheng J 2008 Acta Opt. Sin. 37 855 (in Chinese) [汪玉海, 马春生, 李德禄, 郑杰 2008 光学学报 37 855]
- [21] Liu H G, Hu M L, Song Y J, Li Y F, Chai L, Wang C Y 2010 Chin. Phys. B 19 014215
- [22] Ilday F Ö, Buckley J R, Clark W G, Wise F W 2004 *Phys. Rev. Lett.* **92** 213902

Highly stable and self-started all-fiber Yb³⁺ doped fiber laser mode-locked by chirped pulse spectral filtering and nonlinear polarization evolution^{*}

Zhang Pan-Zheng¹) Wang Xiao-Chao^{1)†} Li Jing-Hui¹) Feng Tao¹) Zhang Zhi-Xiang¹) Fan Wei¹) Zhou Shen-Lei¹) Ma Wei-Xin²) Zhu Jian²) Lin Zun-Qi¹)

1) (Key Laboratory of High Power Laser and Physics, CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

 2) (Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China) (Received 4 June 2016; revised manuscript received 2 July 2016)

Abstract

Without discrete optical components influencing the fiber format, all-fiber mode-locked laser has tremendous potential practical applications due to its advantages of better stability, alignment free, and better compaction. All-fiber laser mode-locked by nonlinear polarization evolution (NPE) can obtain good performances in terms of pulse duration and spectrum. But the effective saturable absorption mirror can be overdriven at high peak power, which leads to multiple pulses, limiting the output pulse energy. And there is a trade-off between avoiding overdriving the NPE and ease of self-starting. In addition, the polarization of the pulse propagating in a long fiber is so sensitive to the environment vibration that it is difficult to implement a stable lone-time operation.

All-fiber ring laser mode-locked by NPE alone is analyzed and realized. The simulation results show that even a polarization vibration of $\pi/38$ can break the mode-locking completely. Experimentally, after carefully adjusting, single-pulse mode-locking is achieved with the spectrum centered at 1053.4 nm and a maximum pulse energy of 82 pJ. But the output parameters change continually during operating. After 60 min, the mode-locking is broken. The conclusion is obtained that instability and unreliability of self-starting are inevitable for such a laser.

Here, we show significant improvements of the pulse energy, operating stability, and self-starting reliability from an all-fiber Yb-doped mode-locked fiber laser. The laser is mode-locked by NPE combined with chirped pulse spectral filtering (CPSF). In order to easily self-start and stabilize mode locking, a spectral filter is employed in the all-normal group velocity dispersion NPE cavity to provide additional amplitude modulation. Combined effects of NPE and CPSF result in desirable pulse output, desirable operating stability, and reliable self-starting simultaneously. Stable mode-locking centered at 1053 nm is achieved with a 3 dB spectral bandwidth of 9.1 nm and pulse duration of 17.8 ps. The average output power is 66.9 mW at a repetition rate of 15.2 MHz, corresponding to a pulse energy of 4.25 nJ. Especially, high operating stability and easily one-button self-starting are achieved simultaneously. The fluctuations of output parameters including pulse energy, pulse duration, and spectrum are within 0.3% during 150-min operation. Self-starting reliability is tested. The testing time lasts two weeks. During the two weeks, the laser is turned off and turned on 48 times by using a power supplying button, without any adjustment. And the re-turned on intervals change randomly. Each time, the mode-locking can start itself. The repeatabilities of output parameters including pulse energy, pulse duration, and spectrum are within 0.55%.

Keywords: Yb³⁺ doped fiber laser, self-started mode locking, all-fiber, stability PACS: 42.55.Wd, 42.60.Fc, 42.60.Lh, 42.65.-k DOI: 10.7498/aps.65.214207

^{*} Project supported by the Youth Innovation Promotion Association CAS and the National Natural Science Foundation of China (Grant No. 61205103).

[†] Corresponding author. E-mail: smiles26@163.com