物理学报 Acta Physica Sinica

Institute of Physics, CAS

中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究

李贵花 谢红强 姚金平 储蔚 程亚 柳晓军 陈京 谢新华

Signature of multi-channel interference in high-order harmonic generation from N₂ driven by intense mid-infrared pulses

Li Gui-Hua Xie Hong-Qiang Yao Jin-Ping Chu Wei Cheng Ya Liu Xiao-Jun Chen Jing Xie Xin-Hua

引用信息 Citation: Acta Physica Sinica, 65, 224208 (2016) DOI: 10.7498/aps.65.224208 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.224208 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I22

您可能感兴趣的其他文章 Articles you may be interested in

不同核轴取向的O2的高次谐波

High-order harmonic generation of O₂ molecules with different nuclear axis orientations 物理学报.2016, 65(11): 114205 http://dx.doi.org/10.7498/aps.65.114205

离轴涡旋光束弱走离条件下的倍频效应

Frequency doubling effect of off-axial vortex beam in the case of weak walk-off 物理学报.2015, 64(24): 244204 http://dx.doi.org/10.7498/aps.64.244204

掺铒光纤中方波信号高次谐波的快慢光特性

Superluminal and slow light of high-order harmonic for rectangle signal in erbium-doped fiber 物理学报.2015, 64(24): 244205 http://dx.doi.org/10.7498/aps.64.244205

高次谐波的 Guo-Åberg-Crasemann 理论及其截断定律 Guo-Åberg-Crasemann theory for high harmonic generation and its cutoff law 物理学报.2015, 64(12): 124207 http://dx.doi.org/10.7498/aps.64.124207

KTP 倍频器件温度适应性扩展研究

Study on temperature adaptability extension of KTP frequency-doubling device 物理学报.2015, 64(9): 094205 http://dx.doi.org/10.7498/aps.64.094205

专题: 超快强激光驱动的原子分子过程

中红外飞秒激光场中氮分子高次谐波的 多轨道干涉特性研究*

李贵花¹) 谢红强²) 姚金平³) 储蔚³) 程亚^{3)†} 柳晓军⁴) 陈京⁵) 谢新华⁶)

1)(华东交通大学理学院,南昌 330013)

2) (东华理工大学理学院, 南昌 330013)

3) (中国科学院上海光学精密机械研究所, 强场激光物理国家重点实验室, 上海 201800)

4) (中国科学院武汉物理与数学研究所,波谱与原子分子物理国家重点实验室,武汉 430071)

5)(北京应用物理与计算数学研究所,北京 100088)

6)(维也纳技术大学光子学研究所,奥地利维也纳A-1040)

(2016年8月30日收到; 2016年10月13日收到修改稿)

通过系统研究氮分子高次谐波产生过程中的电子超快动力学过程,实验上发现在中红外飞秒强激光场驱动下高次谐波谱的截止区附近存在清晰的谐波谱极小值.进一步研究表明谐波谱极小值对应的光子能量强烈 依赖于驱动激光脉冲的光强和波长,而与分子取向角无关,由此推断该极小值来源于氮分子最高占据分子轨 道和次最高占据分子轨道产生的高次谐波之间的相消干涉.本研究结果将对极端强场条件下多轨道电子超快动力学研究起到积极推动作用.

关键词:中红外飞秒激光,高次谐波,分子多轨道干涉 PACS: 42.65.Ky, 42.65.Sf

DOI: 10.7498/aps.65.224208

1引言

强场激光驱动原子分子产生高次谐波(Highorder harmonic generation, HHG)自从1987 年被 发现以来一直是国际物理研究的前沿和热点^[1,2]. 高次谐波产生过程可由 Corkum^[3,4]提出的半经典 模型(三步模型)来直观描述.根据该模型,高次谐 波产生包括三个过程:1)电离过程,当强激光场作 用于原子分子,原子分子的势阱会发生明显形变, 被束缚的电子通过隧穿电离方式从形变的势阱中 逃逸出来,变成连续态的自由电子;2)加速过程,逃 逸的自由电子沿着强激光场偏振方向运动,获得一 定的动能;3)回碰过程,一部分自由电子在特定时 刻可以被强激光场拉回到母离子附近并与母离子 复合发射出高能光子,即产生高次谐波辐射.由于 高次谐波内在的高度非线性特性,高次谐波的产生 为实现台式化相干X射线源以及产生阿秒脉冲提 供了一种有效途径^[5-7].此外,高次谐波产生过程 也是"自探测"的过程,即不同级次的高次谐波信号 (包括振幅与相位信息)内含丰富的分子轨道信息, 为分子结构探测、超快动力学追踪与操控提供了一

^{*} 国家重点基础研究发展计划(973计划)(批准号: 2014CB921300, 2013CB922201)、国家自然科学基金(批准号: 11127901, 11134010, 61575211, 11304330, 11404357, 61405220, 11274050, 11334009, 61605227)和上海市扬帆计划(批准号: 14YF1406100, 16YF1412700)资助的课题.

[†]通信作者. E-mail: ya.cheng@siom.ac.cn

^{© 2016} 中国物理学会 Chinese Physical Society

种极具前景的手段[8-14].

由于隧穿电离概率与分子轨道电离势能呈负 指数依赖关系,在强场分子物理研究的初期,人们 普遍认为最高占据分子轨道(HOMO)对阈上电离、 高次谐波等强场物理现象的贡献起决定性作用,而 忽略了分子内层轨道的贡献.近几年,不断有研究 结果表明分子内层轨道的电子也在强激光与分子 相互作用过程中发挥着不可忽略的作用,这与分子 的轨道结构、最高占据轨道与低能占据轨道之间 的能量差异较小直接相关^[15–17].特别值得指出的 是,由于高次谐波产生是一种相干辐射过程,不同 分子轨道贡献的高次谐波之间相互干涉会导致高 次谐波谱出现相应的干涉极大值(尖峰)或极小值 (低谷)^[12,18,19].

目前, 高次谐波光谱极小值主要分为三类, 第 一类极小值为"类库珀极小值"(Cooper-like minimum), 以氮分子高次谐波谱为例, 该类极小值位 于光子能量为~40 eV的谐波谱附近,且不随驱动 光场的参数(如光强、波长、偏振方向等)、分子取 向角变化而改变^[20-22]. 第二类极小值来源于组成 分子的不同原子辐射的高次谐波之间的相消干涉, 即"双中心干涉极小值",该类极小值不会随着驱动 光场的参数进行变化,但是却强烈依赖于分子取向 角^[23,24]. 第三类极小值被称为"多轨道干涉极小 值",来源于分子不同分子轨道辐射的高次谐波之 间的相消干涉,该类极小值的位置强烈依赖于驱动 光场的参数条件,且对分子取向不敏感^[25-28].辨 明高次谐波谱极小值的类型对于解析分子轨道结 构或者追踪分子内部的超快动力学过程具有至关 重要的作用,这也是目前阿秒物理研究中的一个非 常重要的课题.

在本工作中,我们重点研究在不同驱动激光波 长条件下氮分子多轨道干涉对高次谐波的影响.在 以往的工作中,氮分子高次谐波谱极小值的研究由 于受到驱动波长(多为800 nm 左右的近红外波段) 的限制主要出现在光子能量为~40 eV 附近的谐波 谱^[9,16,20,28,29].在较低光子能量的高次谐波谱范围 内,不同类型高次谐波谱极小值的光子能量十分接 近,例如,当驱动激光场波长设定为~800 nm 的近 红外波段,氮分子高次谐波的库珀极小值与氮分 子双中心干涉极小值都位于 40 eV 附近,难以分辨. 此外,氮分子谐波的能谱范围有限且相邻谐波级次 之间能量间隔大、级次稀疏,不利于多轨道干涉极 小值的观察与研究.为解决上述问题,我们采用中 红外波段的强场激光脉冲驱动氮分子产生高次谐 波,一方面,由于高次谐波的截止能量与驱动波长 的平方成正比^[30],采用长波长的激光脉冲能极大 拓展高次谐波谱范围^[31];另一方面,谐波谱相邻级 次之间能量间隔会减小(反比于波长).这为观察氮 分子高次谐波的多轨道干涉极小值研究提供了有 力的实验保障.实验上,我们采用波长可调谐的中 红外飞秒激光脉冲驱动氮分子产生高次谐波,系统 研究了氮分子高次谐波中的多轨道干涉效应.

2 实验装置

图1为实验装置简图. 钛宝石激光系统 (Legend Elite-Duo, Coherent, Inc.)输出中心波长 ~800 nm、脉冲宽度~40 fs、单脉冲能量6 mJ、重复 频率1 kHz 的激光脉冲, 通过分束比为1:19 的分 束镜分为两束. 低能量的激光束作为抽运光, 用于 将氮气分子排列. 高能量的激光束用于抽运光学参 量放大系统 (OPA, HE-TOPAS, Light Conversion, Ltd), 输出波长可调谐(1150-2500 nm)的中红外 波段飞秒脉冲作为探测光,驱动氮分子产生高次 谐波. 当不需要对氮分子排列时, 我们用挡板将抽 运光挡住.为了有效地排列氮分子,实验中我们将 抽运光的脉冲宽度展宽至~70 fs,并将光斑直径通 过一个倒置的望远系统缩小到原来的一半,同时 抽运脉冲聚焦光强通过控制光路中的光阑大小实 现连续可调. 抽运光与探测光之间的延时设定为 $\sim 4.1 \text{ ps}$ (氮分子转动周期 $T_{rot} = 8.2 \text{ ps}$), 此时氮 分子为最佳排列状态,氮分子轴平行于抽运激光的 偏振方向. 初始时抽运光与探测光的偏振方向设 为一致, 抽运光光路中插入一片半波片用于调节分 子的取向角. 抽运光与探测光通过双色镜合束后 被透镜聚焦到真空腔的靶气体中, 靶气体是由直径 为0.5 mm、气压为3 bar、三维位置可调的气体喷 嘴喷出的氮分子气体. 氮分子产生的高次谐波信 号通过自主设计的光谱仪后最终由软X射线CCD 进行采集^[32].实验中探测光的光强可通过改变探 测光光路中的光阑大小或转动两块很薄的石英玻 璃片实现连续调节^[33].实验中通过调节透镜、气 体喷嘴位置以及光阑大小优化高次谐波的产率和 截止能量.

图1 (a) 实验装置简图; (b) 氮分子的最高占据分子轨道 (HOMO) 与次最高占据分子轨道 (HOMO-1) 产生的高次 谐波相互干涉示意图, 其中 $\Delta \phi$ 为两分子轨道对应的高次谐波信号之间的相位差 Fig. 1. (a) Schematic diagram of the pump-probe experimental setup; (b) the interference process between

two different channels of HHG from HOMO and HOMO-1 in N_2 molecules.

3 实验结果

图2是在不同激光光强条件下随机取向氮分 子产生的高次谐波信号.在改变激光光强时,激 光的中心波长固定为1500 nm, 激光焦点位于气 体喷嘴后1.5 cm 处, 此时相位匹配条件有利于长 轨道高次谐波的产生^[34]. 图2结果表明: 当激 光光强为 $1.97 \times 10^{14} \text{ W/cm}^2$ 时,极小值出现在 ~101 eV,极小值光子能量与谐波谱的截止能量 ~116 eV十分接近,如图2(a)所示;当光强降低到 1.80×10^{14} W/cm² 和 1.63×10^{14} W/cm², 谐波谱 极小值对应的光子能量相应地减小到~92 eV与 85 eV, 如图2(b)和图2(c) 所示, 极小值光子能量 仍与相应谐波谱截止能量相近; 当驱动激光的光强 下降到~1.44×10¹⁴ W/cm²时, 高次谐波谱上的 极小值消失,如图2(d)所示.值得指出的是,考虑 到相位匹配条件, 激光场光强的标定均是基于高次 谐波截止能量公式 $E_{\text{cutoff}} \exp \propto I\lambda^{1.7}$ [35-38],其中 Ecutoff_exp为观察到的谐波截止能量, I为标定的 光强, λ 为激光波长.

我们进一步研究了氮分子谐波谱极小值与分 子取向角(即分子轴与探测光偏振方向的夹角)的 关系,结果如图3所示.在该实验中,我们将抽运 光与探测光的延时设为~4.1 ps,是氮分子1/2转 动周期附近氮分子取向最佳的时刻,其取向度估算

图 2 中心波长为1500 nm,光强为(a) 1.97×10^{14} W/cm², (b) 1.80×10^{14} W/cm², (c) 1.63×10^{14} W/cm² 和(d) 1.44×10^{14} W/cm² 的飞秒激光脉冲在随 机取向的氮气分子中产生的高次谐波谱

Fig. 2. Typical HHG spectra recorded with 1500 nm pulses from unaligned N₂ molecules at the laser intensities of (a) 1.97×10^{14} W/cm², (b) 1.80×10^{14} W/cm², (c) 1.63×10^{14} W/cm² and (d) 1.44×10^{14} W/cm².

图3 氮分子(a)分子轴平行于探测光偏振方向和(b)分子轴 垂直于探测光偏振方向时获得的高次谐波谱,其中抽运光为 800 nm的近红外激光脉冲,探测光是中心波长为1500 nm、 光强为2.16×10¹⁴ W/cm²的中红外激光脉冲,两种取向条 件下测得的谐波谱分别进行了归一化处理

Fig. 3. Normalized HHG spectra recorded with 1500 nm laser pulses at a peak intensity of $\sim 2.16 \times 10^{14}$ W/cm² when N₂ molecules are aligned (a) parallel and (b) perpendicular to the polarization of probe pulses.

为 $\langle \cos^2 \theta \rangle = 0.6^{[39,40]}$,探测光光强为2.16 × 10¹⁴ W/cm².如图3(a)所示,当分子轴平行于探测光的偏振方向时,谐波谱上出现明显的极小值,该极小值位于~103 eV,与谐波的截止能量相近,这与在非取向条件下观察的谐波谱是相似的[图2(a)].通过转动半波片将取向角转动90°,即分子轴方向转为与探测光偏振方向垂直,产生的高次谐波谱如图3(b),该结果与分子轴平行于探测光方向十分相似,但谐波谱的极小值变得更为明显,极小值能量依然在~103 eV 附近.实验结果表明,我们观察到的谐波谱极小值位置与分子的取向是无关的.

最后,我们研究了谐波谱极小值与驱动波长的 关系,实验中选取了1500 nm,1400 nm,1300 nm 三个不同波长,得到的谐波谱如图4所示.为了更 好地比较三种不同驱动波长下产生的高次谐波谱, 我们调整探测光光强以保证不同波长条件下谐波 谱拥有接近的谐波截止能量(约为110 eV).当驱动 波长为1500 nm时(图4(a)),谐波谱出现明显的极 小值~92 eV.将波长切换到1400 nm(图4(b)),谐 波谱的极小值位置向低能区移动到~86 eV.再将 驱动波长继续减小到1300 nm,谐波谱的极小值仍 清晰可见,并再次向高能区移动到~93 eV.由此证 明,实验中观察到的谐波谱极小值强烈依赖于激 光的波长.值得一提的是,当驱动波长为1400 nm、 1300 nm时,为获得清晰的谐波谱极小值,实验中 需要调整聚焦透镜的前后位置使激光聚焦至气体 喷嘴前,此时相位匹配条件有利于短轨道高次谐波 的产生^[34],这与驱动波长为1500 nm时的相位匹 配条件不同.

图 4 中心波长为 (a) 1500 nm, (b) 1400 nm 和 (c) 1300 nm 的中红外激光脉冲在非取向的氮分子中产 生的高次谐波谱. 为了保证谐波谱截止能量一致, (a)—(c) 的驱动光场强度分别为1.80 × 10¹⁴ W/cm², 2.01 × 10¹⁴ W/cm² 与 2.30 × 10¹⁴ W/cm²

Fig. 4. Spectra of high-order harmonics driven by (a) 1500 nm, (b) 1400 nm and (c) 1300 nm laser pulses from randomly aligned N₂ molecules. The laser peak intensities at these three wavelengths are 1.80×10^{14} , 2.01×10^{14} and 2.30×10^{14} W/cm², respectively.

4 分析与讨论

实验中采用中红外波段的飞秒激光驱动氮分 子产生高次谐波,我们观察到了清晰的谐波谱极小 值,如图2—图4所示.目前,实验上已观察到三类 分子高次谐波谱极小值(库珀极小值、双中心干涉 极小值、多轨道干涉极小值),辨明谐波谱极小值的 来源对于分子高次谐波的分析以及分子轨道重构 等具有至关重要的作用.三类分子高次谐波谱极 小值对实验参数(激光光强、驱动波长、取向角等) 的不同依赖关系为我们澄清高次谐波谱极小值的 来源提供了重要的实验依据,例如:高次谐波多轨 道干涉极小值对激光光强、激光波长十分敏感,而 库珀极小值、双中心干涉极小值不依赖于这两个参 数: 双中心干涉极小值强烈依赖于分子的取向角, 而多轨道干涉极小值和库珀极小值的位置与取向 角无关. 我们的实验结果表明观察到的高次谐波谱 极小值随驱动光场的光强与波长变化强烈, 且与取 向角无明显关系. 这些特性与多轨道干涉极小值的 特点符合,可排除双中心干涉和库珀极小值的可能 性,因此实验中观测到的高次谐波谱极小值可能来 源于氮分子多轨道干涉极小值.此外,因为氮分子 HOMO与HOMO-1轨道对高次谐波贡献的比例依 赖于分子的取向角^[9,16],造成氮分子高次谐波多轨 道干涉极小值的凹陷深度(即干涉强度)也随取向 角变化,而库珀极小值与双中心干涉极小值的凹陷 深度与取向角无显著关系.如图3所示,抽运-探测 实验中当分子轴垂直于探测光偏振方向时谐波谱 极小值凹陷程度相较于平行情况更为明显,这也为 确认谐波谱极小值来源于分子多轨道的相消干涉 提供了新的证据.

细致分析高次谐波谱极小值位置与驱动光场 强度关系,我们发现在三种不同驱动波长条件下 (1500 nm,1400 nm,1300 nm)谐波谱极小值的光 子能量随驱动光场光强的增加呈线性增加关系,如 图5所示.下面我们从理论上分析这种线性关系背 后深层的物理含义.

Fig. 5. Measured positions of the spectral minima as a function of laser peak intensities for three wavelengths (1500, 1400 and 1300 nm). Three solid lines are linear fitting to the measured data, respectively.

对于简单的高次谐波模型,高次谐波谱多轨道 干涉极小值的位置(即光子能量)可以由不同分子 轨道辐射的高次谐波之间的相位差 Δφ 的关系式表示^[9,12,27,41]:

$$\Delta \phi = \Delta I_{\rm p} \times \tau + \varphi = (2n+1)\pi,$$

$$n = 0, 1, 2, 3, \cdots, \qquad (1)$$

其中 $\Delta\phi$ 是两个轨道(即氮分子的HOMO轨道与 HOMO-1轨道)对应谐波信号之间的相位差, τ 表 示电离出射的自由电子在激光场中的运行时间, $\Delta I_{\rm p}$ 表示两分子轨道之间的电离势能差, 即 $\Delta I_{\rm p}$ = $I_{p(HOMO-1)} - I_{p(HOMO)} = 1.4 \text{ eV}, \varphi$ 表示为了获得 最好的拟合结果附加的相位. 基于(1)式, 我们可 以通过经典三步模型^[3]计算出对应的谐波谱极小 值的位置. 通过分析, 对于1300 nm 和1400 nm 驱 动波长,实验观察到的谐波谱极小值十分符合公式 $\Delta \phi = \Delta I_{\rm p} \times \tau - 0.5\pi = \pi, \ \ddagger \oplus n = 0, \ \varphi = -0.5\pi,$ $\tau = 2.23 \text{ fs} \approx 0.48 \times T_{1400 \text{ nm}} \approx 0.51 \times T_{1300 \text{ nm}}.$ $\tau < 0.65T$ 与实验中短轨道高次谐波起主导作用符 合^[42]. 当驱动波长为1500 nm时, 高次谐波的极 小值满足公式: $\Delta \phi = \Delta I_{\rm p} \times \tau + 0.5\pi = 3\pi$, 其中 $n = 1, \varphi = 0.5\pi, \tau = 3.83 \text{ fs} \approx 0.77 \times T_{1500 \text{ nm}}.$ τ > 0.65T 与实验中长轨道高次谐波起主导作用符 合^[42]. 作为对比, 我们将实验测量的谐波谱极小 值与根据拟合公式计算的理论结果进行对比, 描绘 出谐波谱极小值与谐波截止能量之间的关系,如 图6所示. 研究结果表明所有的实验数据均能与理 论计算保持高度一致.

图 6 谐波谱极小值的光子能量随高次谐波截止能量的变化 其中数据点表示实验测量结果,线条表示理论计算结果 Fig. 6. The measured and calculated minimum positions in harmonic spectra as a function of cutoff energy for three different laser wavelengths.

值得注意的是,为获得最佳的拟合结果,拟合 公式中附加相位 $\varphi = \pm 0.5\pi$ 是不可或缺的.附加相 位来源于高次谐波产生过程中的电离或者回碰阶 段. 一方面, 因为在我们的实验条件下电离已经进入深隧穿区域 (Keldysh参数 γ < 1^[43]), 隧穿电离过程造成的不同分子轨道相位差可忽略^[11]; 另一方面, 不同分子轨道的宇称对称性不同会在回碰阶段引入±0.5π的相位差^[9,12,27]. 最近, Diveki等^[29]报道了不同分子轨道电离的电子由于受到核运动的影响会引入另外一种相位差. 在我们以后的工作中,将进一步探讨研究在中红外长波长激光驱动下的附加相位差对高次谐波多轨道干涉极小值的影响.

5 结 论

综上所述,我们利用中红外波段超强飞秒激光 脉冲驱动氮分子产生高次谐波,实验中观察到在谐 波谱截止区附近出现清晰的多轨道干涉极小值,并 通过系统研究澄清了谐波谱极小值的来源. 实验 中我们发现谐波谱极小值与驱动光场光强呈线性 关系,并强烈依赖于激光波长,却不随取向角变化 而变化. 所有实验结果均有力支持了谐波谱极小 值的多轨道干涉理论,有效排除了库珀极小值与双 中心干涉极小值的可能性. 需要强调的是, 实验结 果表明利用中红外波段强场激光研究高次谐波谱 多轨道干涉极小值具有以下明显优势:1)长波长 激光脉冲可极大提高高次谐波谱的截止能量,为极 小值的产生、观察提供了更宽的谐波谱范围; 2)长 波长激光光源可产生更密集的谐波级次,从而更精 确地测量谐波谱极小值的光子能量; 3) 由参量放大 器提供的中红外激光光源的波长可连续调节,为谐 波谱极小值的研究提供了更大的参量空间与更多 的灵活性,例如,可通过调节激光波长使得谐波谱 极小值出现在高次谐波谱的平台区或截止区; 4) 根 据 Keldysh 参数的公式,长波长激光光源可确保高 次谐波产生中的电离过程发生在深隧穿区,有利于 将相关强场物理的研究对象推广到更低电离势的 复杂分子中去.因此,长波长激光光源不仅在相干 XUV 光源和阿秒脉冲产生方面具有诱人的前景, 而且在研究强场分子的超精细结构与超快动力学 过程具有独特优势.

参考文献

 McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595

- [2] Chen Z Y, Pukhov A 2016 Nat. Commun. 7 12515
- [3] Corkum P 1993 Phys. Rev. Lett. **71** 1994
- [4] Santra R, Gordon A 2006 Phys. Rev. Lett. 96 073906
- [5] Gibson E A, Paul A, Wagner N, Tobey R, Gaudiosi D, Backus S, Christov I P, Aquila A, Gullikson E M, Attwood D T, Murnane M M, Kapteyn H C 2003 Science 302 95
- [6] Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett.
 19 1870
- [7] Zeng B, Chu W, Li G, Yao J, Ni J, Zhang H, Cheng Y, Xu Z, Wu Y, Chang Z 2012 *Phys. Rev. A* 85 033839
- [8] Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867
- [9] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carre B, Taieb R, Salieres P 2010 Nat. Phys. 6 200
- [10] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S 2011 Nat. Phys. 7 822
- [11] Uiberacker M, Uphues T, Schultze M, Verhoef A J, Yakovlev V, Kling M F, Rauschenberger J, Kabachnik N M, Schroder H, Lezius M, Kompa K L, Muller H G, Vrakking M J, Hendel S, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2007 Nature 446 627
- [12] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Y 2009 Nature 460 972
- [13] Dudovich N, Smirnova O, Levesque J, Mairesse Y, Ivanov M Y, Villeneuve D M, Corkum P B 2006 Nat. Phys. 2 781
- [14] Xu H, Xiong H, Zeng B, Chu W, Fu Y, Yao J, Chen J, Liu X, Cheng Y, Xu Z 2010 Opt. Lett. 35 472
- [15] Li W, Zhou X, Lock R, Patchkovskii S, Stolow A, Kapteyn H C, Murnane M M 2008 Science 322 1207
- [16] McFarland B K, Farrell J P, Bucksbaum P H, Gühr M 2008 Science 322 1232
- [17] Yao J, Li G, Jia X, Hao X, Zeng B, Jing C, Chu W, Ni J, Zhang H, Xie H, Zhang C, Zhao Z, Chen J, Liu X, Cheng Y, Xu Z 2013 *Phys. Rev. Lett.* **111** 133001
- [18] Wörner H J, Bertrand J B, Hockett P, Corkum P B, Villeneuve D M 2010 Phys. Rev. Lett. 104 233904
- [19] Torres R, Siegel T, Brugnera L, Procino I, Underwood J G, Altucci C, Velotta R, Springate E, Froud C, Turcu I C E, Patchkovskii S, Ivanov M Y, Smirnova O, Marangos J P 2010 Phys. Rev. A 81 051802
- [20] Bertrand J B, Wörner H J, Hockett P, Villeneuve D M, Corkum P B 2012 Phys. Rev. Lett. 109 143001
- [21] Higuet J, Ruf H, Thiré N, Cireasa R, Constant E, Cormier E, Descamps D, Mével E, Petit S, Pons B, Mairesse Y, Fabre B 2011 Phys. Rev. A 83 053401
- [22] Wahlström C G, Larsson J, Persson A, Starczewski T, Svanberg S, Salières P, Balcou P, L' Huillier A 1993 *Phys. Rev. A* 48 4709
- [23] Lein M, Hay N, Velotta R, Marangos J, Knight P 2002 Phys. Rev. Lett. 88 183903
- [24] Lein M, Hay N, Velotta R, Marangos J, Knight P 2002 *Phys. Rev. A* 66 023805

- [25]~ Le A T, Tong X M, Lin C 2006 $Phys.\ Rev.\ A$ 73 041402
- $[26]\,$ Kanai T, Minemoto S, Sakai H $2005\ Nature\ {\bf 435}\ 470$
- [27] Kato K, Minemoto S, Sakai H 2011 Phys. Rev. A 84 021403
- [28] Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J, Altucci C, Velotta R 2005 *Phys. Rev. Lett.* 95 153902
- [29] Diveki Z, Camper A, Haessler S, Auguste T, Ruchon T, Carré B, Salières P, Guichard R, Caillat J, Maquet A, Taïeb R 2012 New J. Phys. 14 023062
- [30] Krause J, Schafer K, Kulander K 1992 Phys. Rev. Lett.
 68 3535
- [31] Xiong H, Xu H, Fu Y, Yao J, Zeng B, Chu W, Cheng Y, Xu Z, Takahashi E J, Midorikawa K, Liu X, Chen J 2009 Opt. Lett. 34 1747
- [32] Xu H, Xiong H, Zeng Z, Fu Y, Yao J, Li R, Cheng Y, Xu Z 2008 Phys. Rev. A 78 033841
- [33] Ni J, Yao J, Zeng B, Chu W, Li G, Zhang H, Jing C, Chin S L, Cheng Y, Xu Z 2011 *Phys. Rev. A* 84 063846
- [34] Antoine P, L'Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234

- [35] Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 PNAS 106 10516
- [36] Popmintchev T, Chen M C, Cohen O, Grisham M E, Rocca J J, Murnane M M, Kapteyn H C 2008 Opt. Lett. 33 2128
- [37] Cirmi G, Lai C J, Granados E, Huang S W, Sell A, Hong K H, Moses J, Keathley P, Kärtner F X 2012 J. Phys. B: At. Mol. Opt. Phys. 45 205601
- [38] Chen M C, Arpin P, Popmintchev T, Gerrity M, Zhang
 B, Seaberg M, Popmintchev D, Murnane M M, Kapteyn
 H C 2010 Phys. Rev. Lett. 105 173901
- [39] Seideman T 1995 J. Chem. Phys. 103 7887
- [40] Ortigoso J, Rodríguez M, Gupta M, Friedrich B 1999 J. Chem. Phys. 110 3870
- [41] Kanai T, Takahashi E, Nabekawa Y, Midorikawa K 2007 Phys. Rev. Lett. 98 153904
- [42] Lewenstein M, Salières P, L'Huillier A 1995 Phys. Rev. A 52 4747
- [43] Keldysh L V 1965 Sov. Phys. JETP 20 1307

SPECIAL TOPIC — Atomic and molecular processes driven by ultrafast intense laser fields

Signature of multi-channel interference in high-order harmonic generation from N₂ driven by intense mid-infrared pulses^{*}

Li Gui-Hua¹⁾ Xie Hong-Qiang²⁾ Yao Jin-Ping³⁾ Chu Wei³⁾ Cheng Ya^{3)†} Liu Xiao-Jun⁴⁾ Chen Jing⁵⁾ Xie Xin-Hua⁶⁾

1) (School of Science, East China Jiatong University, Nanchang 330013, China)

2) (School of Science, East China University of Technology, Nanchang 330013, China)

3) (State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

4) (State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China)

5) (Institute of Applied Physics and Computational Mathematics, Beijing 100088, China)

6) (Photonics Institute, Vienna University of Technology, A-1040 Vienna, Austria, EU)

(Received 30 August 2016; revised manuscript received 13 October 2016)

Abstract

Recently, three major types of minima (i.e., Cooper-like minimum, two-center interference minimum and multichannel interference minimum) have been observed in high-order harmonic generation (HHG) spectra. Identification of the origin of the minimum in a HHG spectrum is critical for self-probing of the molecular structures and dynamics, which has been an important subject in attosecond physics. In this paper, we report the investigation of the multi-electron dynamics in HHG from N_2 molecules driven by intense mid-infrared laser pulses. Based on a pump-probe experimental setup, clear spectral minima in the cutoff region of high harmonic spectra from N_2 molecules are observed in measurements with mid-infrared laser pulses at three wavelengths (i.e., 1300, 1400 and 1500 nm). A systematic investigation has been carried out for clarifying the origin of these minima. We carefully measured the spectral minima under three different experimental conditions: 1) different alignment angles of molecules; 2) various peak laser intensities; 3) tunable driving laser wavelengths. Experimental results show that the positions of the spectral minima do not depend on the alignment angles of molecules. In addition, the measured spectral minima shift almost linearly with the laser intensity for all three wavelengths, and the positions of the spectral minima strongly depend on the wavelengths of the driven field. These findings are in conflict with the Cooper-like and two-center interference minima predictions, providing strong evidences on the dynamic multi-channel interference origin of these minima. Besides, we theoretically calculated the positions of multi-channel interference minima by using a classical three-step model and found out perfect agreements between the

 ^{*} Project supported by National Basic Research Program of China (Grant Nos. 2014CB921300, 2013CB922201), the National Natural Science Foundation of China (Grant Nos. 11127901, 11134010, 61575211, 11304330, 11404357, 61405220, 11274050, 11334009, 61605227), and the Shanghai Sailing Program, China (Grant Nos. 14YF1406100, 16YF1412700).

[†] Corresponding author. E-mail: ya.cheng@siom.ac.cn

experimental results and theoretical calculations, which again strongly support the multi-channel interference picture. Moreover, the advantages of the observed dynamic multi-channel interference based on HHG driven by long wavelength lasers are discussed. The long wavelength driver lasers are attractive for not only generating coherent XUV radiation and attosecond pulses, but also investigating structures and dynamics of molecules in strong laser fields.

Keywords: mid-infrared femtosecond laser pulses, high-order harmonic generation, multi-channel interference of molecules

PACS: 42.65.Ky, 42.65.Sf

DOI: 10.7498/aps.65.224208