物理学报 Acta Physica Sinica

针对高压物质密度诊断的激光X射线照相优化设计

张天奎 韩丹 吴玉迟 闫永宏 赵宗清 谷渝秋

Optimization design of laser X-ray radiography for density diagnosis in compressed matter

Zhang Tian-Kui Han Dan Wu Yu-Chi Yan Yong-Hong Zhao Zong-Qing Gu Yu-Qiu

引用信息 Citation: Acta Physica Sinica, 65, 045203 (2016) DOI: 10.7498/aps.65.045203 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.045203 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I4

您可能感兴趣的其他文章 Articles you may be interested in

氮气开关流柱形成过程的理论研究

Theoretical study on the stream formation in the nitrogen switch 物理学报.2015, 64(20): 205206 http://dx.doi.org/10.7498/aps.64.205206

多峰场负氢离子源磁体布局对等离子体特性影响的数值模拟研究

Numerical simulation research of plasma characteristics in a multi-cusp proton source based on magnets layout

物理学报.2015, 64(8): 085203 http://dx.doi.org/10.7498/aps.64.085203

Japan Atomic Energy Agency 10 Ampere 多峰负氢离子源全三维数值诊断 A full three-dimensional numerical diagnosis of Japan Atomic Energy Agency 10 Ampere multi-cusp negative hydrogen ion source 物理学报.2013, 62(21): 215202 http://dx.doi.org/10.7498/aps.62.215202

潘宁源放电的全三维电磁粒子模拟/蒙特卡罗碰撞数值算法研究

The full three-dimensional electromagnetic PIC/MCC numerical algorithm research of Penning ion source discharge

物理学报.2013, 62(20): 205207 http://dx.doi.org/10.7498/aps.62.205207

表面产生负氢离子引出 MCC 算法设计

The MCC numerical algorithm of the extraction of the surface-produced negative hydrogen ions 物理学报.2013, 62(2): 025206 http://dx.doi.org/10.7498/aps.62.025206

针对高压物质密度诊断的激光X射线 照相优化设计^{*}

张天奎¹⁾ 韩丹¹⁾ 吴玉迟¹⁾²⁾ 闫永宏¹⁾ 赵宗清^{1)†} 谷渝秋¹⁾²⁾

(中国工程物理研究院激光聚变研究中心,等离子体物理重点实验室,绵阳 621900)
 2)(上海交通大学, IFSA 协同创新中心,上海 200240)
 (2015年7月17日收到;2015年10月31日收到修改稿)

激光驱动冲击波能提供高压的物质状态,是状态方程研究的重要工具.超短超强激光与固体靶相互作用 产生的X射线源,具有短脉冲、微焦点、高产额、能量可调的特点,是高压物质密度测量的首选背光源.本文基 于蒙特卡罗程序 Geant4 建立了X射线照相模型,客体密度分布由流体力学程序 Multi-1D 模拟激光冲击加载 高压物质获得.在一维长方体形密度客体情况下,定义了均方根、峰值偏差与上升沿斜率比三种指标,对照相 图像求解的密度结果进行评价,开展了照相结果信噪比、分辨率与对比度等参数优化.并开展了一维圆柱形密 度客体的照相模拟,建立了基于 Radon 逆变换法的 Abel 反演算法.反演结果与模拟设计密度分布符合良好, 要求X射线源半径在5 µm 以内;反演结果与模拟设计密度分布较为一致,要求X射线源半径在15 µm 以内.

关键词:激光等离子体,X射线照相,密度反演 PACS: 52.65.Pp, 52.59.-f, 52.59.Px, 52.38.Ph

1引言

温稠密物质 (warm dense matter, WDM)(特征温度为0.1—100 eV, 特征密度为0.1—100 倍固体密度)的状态方程 (equation of state, EOS)研究, 对于地球物理、天体物理和惯性约束聚变 (inertial confinement fusion, ICF)领域具有重要意义^[1]. 天体物理中恒星演化主要由物质的热力学性质决定, 行星核心材料的EOS是理解其内在结构的基础, ICF性能和效率的优化需要获得飞行中微球材料状态和极高压强 (>100 GPa)下燃料(氘)的EOS^[2].激光驱动冲击波能提供高压的物质状态^[3,4],是EOS研究的重要工具^[5],其优势在于能提供瞬态过程照相且精密同步的动态背光照相诊断.EOS测量通常需要冲击速度和自由面速度两

DOI: 10.7498/aps.65.045203

个参数,结合雨贡纽曲线获得压强和密度^[5],而密 度参数的直接测量有助于验证参数测量和提高精 度.目前,X射线照相^[5-10]和质子照相^[11]已经应 用于密度直接测量.

超短激光与固体靶作用产生的X射线 源^[12-14],具有短脉冲(时间分辨小于20 ps)、微 焦点(10 μm至几十μm)、高产额(10¹²光子/发)、能 量可调(更换不同材料的作用靶)的特点^[8],作为背 光源能满足冲击波加载材料密度测量.为了能够 实现高空间分辨照相,背光照相中广泛采用旗靶 和丝靶的背光靶结构,可以实现约10 μm的源尺 寸^[8,15-18].为了获得高对比度的照相结果,采用 不同材料的背光靶,获得了4.95 keV (V),8.04 keV (Cu)^[2],17.5 keV(Mo)^[1]和60 keV (W)^[5]等多种 不同能量的短脉冲X射线源.在获得X射线照相图 像基础上,需要通过反演算法求解客体密度,在圆

* 国家自然科学基金(批准号: 11505166, 11375161, 11405159, 11174259)和等离子体物理重点实验室基金(批准号: 9140C680301150C68297, 9140C680306120C68253, 9140C680302130C68242)资助的课题.

[†]通信作者. E-mail: zhaozongqing99@gmail.com

^{© 2016} 中国物理学会 Chinese Physical Society

柱形客体情况下由Abel 逆变换获得^[1,2].

激光等离子体X光源开展高压物质密度诊断 的流程见图1,共分三个部分,本文主要工作是蒙 特卡罗程序模拟与密度反演算法建立.为了优化照 相所需的X射线源与照相布局参数,蒙特卡罗程序 中密度客体截面设为长方形,在这种情况下对照相 数据进行简单计算即可获得客体密度分布,并在此 基础上开展了信噪比、分辨率与图像对比度等关键 参数的优化,详见第2节.在第3节中,采用优化的 照相参数对截面为圆形的密度客体进行了模拟,基 于 Radon 逆变换法研究了密度反演,同时分析了实 验中各种尺寸X射线源的实现方法.在第4节中, 对本工作进行了总结,并讨论了需要进一步开展的 工作.

图 1 激光 X 射线对高压物质密度分布照相诊断流程 Fig. 1. Flow of radiography diagnostic for density distribution of compressed material based on plasma Xray.

2 长方体形客体情况下的照相优化

基于流体力学程序 Multi-1D 模拟纳秒束激光 驱动冲击波压缩 Al材料^[19], 200 µm 厚 Al材料在 3 ns 时刻的密度压缩比 (模拟密度值与固体密度之 比)分布如图 2 (a) 示,其中激光参数采用星光 III 纳 秒束数据 (300 J/ns), 波长为 527 nm,聚焦焦斑直 径为 200 µm, 能量集中度为 80%,功率密度约为 7.6 × 10¹⁴ W/cm². 一维长方体形密度客体照相示 意图见图 2 (b),客体上不同颜色层表示不同密度, 其中 h = 200 µm 为激光加载方向上的客体厚度, d = 200 µm 为客体在 X 射线穿透方向上的长度 (与 激光焦斑相等), M 为系统放大倍数, L 为 X 射线源 到客体的距离 (设为 1 cm).

照相模拟采用Geant4建模^[20],电磁作用截面 采用Livermore低能数据库,X射线在材料中长度 截断设为0,探测器探测单元大小为20 µm×20 µm, 建模中密度分辨率为0.01 g/cm³.

信噪比、空间分辨率与对比度是X射线照相追求的重要指标.为了实现这三个重要指标,2.1节首

先优化了照相放大倍数,以满足高信噪比要求; 2.2 节对标准照相分辨率板模拟照相,定量分析了X射 线源尺寸对空间分辨率的影响; 2.3节分析了光子 产额变化对照相结果信噪比的影响; 2.4节通过对 高压物质区域信噪比与对比度的优化,给出了光子 能量的选取准则.

图 2 (网刊彩色) (a) *d* = 200 μm 客体 3 ns 时刻密度分 布与 (b) 一维长方体形密度客体照相示意图

Fig. 2. (color online) (a) Density distribution of object with $d = 200 \ \mu \text{m}$ at 3 ns shown; (b) radiography schematic diagram of one-dimensional density object in the shape of rectangular solid.

2.1 信噪比优化

从X射线源发射未经衰减到达像面中心单元 的光子数目为

$$\phi_0 = \frac{Y_{\rm T}}{4\pi M^2 L^2} A_{\rm d}, \qquad (1)$$

其中, $Y_{\rm T}$ 为X射线光子产额(4π内),考虑到激 光能量到X射线转换效率为10⁻⁴,单发情况下 $Y_{\rm T} = 10^{12}$ ^[8], $A_{\rm d} = 400 \ \mu {\rm m}^2$ 为像素单元的面积.

探测器计数统计涨落为 $1/\sqrt{\phi_0}$,满足统计涨落为 $1/\sqrt{\phi_0}$,满足统计涨落为1%, 3%与5%时,照相系统的放大倍数分别为5.6,17和28. 光子能量选择为Ag的K_a线(能量22 keV)、源半径选为1,5,15和25 μ m,三种放大倍数下的照相结果如图**3**所示.

物理学报 Acta Phys. Sin. Vol. 65, No. 4 (2016) 045203

Fig. 3. (color online) Radiography images of sources with four radii at three magnifications.

根据Beer-Lambert定律,材料中X射线的穿透表达为

$$I = I_0 \exp(-\mu \rho L), \qquad (2)$$

其中, *I*₀与*I*分别为透过材料前后X射线束强度, μ 为X射线在物质中的质量吸收系数, ρ为材料密度, *L*为X射线透射方向上的材料厚度.

由(2)式获得材料密度压缩比为

$$c = \frac{\ln(I/I_0)}{-\mu L\rho_0},\tag{3}$$

其中ρ0为固体材料密度.

提取图 **3**(a) 所示水平中心线的单元光子数数 据, 通过 (**3**) 式得到的密度压缩比, 见图 **4**, 其中 *µ* 采用 Geant4 模拟获得.

为了比较从照相图像求解密度压缩比(图4) 与模拟初设密度压缩比(图2(a))二者的差异,均 方根(root mean square, RMS)、峰值偏差(peak value, P_d)与上升沿斜率比(ratio of rise gradient, K)三个评价变量分别定义为

$$RMS = \sum_{i=1}^{N} \left[c_{\rm r}(i) - c_0(i) \right]^2, \tag{4}$$

$$P_{\rm d} = \frac{\left| \max_{i=1}^{N} \{c_r(i)\} - \max_{i=1}^{N} \{c_0(i)\} \right|}{\max_{i=1}^{N} \{c_0(i)\}}, \quad (5)$$

$$K = \frac{K_{\rm r}}{K_0},\tag{6}$$

其中, c₀(*i*)和 c_r(*i*)分别为模拟初设密度压缩比与 从照相图像求解密度压缩比, K₀是将初设压缩比 曲线上升沿(定义为从固体密度值到最大压缩值上 升阶段)拟合得到的直线斜率, K_r是从求解压缩比 曲线上升沿拟合得到的直线斜率.

上述三个评价指标中, RMS表征了求解密度 压缩比与初设密度压缩比的整体偏差; P_d 反映了 两种密度压缩比的峰值偏差; K 定义为求解密度压 缩比曲线与初设密度压缩比曲线的陡变上升斜率 之比, K 越大, 求解密度压缩比越能反映初设密度 压缩比的陡变上升, 当K = 1时, 求解密度压缩比 与初设密度压缩比的陡变上升一致.

Fig. 4. Photon count distribution of horizontal center line in Fig. 3 (a) and the computed density compression.

不同放大倍数下三个评价指标值见图5,均 方根与峰值偏差在放大倍数为5.6时达到最小,上 升沿斜率比最佳值对应放大倍数为17,放大倍数 为5.6时次之.综合而言,照相优化的放大倍数为 5.6,因此照相中需保证高信噪比,满足统计涨落不 大于1%.

2.2 X光源尺寸对空间分辨率影响分析

随着源尺寸的增大,三种评价指标不断变差, 图3所示照相图像上灰度变化边界也不断模糊,这 是因为照相系统空间分辨能力随着源尺寸增大不 断变差.一般而言,成像系统空间分辨率可表达为

$$\Delta s = \sqrt{\Delta s_{\rm S}^2 + \Delta s_{\rm D}^2 + \Delta s_{\rm N}^2},\tag{7}$$

其中, $\Delta s_{\rm S}$ 和 $\Delta s_{\rm D}$ 分别是由源尺寸与探测器尺寸决定的空间分辨率, 当探测器不存在信号串扰情况下 $\Delta s_{\rm D} = L_{\rm D}/M$, 其中 $L_{\rm D}$ 为探测器单元尺寸, $\Delta s_{\rm N}$ 是由成像系统噪声及数据后处理方法引起的空间 分辨率下降部分.

在模拟中放大倍数、光子产额及探测单元相同时, $\Delta s_{\rm N}$ 和 $\Delta s_{\rm D}$ 基本不变,空间分辨率主要由 $\Delta s_{\rm S}$ 项决定(由源尺寸变化引起).空间分辨率的具体值由Geant4模拟获得,设置图6所示的空间分辨率板,不同序号模式对应的分辨参数如表1所列.

图 6 (网刊彩色) (a) 分辨率板模式和 (b) 局部放大 Fig. 6. (color online) Pattern of resolution plate shown in (a) and local enlarged drawing shown in (b).

分辨率板模拟照相结果显示,放大倍数为17 情况下,半径为1μm源的分辨率约为1.0—2.5μm, 半径为5μm源的分辨率约为2.5—5.0μm,半径 为15μm源的分辨率约为10.0—12.5μm;放大 倍数为5.6情况下,半径为1μm源的分辨率约为 2.5—5.0μm,其他半径源的分辨率结果与放大倍 数为17时相同.从分辨率板模拟数值看,半径为 1μm源的放大倍数为17情况优于放大倍数为5.6 情况,这与图5所示评价指标给出的结论矛盾.这 是因为密度客体照相与分辨率板照相相比,即使光 子产额相同, Δs_N 项也不相同,系统噪声与数据后 处理方法引起的空间分辨率下降受到照相客体分 布(密度与空间)的影响.

表 1 分辨率板模式对应参数 Table 1. Parameters of resolution plate.

序号	线对数 $L_{\rm p}/{ m mm}$	间隔尺寸/µm
А	20	25.0
В	25	20.0
\mathbf{C}	40	12.5
D	50	10.0
\mathbf{E}	100	5.0
\mathbf{F}	200	2.5
G	500	1.0
**	1000	0 -

2.3 光子产额影响

为分析光子产额影响,选择放大倍数为17,光 子产额除10¹² 外,选取10¹¹,5×10¹¹,5×10¹²,10¹³ 四种水平,密度压缩比的评价指标值见图7.RMS 值在产额提高后降低显著; P_d 值在源半径小于等 于5 μ m 时随产额提高而降低,在15,25 μ m时变 化复杂;K值在源半径小于等于5 μ m时随产额提 高而增大,在15,25 μ m时变化复杂.

半径为5与15 μm 源在不同产额下求解的密 度压缩比分布见图8,在产额较低时曲线的涨落很 大,因此图7中P_d与K值在源尺寸较大时变化复 杂是由数据统计涨落造成的,而RMS值对曲线整 体做计算,能够较好反映涨落影响.在实验中总是 期望获得涨落较小的数据,以保证结果的精度.

图 8 (网 刊 彩 色) 不 同 产 额 下 半 径 为 (a) 5 μm 与
 (b) 15 μm 源照相图像的密度压缩比分布

Fig. 8. (color online) Density compression distribution of radiography image by the source with 5 μ m radius shown in (a) and the source with 15 μ m radius shown in (b) at different yield.

2.4 光子能量与图像对比度优化

X 射线光子能量采用 Mo, Ag, Sn 和 Nd 的 K_α 线 (能量依次为 17.5, 22, 25 与 37 keV), 放大倍数为 5.6时照相图像如图 9 所示. 由图可见, 随着光子能 量增大, 照相结果对比度变差, 特别是在 Nd 的 K_α 线照相结果中对比度变得很差.

为了定量比较光子能量对照相结果密度分辨 的影响,放大倍数为5.6情况下不同X射线能量照 相结果的RMS, P_d与K评价指标值如图10所示. 由图可见, RMS在能量为22 keV时达到最小值; P_d 值在源半径为1和5 μm时基本随X射线能量增大 而增大,而在源半径为15 m和25 μm时先随X射 线能量增大而减小,后随能量增大而增大,但是 源半径较大时图像涨落很大,因此以源半径较小 时的变化趋势为准; K 值随着X射线能量变大呈 现缓慢降低趋势.因此,照相优化的X射线能量 为17.5—22 keV,而源半径小于5 µm以内,由照相 结果得到密度曲线与设计值的整体偏差小于0.27 (RMS值),密度峰值的偏差小于0.07 (Pd 值),密度 曲线上升斜率能基本反映设计上升斜率(K值大于 0.4).

为了分析光子能量对不同透射尺寸客体照相 结果的影响,定义X射线透过率比为

$$\varepsilon = \frac{P(\rho_{\rm c}, E_{\gamma}, t)}{P(\rho_0, E_{\gamma}, t)},\tag{8}$$

其中, $P(\rho_i, E_{\gamma}, t)$ 为能量 E_{γ} 的X射线在密度 ρ_i 、厚度t的Al材料中透过率, ρ_0 和 ρ_c 分别为压缩前后Al材料密度.

图 9 (网刊彩色) 不同光子能量 X 射线源对应的照相图像

Fig. 9. (color online) Radiography images by X-ray sources with different photon energy.

045203-6

由(8)式可模拟得到一定能量对应的透过率 比,其中ρ_c取压缩密度峰值.此外,模拟一定能量 X射线透过密度为压缩密度峰值客体后探测单元 内光子计数为φ_c.透过率比ε与单元光子计数φ_c 随X射线能量的变化见图11.由图可见,ε随光子 能量增加不断减小,最终趋近于1;φ_c随光子能量 增加不断增大,最终趋近于(1)式定义的φ₀(未经 衰减到达像面中心单元的光子数目).因此,透过 率比ε越大,图像对比度越高;透过压缩物质后单 元光子计数φ_c越大,图像信噪比越高.因此,光 子能量优化必须考虑高对比度与高信噪比的要求, 如前所述厚度为200 μ m客体照相的优化能量为 17.5—22 keV,对比图11,则优化的X射线能量下 要求 $\varepsilon \ge 1.5$,且 $\phi_c \ge 3000$.

3 圆柱形客体照相图像与密度反演

一维圆柱形密度客体照相示意图见图 12, 其 中 $d = 200 \ \mu m$ 为激光加载区域直径, $d_1 = 300 \ \mu m$ 为靶直径, $h = 200 \ \mu m$ 为靶厚度.不同半径源下 一维圆柱形密度客体的照相结果见图 13, 模拟中 采用第2节的优化参数, X 光能量为Ag的 K_a线 (22 keV)、放大倍数为5.6, 源产额设为1×10¹².

图 12 一维圆柱形密度客体照相示意图

在图 13 中提取特定轴坐标处 (z 不变) 的径向数据 (r 方向), 然后通过平滑、样条拟合等预处理, 再基于 Radon 逆变换法开展 Abel 反演 (满足轴对称假设)^[21], 就可获得特定轴坐标处的径向密度分布. 当对不同轴坐标的径向数据均开展密度反演后, 即获得圆柱客体的轴向密度分布, 如图 14 (a) 所

示. 均方根 RMS、峰值偏差 P_d 与上升沿斜率比 K 三种指标结果见图 14 (b). 当X射线源半径在 5 μ m 以内时,密度反演结果的 RMS < 0.2, P_d < 0.1, $K \ge 0.5$,此时反演密度曲线能够较好地反映设计 值;当X射线源半径为15 μ m时,密度反演的 RMS 约为 0.3, P_d 约为 0.2, K 略大于 0.1,此时密度反演 结果也可反映设计值;当X射线源半径为25 μ m 时,三个评价指标值都变得很差,反演结果只能反 映设计值的轮廓. 因此,采用优化参数(能量、放大倍数等)照相时,反演结果与模拟设计(或实验真实)密度分布符合良好,要求X射线源半径在5µm以内;反演结果与模拟设计密度分布较为一致,要求X射线源半径在15µm以内.国外研究中采用丝靶、旗靶等微结构靶,可获得光源尺寸(FWHM)约为10µm的等离子体光源^[8,16-18],激光聚变研究中心基于纳米 丝阵列靶获得了光源尺寸(FWHM)为30µm的X 射线源^[22],因此实验中可优先选择这两类激光等 离子体光源产生方式作为背光源.

Fig. 13. (color online) Radiography images of one-dimensional density object in the shape of cylinder at the x-ray source with different radius.

图 14 (网刊彩色) (a) 一维圆柱形密度客体照相图像反演的轴向密度分布与 (b) 评价指标值 Fig. 14. (color online) Density distribution inversed from the radiography images of one-dimensional density object in the shape of cylinder shown in (a) and the values of evaluation norms shown in (b).

4 结论与讨论

本文基于蒙特卡罗程序(Geant4)建立了X射 线背光照相模型,客体密度分布由一维流体力学程 序(Multi-1D)模拟激光加载Al靶获得,加载激光 参数采用星光III纳秒束参数. 在一维长方体形密度客体情况下,通过定义均 方根、峰值偏差与上升沿斜率比对照相图像求解的 密度结果进行评价,首先开展了信噪比优化,获得 光子产额为1×10¹²时最优放大倍数为5.6;第二, 通过设计分辨率板,模拟了不同尺寸光源对应的空 间分辨率;第三,在相同放大倍数情况下,分析了 源产额对图像信噪比的影响;第四,模拟了不同能 量光源的照相结果,照相优化的X射线能量要求透 过率比大于1.5、且透过压缩物质后单元光子计数 大于3000,保证照相图像同时具有高对比度与高信 噪比.

在此基础上模拟得到了一维圆柱形密度客体 的照相图像,通过Radon逆变换法开展Abel反演, 获得了密度压缩比分布.在照相参数优化条件下, 反演结果与模拟设计密度分布符合良好,要求X射 线源半径在5 μm以内;反演结果与模拟设计密度 分布较为一致,要求X射线源半径在15 μm以内.

综合考虑信噪比、分辨率与对比度等优化指标, 并关联到光源产额、尺寸与照相布局等可控参量, 这是本研究优化设计的指导思想.该优化设计方法 可推广于一般X射线照相设计中.特别是X射线能 量优化中对图像对比度与信噪比综合权衡的方法, 相比传统透射照相只考虑特征能量射线在物质中 衰减系数的方法,具有更广泛的适用范围,尤其适 合于射线能谱复杂的环境,如轫致辐射谱X射线照 相设计中.另外,归纳出均方根、峰值偏差与上升沿 斜率比等指标评价对照相图像进行评价,密度反演 等研究方法,也对透射照相等无损检测应用具有一 定的借鉴作用.

从实验图像分析获得高精度的高压物质密度 分布,下一步需要开展以下工作:研究温度效应引 起高压物质中X射线吸收变化对照相结果的影响, 轫致辐射谱照相情况下客体密度反演方法,非轴对 称客体密度反演算法等.

参考文献

- Ravasio A, Koenig M, Pape S L, Benuzzi-Mounaix A, Park H S, Cecchetti C, Patel P, Schiavi A, Ozaki N, Mackinnon A, Loupias B, Batani D, Boehly T, Borghesi M, Dezulian R, Henry E, Notley M, Bandyopadhyay S, Clarke R, Vinci T 2008 *Phys. Plasmas* 15 060701
- [2] Pape L S, Neumayer P, Fortmann C, Doppner T, Davis P, Kritcher A, Landen O, Glenzer S 2010 *Phys. Plasmas* 17 056309
- [3] Liu T H, Hao Z Q, Gao X, Liu Z H, Lin J Q 2014 Chin. Phys. B 23 085203
- [4] Wang J X, Gao X, Song C, Lin J Q 2015 Acta Phys. Sin. 64 045204 (in Chinese) [王绩勋, 高勋, 宋超, 林景全 2015 物理学报 64 045204]
- Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C D, Kimura T, Kodama R, Ozaki N, Park H S, Koenig M 2009 *Phys. Rev. E* 80 056407

- [6] Neumayer P, Fortmann C, Döppner T, Davis P, Falcone R W, Kritcher A L, Landen O L, Lee H J, Lee R W, Niemann C, Pape L S, Glenzer S H 2010 *Phys. Rev. Lett.* **105** 075003
- [7] Loupias B, Perez F, Benuzzi-Mounaix A, Ozaki N, Rabec M, Gloahec L E, Pikuz T A, Faenov A Y, Aglitskiy Y, Koenig M 2009 Laser and Particle Beams 27 601
- [8] Brambrink E, Wei H G, Barbrel B, Audebert P, Benuzzi-Mounaix A, Boehly T, Endo T, Gregory C, Kimura T, Kodama R, Ozaki N, Park H S, Gloahec R L M, Koenig M 2009 Phys. Plasmas 16 033101
- [9] Fortney J J, Glenzer S H, Koenig M, Militzer B, Saumon D, Valencia D 2009 *Phys. Plasmas* 16 041003
- [10] Pape L S, Macphee A, Hey D, Patel P, Mackinnon A, Key M, Pasley J, Wei M, Chen S, Ma T, Beg F, Alexander N, Stephens R, Offerman D, Link A, van Woerkom L, Freeman R 2008 *Rev. Sci. Instrum.* **79** 106104
- [11] Ravasio A, Romagnani L, Pape L S, Benuzzi-Mounaix A, Cecchetti C, Batani D, Boehly T, Borghesi M, Dezulian R, Gremillet L, Henry E, Hicks D, Loupias B, MacKinnon A, Ozaki N, Park H S, Patel P, Schiavi A, Vinci T, Clarke R, Notley M, Bandyopadhyay S, Koenig M 2010 *Phys. Rev. E* 82 016407
- [12] Wang R R, Chen W M, Wang W, Dong J Q, Xiao S L 2010 Chin. Phys. B 19 075202
- [13] Zhu W, Ye Y, Zhu P F, Liu Z Q, Xia C Q, Shen B F, Liang X Y, Leng Y X, Qian W X, Li J, Li Z R, Li Z Y, Peng Q X 2012 *High Power Laser and Particle Beams* 24 2651 (in Chinese) [朱巍, 叶雁, 朱鹏飞, 刘振清, 夏长 权, 沈百飞, 梁晓燕, 冷雨欣, 钱伟新, 李军, 李泽仁, 李作友, 彭其先 2012 强激光与粒子束 24 2651]
- [14] Xiong J, Dong J Q, Jia G, Wang R R, Wang W, Fu S Z, Zheng W D 2013 *Chin. Phys. B* 22 065201
- [15] Park H S, Chambers D M, Chung H K, Clarke R J, Eagleton R, Giraldez E, Goldsack T, Heathcote R, Izumi N, Key M H, King J A, Koch J A, Landen O L, Nikroo A, Patel P K, Price D F, Remington B A, Robey H F, Snavely R A, Steinman D A, Stephens R B, Stoeckl C, Storm M, Tabak M, Theobald W, Town R P J, Wickersham J E, Zhang B B 2006 *Phys. Plasmas* **13** 056309
- [16] Park H S, Maddox B R, Giraldez E, Hatchett S P, Hudson L T, Izumi N, Key M H, Pape L S, MacKinnon A J, MacPhee A G, Patel P K, Phillips T W, Remington B A, Seely J F, Tommasini R, Town R, Workman J, Brambrink E 2008 *Phys. Plasmas* **15** 072705
- [17] Tommasini R, Hatchett S P, Hey D S, Iglesias C, Izumi N, Koch J A, Landen O L, MacKinnon A J, Sorce C, Delettrez J A, Glebov V Y, Sangster T C, Stoeckl C 2011 Phys. Plasmas 18 056309
- [18] Vaughan K, Moore A S, Smalyuk V, Wallace K, Gate D, Glendinning S G, McAlpin S, Park H S, Sorce C, Stevenson R M 2013 *High Energ. Dens. Phys.* 9 635
- [19] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun 49 475
- [20] Buis E J, Vacanti G 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 599 260

- [21] Shao H, Zhu D P, Wu Y X 2005 J. Shanghai Jiao Tong Univ. 39 1375 (in Chinese) [邵华, 朱丹平, 吴毅雄 2005 上海交通大学学报 39 1375]
- [22] Wang J, Zhao Z Q, He W H, Zhu B, Dong K G, Wu Y C, Zhang T K, Niu G, Zhou K N, Xie N, Zhou W M, Gu Y Q 2015 Chin. Opt. Lett. 13 031001

Optimization design of laser X-ray radiography for density diagnosis in compressed matter^{*}

Zhang Tian-Kui¹⁾ Han Dan¹⁾ Wu Yu-Chi¹⁾²⁾ Yan Yong-Hong¹⁾ Zhao Zong-Qing^{1)†} Gu Yu-Qiu¹⁾²⁾

1) (Science and Technology on Plasma Physics Laboratory, Laser Fusion Research Center, China Academy of Engineering Physics,

Mianyang 621900, China)

2) (Shanghai Jiao Tong University, IFSA Collaborative Innovation Center, Shanghai 200240, China)
 (Received 17 July 2015; revised manuscript received 31 October 2015)

Abstract

The shock wave driven by laser is an important tool for investigating equation of state and can provide the state of compressed matter. The X-ray source, generated by the short-pulse intense laser interaction with the solid target, has the properties of short pulse, small spot, high yield and tunable energy. Therefore the X-ray source is the first chosen as a backlighter for the diagnosis of dynamic process. The model of the X-ray radiography is established by Monte Carlo code Geant4. The density distribution in an object is obtained by hydrodynamic code Multi-1D and the laser parameters are obtained by the XGIII laser facility. Under the condition of one-dimensional density the object in the shape of rectangular solid, three evaluation criterions, root mean square, peak value and ratio of rise gradient, are defined for evaluating density results. The signal-to-noise, spatial resolution, and contrast of radiography results have been optimized. First, the signal-to-noise has been optimized and the optimization magnification is 5.6 with the photon yield 10^{12} . Second, the spatial resolution according to different spot X-ray source has been simulated by designing resolution plate radiography. Third, in the condition of same magnification, the influence of source yield on radiography result has been analyzed. Fourth, the radiography results of different X-ray energy have been simulated. The optimization energy for radiography requests that the penetrability ratio is greater than 1.5 and the photon count in pixel after penetrating the compressed matter is greater than 3000. And the optimum criteria make sure that the radiography images simultaneously have high contrast and high signal-to-noise. The radiography of one-dimensional density object in the shape of cylinder has been simulated. The Abel inversion algorithm is established based on Radon inversion. The inversion result accords well with the designed density distribution in simulation at the request of the radius of X-ray source less than 5 µm. The inversion result basically accords with the designed density distribution in simulation at the request of the radius of X-ray source less than 15 μ m. This work will contribute to the measurement experiments on the compressed matter achieved by laser-driven-shock and provide the reference for the optimization of radiography based on X-ray.

Keywords: laser plasma, X-ray radiography, density inversion PACS: 52.65.Pp, 52.59.-f, 52.59.Px, 52.38.Ph DOI:

DOI: 10.7498/aps.65.045203

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11505166, 11375161, 11405159, 11174259) and the Foundation of Science and Technology on Plasma Physics Laboratory, China (Grant Nos. 9140C680301150C68297, 9140C680306120C68253, 9140C680302130C68242).

 $[\]dagger$ Corresponding author. E-mail: zhaozongqing99@gmail.com