物理学报 Acta Physica Sinica

多模 1064 nm 光纤激光器实现一维远失谐光晶格

袁园 芦小刚 白金海 李建军 吴令安 傅盘铭 王如泉 左战春

One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser Yuan Yuan Lu Xiao-Gang Bai Jin-Hai Li Jian-Jun Wu Ling-An Fu Pan-Ming Wang Ru-Quan Zuo Zhan-Chun

引用信息 Citation: Acta Physica Sinica, 65, 043701 (2016) DOI: 10.7498/aps.65.043701 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.043701 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I4

您可能感兴趣的其他文章 Articles you may be interested in

一种基于相邻数据依赖性的混沌分析方法

A chaotic analyzing method based on the dependence of neighbor sub-sequences in the data series 物理学报.2016, 65(3): 030503 http://dx.doi.org/10.7498/aps.65.030503

一种基于模糊C均值聚类小数据量计算最大Lyapunov指数的新方法

A novel method based on the fuzzy C-means clustering to calculate the maximal Lyapunov exponent from small data

物理学报.2016, 65(2): 020502 http://dx.doi.org/10.7498/aps.65.020502

基于忆阻器的数模混合随机数发生器

A digital-analog hybrid random number generator based on memristor 物理学报.2015, 64(24): 240503 http://dx.doi.org/10.7498/aps.64.240503

空间关联白噪声影响下小世界神经元网络系统的同步动力学

Synchronous dynamics of small-world neuronal network system with spatially correlated white noise 物理学报.2015, 64(22): 220503 http://dx.doi.org/10.7498/aps.64.220503

六边形格子态斑图的数值模拟

Numerical simulations of hexagonal grid state patterns 物理学报.2015, 64(21): 210505 http://dx.doi.org/10.7498/aps.64.210505

多模1064 nm光纤激光器实现一维远失谐光晶格*

袁园¹⁾²⁾ 芦小刚¹⁾ 白金海¹⁾ 李建军¹⁾ 吴令安¹⁾ 傅盘铭¹⁾ 王如泉¹⁾ 左战春^{1)†}

(中国科学院物理研究所,北京凝聚态物理国家实验室,北京 100190)
 2)(河北师范大学物理科学与信息工程学院,石家庄 050000)

(2015年9月29日收到;2015年11月30日收到修改稿)

采用 1064 nm 多模 30 W 连续光纤激光器, 搭建了一个周期为 25 μm 的一维远失谐光学晶格势场. 对铷 原子进行磁光阱装载和偏振梯度冷却, 实现了铷冷原子团在光晶格中的装载. 借助于短程飞行时间法, 测量 晶格中冷原子温度为 20 μK, 为下一步实现量子信息存储实验奠定了基础.

关键词: 多模激光器, 冷原子, 磁光阱, 光学晶格 PACS: 37.10.Jk, 42.50.Ct, 03.67.-a

DOI: 10.7498/aps.65.043701

1引言

1968年, 俄罗斯科学家Letokhov^[1]指出可以 利用光对原子的机械力来陷俘中性原子,第一次提 出了采用驻波场囚禁冷原子的物理思想. 这是最 早的光学晶格 (optical lattice) 的物理思想. 1992 年, Verkevk 等^[2]和 Jessen 等^[3]在实验上首次实现 了一维光学晶格,并研究了冷原子在一维光学晶 格中的动力学行为、量子化运动和磁学性质等.随 后,研究人员在实验上实现了二维光学晶格[4,5]和 三维光学晶格^[6,7],并研究了其中冷原子的量子化 运动. 研究发现 N(N = 2, 3) 维光学晶格可以采 用N+1束激光来构建^[5,6](对于二维光晶格,可采 用三束激光来构建;三维光学晶格则可采用四束激 光来构建). 这种光学晶格构建方式, 使各激光束 间的相对相位变化仅造成光学晶格周期势场的平 移,从而可避免光学晶格势场深度的改变. 与存在 晶格缺陷的周期性晶格势场中的电子系统相比,光 学晶格周期势场中的冷原子系统中的热噪声和晶 格缺陷的问题得到解决. 其他小组也先后在实验中

观测到了类似于凝聚态物理中的Bloch振荡^[8]和 Wannier-Stark阶梯等^[9]重要现象.特别是在2002 年Greiner等^[10]在大失谐的光学晶格中采用铷原 子玻色-爱因斯坦凝聚体实现了从超流态到Mott 绝缘态的量子相变.近年来,由一维、二维和三维 驻波激光场构成的冷原子光学晶格的研究也已成 为冷原子物理和原子光学领域的研究热点,光学晶 格为精确操控中性原子提供了一种新方法,从而掀 起了光学晶格中冷原子和玻色-爱因斯坦凝聚研究 的高潮.随着量子信息处理领域的发展,冷原子光 学晶格在量子纠缠^[11,12]、量子计算^[13-15]、量子寄 存^[16]等方面的前景受到了人们的极大关注.

光学晶格的实现一般都采用单模激光器^[17,18], 因为激光相干长度长有助于形成干涉条纹,增加 阱深对比度,实验光路易于调节.线宽窄利于观测 高精度的光谱^[19,20].然而,单模大功率激光器有 多种,如武汉锐科、创鑫等公司有的产品,但成本 高,价格昂贵.而且光纤易受损从而更增加了实验 的维修成本^[21-23].多模光纤激光器经偏振分束器 纯化偏振后会损失一半光强,另外相干长度比单模 激光要短,所以实验光路上要保证两束激光的光程

* 国家自然科学基金(批准号:11274376,61308011,11204011)和国家重点基础研究发展计划(批准号:2013CB922002,2010CB922904)资助的课题.

†通信作者. E-mail: zczuo@iphy.ac.cn

© 2016 中国物理学会 Chinese Physical Society

差尽可能的小,从而调节要相对困难些.但是多模激光器相对于单模激光器价格便宜(仅为单模大功率激光器的1/10),维护费用也低,经济实惠的多.我们采用国产多模1064 nm连续光纤激光器(创鑫激光技术有限公司生产)在实验上实现了25 μm的晶格间距.我们首先对磁光阱(magnetic-optical trap, MOT)中铷原子进行多普勒冷却,偏振梯度冷却^[24,25],然后由光纤激光器输出的激光经过沃拉斯顿棱镜分为两束功率为6 W的激光束,以2°相交于铷冷原子中心,观测到25 μm 间距的一维光学晶格.之后,采用短程飞行时间法,测量冷原子的温度.

2 实验方案及实验系统

本实验在磁光阱中对原子进行冷却和俘获.由 两台半导体激光器(澳大利亚 Moglabs 公司生产) 分别产生冷却光和再抽运光并将光斑直径扩束至 20 mm. 冷却光分成六束注入磁光阱,每束功率 密度约为12.4 mW/cm².再抽运光分为两束,每束 功率密度约为2.5 mW/cm².冷却光频率为⁸⁷Rb 原子共振跃迁能级 $5S_{1/2}F = 2 \rightarrow 5P_{3/2}F' = 3$ 负失 谐17 MHz;再抽运光频率与原子能级 $5S_{1/2}F = 1$ →5P_{3/2}F' = 2跃迁共振. 设置 10 G/cm 的磁场梯度, 装载 30 s, 俘获直径为 6 mm, 获得原子数约为 1×10^9 的冷原子, 其温度约 198 μ K.

我们利用波长为1064 nm的多模30 W连续光 纤激光器搭建一维光晶格势场,激光器相干长度 为0.3 mm. 搭建的远失谐光学晶格周期势场光路 如图1所示. 激光器输出功率为30W, 输出光束 直径为5 mm的激光,经过偏振分束器 (PBS) 偏振 纯化得到15 W的水平线偏振激光, 经透镜缩束至 1.25 mm. 再经过声光调制器 (IntraAction 公司生 产),用于控制其开启和关断.激光经过λ2后偏振 方向变为45°,再经过沃拉斯顿棱镜(WP)后分为 光强相等 (6 W), 夹角 2° 的两束激光. f3 为 50 mm 的透镜将单束激光光腰缩小到28 μm(理论值, 实 验测得为46 µm), 我们要求两束光光腰交点位置 与MOT中心位置重合.为了精确调节,分别在两 束光光路上放置了厚度为2.8 mm的耐高功率玻璃 片P1, P2, 微调玻璃片可以小幅度改变透过光的方 向从而使三点重合得较好.我们搭建了完善的电荷 耦合器件(CCD)成像系统用于监测调节光路,观 察光学晶格. 单束光路上的波片λ3选用的是真零 级半波片,用于调节两束激光偏振平行或垂直.最 后, 使经过 MOT 的两束激光进入光学垃圾桶.

图 1 光学晶格势阱光路图 DTL, 1064 nm 多模连续光纤激光器; PBS1, PBS2, 偏振分束器; λ1—λ3, 半波片; D1—D3, 光学垃圾桶; f1—f4, 透镜; R1—R7, 反射镜; P1, P2, 玻璃片; AOM, 声光调制器; WP, 沃拉斯顿棱镜 Fig. 1. Schematic of the optical dipole trap set-up. DTL, 1064 nm multimode continuous wave fiber laser; PBS1, PBS2, polarization beam splitters; λ1—λ3, half wave plates; D1—D3, beam block; f1—f4, lenses; R1—R7, 45° reflectors; P1, P2, glass plate; AOM, acoustic optical modulator; WP, Wollaston prism.

实验中用到的时序控制如图2所示,首先打开 磁光阱(冷却光、再抽运光、磁场)持续30 s. 将铷 冷原子俘获和冷却. 增加磁场电流,冷却光频率失 谐至 – 31 MHz,降低冷却光强度为最大光强的一 半, 持续10 ms的冷却MOT, 目的在于压缩原子团体积, 增加原子团光学厚度.关断磁场电流, 继续增加冷却光频率失谐至 -78 MHz, 进行偏振梯度冷却7 ms, 进一步降低铷原子温度. 整个过程光阱

一直处于开启状态,偏振梯度冷却结束后,关闭磁 光阱100 ms,以保证没有装载到光晶格势阱中的原 子全部扩散.随后关断光阱,打开CCD,持续曝光 1 ms,这里打开再抽运光主要用于将F = 1基态上 的原子转移至F = 2基态上与imaging光作用后吸 收得到原子图像.拍照得到干涉条纹即一维远失谐 光学晶格.

3 实验结果与分析

由于形成一维光学晶格的两束激光偏振关 系影响干涉效果,为了保证两束激光的交点位于 MOT中心,我们首先在真空腔外找到MOT等效 位置,用光斑质量分析仪在该位置观察到干涉条纹 如图3(a)所示,转动真零级半波片,达到最佳干涉 效果,以达到两束激光交点与MOT中心粗略重合. 根据文献[26],考虑本文的情形,若认为1064 nm激 光为单模,经过简单推导,可得势阱表达式:

$$U(\mathbf{r}) = -\frac{\Gamma \pi c^2}{2\omega_0^3} \cdot \left(\frac{1}{\Delta_1} + \frac{2}{\Delta_2}\right) \cdot I(\mathbf{r}), \quad (1)$$

其中,

$$\Delta_1 = \omega - \frac{2\pi c}{\lambda_1} \left(\Delta_2 = \omega - \frac{2\pi c}{\lambda_2} \right)$$

为⁸⁷Rb $D_1(D_2)$ 线激发态频率与1064 nm激光频 率失谐, $\lambda_1(\lambda_2) D_1(D_2)$ 线波长, $I(\mathbf{r}) = I_0 e^{-2r^2/w_0^2}$ 为1064 nm高斯光束总光强, ω_0 为铷原子共振跃迁 频率, w_0 为光腰, Γ 为铷原子自然线宽.若将单模 1064 nm激光分为等强度两束以 θ 夹角干涉, 形成 光晶格, 势阱表达式为

$$U_{1}(\mathbf{r}) = -\frac{\Gamma\pi c^{2}}{2\omega_{0}^{3}} \cdot \left(\frac{1}{\Delta_{1}} + \frac{2}{\Delta_{2}}\right) \cdot \frac{I(\mathbf{r})}{k_{\mathrm{B}}} \times \left[1 + \cos\left(\frac{4\pi\sin(\theta/2)}{\lambda}r + \phi\right)\right], \quad (2)$$

其中, λ 为陷俘光波长 (1064 nm), $k_{\rm B}$ 为玻尔兹曼常数, ϕ 表示两束激光的相位差, $\Delta\lambda$ 为1064 nm 光纤激光器的线宽.

若认为1064 nm激光为多模,其线宽分布为 洛伦兹线型^[27],积分后形成的一维光晶格势阱表 达式为

$$U_{2}(\boldsymbol{r}) = \int_{-\infty}^{\infty} -\frac{\Gamma \pi c^{2}}{2\omega_{0}^{3}} \cdot \frac{I_{0} e^{\frac{-2r^{2}}{w_{0}^{2}}}}{k_{B}}$$

$$\times \left(\frac{1}{\frac{2\pi c}{\lambda + \delta \lambda} - \frac{2\pi c}{\lambda_{1}}} + \frac{2}{\frac{2\pi c}{\lambda + \delta \lambda} - \frac{2\pi c}{\lambda_{2}}}\right)$$

$$\times \left[1 + \cos\left(\frac{4\pi \sin\left(\frac{\theta}{2}\right)}{\lambda + \delta \lambda}r + \phi\right)\right] \cdot \frac{\Delta \lambda}{\pi}$$

$$\times \frac{1}{\Delta \lambda^{2} + \delta \lambda^{2}} d(\delta \lambda). \tag{3}$$

虽然我们采用沃拉斯顿棱镜分束产生相位差 较小的两束激光,但分开后的两束光路不同,仍 然会存在光程差. 由(2)和(3)式理论拟合相位差 分别为0, π/4, 3π/4, π的结果如图 3 (b)—(f) 所示. 很容易看出,多模激光器与单模激光器形成的光阱 差别不大,只是单模情况的阱深比多模情况的阱深 稍大,这是由于1064 nm激光相对于铷原子跃迁共 振频率相差很大,其线宽远小于两者之间的频率 差. 图3(a)为实验上观察到的两束功率为6W、波 长为1064 nm形成的干涉条纹. 根据干涉公式, 条 纹间距 $d = \lambda/[2\sin(\theta/2)]$,其中 θ 为2°,计算得到 的d = 25 μm, 与实验结果相符合. 实验中采用小 的夹角是由于多模激光器相干长度小,采取小角度 干涉以保证在MOT中心处光程差远小于激光器相 干长度,得到较高消光比的干涉条纹.另一方面, 25 μm 晶格间距与之后实验上拉曼光干涉条纹的 间距相匹配,以便进行量子信息存储.

图 3 (网刊彩色)(a) 偏振平行的两束 1064 nm 激光形成的干涉条纹; (b)—(e) 两束激光相位差分别为0, π/4, 3π/4, π时干涉形成的一维势阱 (其中黑线代表单模激光器, 红线代表多模激光器)

Fig. 3. (color online) (a) Interference fringes formed by two parallel polarized 1064 nm beams intersecting at $\theta = 2^{\circ}$; (b)–(e) one-dimensional periodic traps formed by two laser beams of different phases: 0, $\pi/4$, $3\pi/4$, π (red line: single-mode laser, black line: multimode laser).

搭建完善的成像系统,在真空腔的正上方和 正前方放置CCD监测,微调相关光学元件使两束 1064 nm激光的光腰交点和MOT中心严格重合, 由于尺寸很小,需反复耐心调节.实验中能量低 于周期势的铷原子装载到势阱中,得到如图4所示 的一维光学晶格.图4(a)和图4(c)为两束激光偏 振平行时以2°夹角相交干涉形成的一维光学晶格. 由于1064 nm激光的光腰很小,高斯线形很窄,使 得阱深下降很快,远离交点处的势阱较浅,装载的 原子数很少,且相交于MOT 中心的两束激光存在 相位差.因此,在真空腔正前方(图4(c))只能观察 到两个光格点,真空腔上方(图4(a))也只有两个条 纹最清晰,其余较模糊,与图3(b)—(e)理论结果相 符.由图3(b)—(e)得到的相邻晶格势阱间存在一 定间距,而图4(a)和图4(c)中看到的两个格点之 间没有严格分开.导致这种差距一方面是由于实 验过程中MOT原子数很多,原子有很宽范围的速 度分布,并不是所有的原子能量都低于晶格势阱, 而是一部分在势阱底部,其余部分分布于不同势阱 深处;另一方面是由于两束光之间存在相位差,消 光比较差. 图 4 (e) 为采用 Matlab 编程在拍照时沿 光晶格中装载的原子团中心 x 方向取得的光学密 度 (optical density, OD) 数据点拟合的曲线, 有两 个峰值, 与图 4 (c) 一致. 图 4 (b) 和图 4 (d) 为两束 高斯光束偏振垂直时所得到的实验结果. 显然两 束偏振垂直的激光不发生干涉, 而是束缚阱深叠加 增强. 图 4 (f) 为 Matlab 取得的数据点拟合的曲线, 仅有一个峰值. 在真空腔内存在激光反射, 会经过 MOT, 但是不会再发生干涉, 这是由于远超过了多 模激光器的相干长度, 从而也保证了本文得到的一 维光学晶格的准确性.

此外,实验中还研究了光学晶格中冷原子温度.关断光学晶格光场,改变束缚在光学晶格中冷 原子的飞行时间,测量光学晶格中冷原子温度约为 20 μK.

图 4 (网刊彩色)一维远失谐光学晶格 (a)两束激光偏振平行,真空腔正上方监测结果; (b)两束激光偏振垂直; (c)两束激光偏振平行时,真空腔正前方监测结果; (d)两束激光偏振垂直; (e), (f)分别是偏振平行和垂直时,采用 Matlab 取得的沿光晶格中装载的原子团中心 *x* 方向的光学密度数据点拟合曲线

Fig. 4. (color online) One dimension far-off-resonance optical lattice formed by: (a), (c), (e) Two parallel polarized beams; (b), (d), (f) two orthogonally polarized beams; (a), (b) view of from above the cell; (c), (d) view from the front of the cell; (e), (f) optical density vs. distance along the x-axis.

043701-5

4 结 论

本文建立了一维远失谐光学晶格,使用更为经 济实惠的多模激光器得到的实验结果与采用单模 激光器的理论拟合基本近似.实验过程中,在铷原 子一维远失谐光学晶格实验系统的基础上,对不同 偏振状态的两束激光形成的势阱进行了对比.将 经过预冷却的原子团装载到25 µm 晶格间距的一 维远失谐光晶格中,光晶格中的原子受到很大的束 缚,可以减少原子热运动和重力场的影响,从而提 高相干时间.采用短程自由飞行时间法得到偏振梯 度冷却后的原子温度和光学晶格冷原子温度约为 20 µK.本实验为今后利用自发拉曼散射过程进行 单光子探测、达到更长时间的量子信息存储奠定了 实验基础.

参考文献

- [1] Letokhov V S 1968 JETP Lett. 7 272
- [2] Verkerk P, Lounis B, Salomon C, Cohen-Tannoudji C 1992 Phys. Rev. Lett. 68 3861
- [3] Jessen P S, Gerz C, Lett P D, Phillips W D, Rolston S L, Spreeuw R J C, Westbrook C I 1992 *Phys. Rev. Lett.* 69 49
- [4] Hemmerich A, Hansch T W 1993 Phys. Rev. Lett. 70 410
- [5] Grynberg G, Lounis B, Verkerk P, Courtois J Y, Salomon C 1993 Phys. Rev. Lett. 70 2249
- [6] Kastberg A, Phillips W D, Rolston S L, Spreeuw R J C 1995 Phys. Rev. Lett. 74 1542
- [7] Gatzke M, Birkl G, Jessen P S, Kastberg A, Rolston S L, Phillips W D 1997 *Phys. Rev. A* 55 3987
- [8] Dahan B M, Peik E, Reichel J, Castin Y, Salomon C 1996 Phys. Rev. Lett. 76 4508

- [9] Wilksinson S R, Barucha C F, Madison K W, Niu Q, Raizen M G 1996 Phys. Rev. Lett. 76 4512
- [10] Greiner M, Mandel O, Esslinger T, Hansh T W, Blich I 2002 Nature 415 39
- [11] Jaksch D, Briegel H J, Cirac J I, Gardiner C W, Zoller P 1991 Phys. Rev. Lett. 82 1975
- [12] Mandel O, Greiner M, Widera A, Rom T, Hansh T W, Bloch I 2003 Nature 425 937
- Brennen G K, Caves M C, Jessen P S, Deutsch I H 1999 Phys. Rev. Lett. 82 1060
- [14] Pachos J K, Knight P L 2003 Phys. Rev. Lett. 91 107902
- [15] Vollbrecht K G, Soano E, Cirac J I 2004 Phys. Rev. Lett.
 93 220502
- [16] Schrader D, Dotsenko I, Khudaverdyan M, Miroshnychenko Y, Rauschenbeutel A, Meschede D 1999 Phys. Rev. Lett. 93 150501
- [17] Dalibard J, Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
- [18] Jessen P S, Deutsch I H 1996 Adv. Atom. Mol. Opt. Phys. 37 95
- [19] Guidoni L, Verkerk P 1999 J. Opt. B 1 R23
- [20] Grynberg G, Robilliard C 2001 Phys. Rep. 355 335
- [21] Xu Z J, Wang D M, Li Z 2007 Acta Phys. Sin. 56 3076 (in Chinese) [徐志君, 王冬梅, 李珍 2007 物理学报 56 3076]
- [22] Qiu Y, He J, Wang Y H, Wang J, Zhang T C, Wang J M 2008 Acta Phys. Sin. 57 6227 (in Chinese) [邱英, 何 军, 王彦华, 王婧, 张天才, 王军民 2008 物理学报 57 6227]
- [23] Zhou H L, Zhu Q, Wang B, Xiong D Z 2014 Chin. J. Quantum Electron. 31 1007 (in Chinese) [周海龙, 朱强, 王兵, 熊德志 2014 量子电子学报 31 1007]
- [24] Lu X G, Miao X X, Bai J H, Yuan Y, Wu L A, Fu P M, Wang R Q, Zuo Z C 2015 *Chin. Phys. B* 24 094204
- [25] Lu X, Miao X, Bai J, Pei L, Wang M, Gao Y, Wu L A, Fu P, Wang R, Zuo Z 2015 J. Phys. B 48 055003
- [26] Grimm R, Weidemuler M 2000 Adv. Atom. Mol. Opt. Phys. 42 95
- [27] Gea-Banacloche J, Li Y Q, Jin S Z, Xiao M 1995 Phys. Rev. A 51 576

One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser^{*}

Yuan Yuan¹⁾²⁾ Lu Xiao-Gang¹⁾ Bai Jin-Hai¹⁾ Li Jian-Jun¹⁾ Wu Ling-An¹⁾ Fu Pan-Ming¹⁾ Wang Ru-Quan¹⁾ Zuo Zhan-Chun^{1)†}

 (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China)

2) (College of Physics and Information Engineering, Hebei Normal University, Shijiazhuang 050000, China)

(Received 29 September 2015; revised manuscript received 30 November 2015)

Abstract

For a quantum memory to be useful as a quantum repeater, a long coherence time is a crucial requirement. In recent years, the most commonly explored medium for quantum storage has been atomic gases. We report an experiment to realize a quantum memory based on an Rb atomic ensemble in a one-dimensional far-detuned optical lattice. A multimode 30 W continuous wave fiber laser was used to construct a travelling wave lattice with a period of 25 μ m. The Rb atoms were loaded into a magneto-optical-trap, which was then adjusted to optimize the polarization gradient cooling. To trap the cooled atoms, we turned on a laser which has a wavelength of 1064 nm and therefore is red-detuned from the resonance frequencies of D_1 and D_2 transitions of ⁸⁷Rb atoms. By taking the short-distance time-of-flight image the temperature of the atoms was found to be about 20 μ K. This system will provide a foundation for future quantum information storage studies.

Keywords: multimode laser, cold atoms, magneto-optical-trap, optical lattice

PACS: 37.10.Jk, 42.50.Ct, 03.67.-a

DOI: 10.7498/aps.65.043701

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11274376, 61308011, 11204011) and the National Basic Research Program of China (Grant Nos. 2013CB922002, 2010CB922904).

[†] Corresponding author. E-mail: zczuo@iphy.ac.cn