物理学报 Acta Physica Sinica

Institute of Physics, CAS

基于磁共振的水下非接触式电能传输系统建模与损耗分析

张克涵 阎龙斌 闫争超 文海兵 宋保维

Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance

Zhang Ke-Han Yan Long-Bin Yan Zheng-Chao Wen Hai-Bing Song Bao-Wei

引用信息 Citation: Acta Physica Sinica, 65, 048401 (2016) DOI: 10.7498/aps.65.048401 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.048401 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I4

您可能感兴趣的其他文章 Articles you may be interested in

基于双缘调制的数字电压型控制Buck变换器离散迭代映射建模与动力学分析

Discrete iterative-map modeling and dynamical analysis of digital voltage-mode controlled buck converter with dual-edge modulation

物理学报.2015, 64(22): 228401 http://dx.doi.org/10.7498/aps.64.228401

离散移相控制全桥 DC-DC 变换器的能量迭代建模及多周期态研究 The study of energy model and multi-period of discrete phase shift control technique for full-bridge DC-DC converter 物理学报.2015, 64(10): 108401 http://dx.doi.org/10.7498/aps.64.108401

基于状态关联性的 Boost 变换器混沌与反混沌控制

Chaos control and anti-control in Boost converter based on altering correlation 物理学报.2015, 64(4): 048401 http://dx.doi.org/10.7498/aps.64.048401

电流型脉冲序列控制 Buck 变换器工作在电感电流连续导电模式时的多周期行为

Multi-period analysis of current-mode pulse-train controlled continuous conduction mode converter 物理学报.2014, 63(24): 248401 http://dx.doi.org/10.7498/aps.63.248401

脉冲跨周期调制连续导电模式 Buck 变换器低频波动现象研究

Low-frequency oscillation of continuous conduction mode buck converter with pulse skipped modulation 物理学报.2014, 63(19): 198401 http://dx.doi.org/10.7498/aps.63.198401

基于磁共振的水下非接触式电能传输系统建模与 损耗分析

张克涵† 阎龙斌 闫争超 文海兵 宋保维

(西北工业大学航海学院,西安 710072)

(2015年9月11日收到;2015年12月14日收到修改稿)

文章对基于磁共振的水下非接触式电能传输系统在海水中的传输机理以及电涡流损耗进行了分析.首先 基于互感模型,建立了空气中磁共振非接触式电能传输系统的数学模型,分析了系统的频率特性,从理论上 对频率分裂现象进行了解释.然后针对海水环境,通过麦克斯韦方程组建立系统的数学模型,通过级数展开, 略去高阶项,得到计算电涡流损耗的近似公式,分析了电涡流损耗与线圈半径、谐振频率、传输距离、磁感应 强度的关系,为水下非接触式电能传输系统的总体设计提供了理论依据.最后通过实验验证了在空气中和海 水中进行非接触式电能传输的异同,以及电涡流损耗与各项参数的关系.实验表明:在空气中当传输距离为 50 mm、传输功率为100 W时,效率在80%以上;在海水中当传输距离为50 mm、传输功率为100 W时,效率 约为67%,说明基于磁共振的水下非接触式电能传输系统在海水中也有很好的应用前景.

关键词:磁共振,互感模型,频率特性,电涡流损耗 PACS: 84.30.Jc, 03.50.De

DOI: 10.7498/aps.65.048401

1引言

非接触式电能传输技术包括磁耦合、磁共振以 及微波辐射三种方式.基于磁耦合的非接触式电能 传输系统,传输距离一般在10 mm以内,一般适用 于近距离、大功率的场合,当传输距离较大时,传 输效率会急剧下降^[1,2];基于微波辐射的传输方式, 电能被转化为微波通过天线发射与接收,适用于电 能的远程输送,缺点是不能绕开障碍物,且由于大 气的尘埃等因素,传输效率很低,因此这种方式在 传输电能方面还有很大的局限性;相比而言,基于 磁共振的非接触式电能传输是通过原、副边线圈的 共振,形成一个能量低阻通道,在原、副边线圈距离 较远时,也可以实现较高效率传输,且对方向性要 求不高,使其在医疗、交通运输、家用电器、军事等 方面具有很好的发展前景^[3-6].

水下非接触式电能传输技术是将电能经过磁

场能的转化,完成从原边线圈到副边线圈的传递, 这种传输方式不存在发送端与接收端的直接电气 连接,可以避免传统湿插拔电能补给方式由于金属 接插件接触引起的火花、漏电等安全隐患,提高了 电能传输的安全性,适用于水下航行器与海底基站 对接的海洋工作环境,这可以大幅提高水下航行器 的工作效率和隐蔽性.

有关空气中磁共振非接触式电能传输系统的 研究很多.2007年,麻省理工大学Soljacic教授的 研究小组^[7] 第一次以耦合模理论解释了磁共振非 接触式电能传输机理.此后,国内外学者对非接触 式电能传输做了大量的研究,研究热点主要集中在 最大功率传输及阻抗匹配等方面^[8-10].而针对海 水中非接触式电能传输的研究,基本都是基于磁耦 合方式,对磁共振方面的研究很少.文献[11]中提 出了一种在海底进行非接触式电能传输的方案,实 现了在海底当传输距离为50 mm时,传输效率为 40%;文献[12]中设计了一款24 cm×24 cm×1.5 cm

[†]通信作者. E-mail: zhangkehan210@163.com

^{© 2016} 中国物理学会 Chinese Physical Society

的谐振器,在次级侧经过整流、DC-DC变换,实现 了当传输距离为50 mm时,传输效率为50%,且论 证得出电能损耗主要为电涡流损耗; 文献 [13] 提出 了一种给水中机器鱼的充电方案,在研究中发现, 当谐振频率变高时,涡流损耗会急剧增大.在海洋 环境中进行磁共振非接触式电能传输时,交变电流 产生交变磁场,交变磁场又会在海水中产生涡旋电 场,由于海水具有较大的电导率,其产生的电涡流 损耗较大,会降低海水中电能传输效率,增加了系 统的复杂程度. 国内外的研究大部分只是提到在海 水中进行非接触式电能传输时,存在电涡流损耗, 但大都没有理论推导,也无具体的数学表达式.因 此研究电涡流损耗的产生机理以及影响因素是十 分必要的. 文献 [14] 提出了一种针对磁耦合的水下 非接触式电能传输电涡流损耗计算方法,该方法仅 给出了计算电涡流损耗的近似积分形式,并无解析 式. 文献 [15] 提出了一种铁板中涡流的检测方法, 并分析了感生电压和铁板厚度、电导率的关系. 文 献[16] 对小功率螺线管的涡流损耗进行了有限元 分析,得出了仿真结果. 文献 [17] 针对电动汽车的 非接触式充电,采用有限元方法计算了在汽车底盘 中产生的电涡流大小.本文针对水下磁共振电能传 输系统,建立数学模型,基于麦克斯韦方程组推导 出电涡流损耗的数学表达式,定性地分析各个参数 与电涡流损耗的关系,从而为系统的总体设计和高 效传输提供理论依据.

2 电路模型建立

磁共振电能传输系统按补偿电路结构一般分 为初级侧与次级侧串串、串并、并串、并并四种工作 方式^[18].考虑到串串模式有更好的负载适应性和 频率稳定性^[19],本文选择串串模式进行建模,电路 模型如图1所示.

图1 电能传输系统电路模型

Fig. 1. The circuit model of CPT system.

图 1, $U_1 = A \sin(\omega t)$ 为输入电压; R_1 为电源 内阻和初级侧线路电阻之和; R_2 为次级侧线路电 阻; R_L 为负载电阻; L_1 , L_2 分别为初级侧、次级侧 线圈电感; C_1 , C_2 分别为初、次级侧补偿电容; M为两个线圈之间的互感.

2.1 数学模型

选同名端和电流参考方向如图1所示,根据基 尔霍夫定律可以列出初级侧、次级侧回路方程如下:

$$\dot{U}_1 = \dot{I}_1 R_1 + j\omega L_1 \dot{I}_1 + \frac{1}{j\omega C_1} \dot{I}_1 - j\omega M \dot{I}_2, \quad (1)$$

$$j\omega M\dot{I}_1 = j\omega L_2 \dot{I}_2 + R_2 \dot{I}_2 + R_L \dot{I}_2 + \frac{1}{j\omega C_2} \dot{I}_2.$$
 (2)

为了求解方便, 取: $L_1 = L_2 = L$, $C_1 = C_2 = C$, $R_1 = R_2 = R$.

定义耦合系数 $k = M/\sqrt{L_1L_2}$, 则负载电压 U_L 可写为

$$U_{\rm L} = \left| \frac{\mathrm{j}\omega kL \frac{1}{R + \mathrm{j}\omega L + \frac{1}{\mathrm{j}\omega C}} \dot{U}_1 R_{\rm L}}{\mathrm{j}\omega L + R + R_{\rm L} + \frac{1}{\mathrm{j}\omega C} + \omega^2 k^2 L^2 \frac{1}{R + \mathrm{j}\omega L + \frac{1}{\mathrm{j}\omega C}}} \right|.$$
(3)

当输入电压为 $U_1 = 100\sqrt{2}\sin(\omega t)/V$ 时,负 载电压 U_L 与频率 $f(2\pi f = \omega)$ 、耦合系数k的关 系 $(L_1 = L_2 = 38.91 \mu$ H, $C_1 = C_2 = 1 n$ F, $R_1 = R_2 = 0.2 \Omega, R_L = 5 \Omega$ 时)如图 2 所示.

Fig. 2. The relations among $U_{\rm L}$ and k, f.

从图2的三维图可以看出,负载电压在谐振频 率处(谐振频率约为810 kHz)取最大值,且随着耦 合系数的增大,出现频率分裂现象,即存在两个频 率使负载电压取得最大值.随着耦合系数的进一步 增大,分裂现象越来越严重.从图2还可以看出,负 载电压在某一段距离上基本没有变化,且通过计算 发现,负载电阻 R_L越小,这种效果越明显.将负载 电压没有变化的这段距离称为磁共振电能传输的 有效距离区间,可以使用频率跟踪技术,使负载功 率一直取最大值.

根据文献 [20], 在初级侧线圈和次级侧线圈为 同轴螺线线圈时, 且在准静态约束条件下, 谐振耦 合式电能传输距离与互感的关系约为

$$M = \frac{\pi \mu (n_1 n_2)^{0.5} (r_1 r_2)^2}{2h^3},$$
(4)

其中, r_1 , r_2 为初级侧、次级侧线圈半径; n_1 , n_2 为初级侧、次级侧线圈匝数; μ 为磁导率; h为两 线圈中心在轴线上的距离. 如果取 $n_1 = n_2 = n$, $r_1 = r_2 = r$ 以及 $k = M/\sqrt{L_1L_2}$,则可以得出

$$h = \left(\frac{\pi\mu nr^4}{2k\sqrt{L_1L_2}}\right)^{1/3}.$$
 (5)

通过(5)式,可以得到耦合系数与传输距离的关系.

2.2 效率 η_{air} 的分析

通过 (1) 和 (2) 式, 可求得次级侧电路在初级侧 的反射阻抗. 令反射阻抗为 *Z*_r, 则

$$Z_{\rm r} = \frac{\omega^2 M^2 (R_2 + R_{\rm L})}{(R_2 + R_{\rm L})^2 + \left(\omega L_2 - \frac{1}{\omega C_2}\right)^2} + j \frac{-\omega^2 M^2 \left(\omega L_2 - \frac{1}{\omega C_2}\right)}{(R_2 + R_{\rm L})^2 + \left(\omega L_2 - \frac{1}{\omega C_2}\right)^2}.$$
 (6)

取 $L_1 = L_2 = L$, $C_1 = C_2 = C$, 当 $\omega = 1/\sqrt{LC}$ 时 (即谐振时), 效率 η_{air} 的表达式为

$$\eta_{\rm air} = \frac{\omega^2 M^2}{\omega^2 M^2 + R_1 (R_2 + R_{\rm L})} \times \frac{R_{\rm L}}{R_2 + R_{\rm L}} \times 100\%.$$
(7)

将 ωM 看作变量, 取 $R_1 = R_2 = 0.2 \Omega$, $\eta_{air} \subseteq \omega M$ 和 R_L 的关系如图**3**所示.

从图 3 可以看出: 在 $R_{\rm L}$ 一定时, ωM 越大, 效 率越高; 在 ωM 一定时, $R_{\rm L}$ 增大, 效率先增大、后减 小, 存在最优的 $R_{\rm L}$ 使效率最高.

3 海水中电涡流损耗分析

空气中的电导率非常小,可认为空气不导电, 所以在空气中进行磁共振电能传输时,不必考虑电 涡流损耗的影响,因而空气中传输效率较高,传输 距离较远.海水有较大的电导率,当线圈中有高频 交变电流时,会产生交变磁场,交变磁场会产生涡 旋电场,在海水中会产生涡旋电流,进而产生较大 的电涡流损耗.相比于空气,在海水中进行非接触 式电能传输时,其传输距离、传输效率会有所下降. 在实际中,为了减小电涡流损耗,可以考虑在水下 航行器和海底基站对接完成后,用高磁导率、低电 导率的材料制成圆柱外壳,将整个电能传输系统包 围起来,将电涡流损耗限制在水下航行器和海底基 站之间的圆柱体内.示意图见图4.在图4中,分别 建立柱面坐标系 (ρ , ϕ ,z)和直角坐标系 (x,y,z).

3.1 电涡流损耗计算

由圆周的对称性可以证明载流线圈在周围空间中产生的电场强度只有周向分量 *E*_o^[21],根据法

拉第电磁感应定律,可得产生 E_{ϕ} 的只是和线圈平 面垂直的磁感应强度 B_Z ,故以下计算只考虑 B_Z . 由于水下非接触式电能传输距离相对较短,可认为 在t时刻, B_Z 在Z轴方向上是大小不变的.由于圆 周具有对称性,可用 B_Z 在X轴方向上的变化来代 替 B_Z 在整个XoY平面上的变化.

根据麦克斯韦方程组和上段中的近似处理^[22], 可得磁场满足的涡流场方程如下:

$$j\omega\mu H_Z = \frac{\partial^2 H_Z}{\partial x^2} = k^2 H_Z.$$
 (8)

根据对称条件解(8)式可得

$$H_z(x) = C\cosh(kx). \tag{9}$$

当x = 0时, $H_z(0) = C = B_o/\mu$ (B_o 为原点处的磁感应强度), 可得

$$B_z(x) = B_o \cosh(kx). \tag{10}$$

由 $\mathbf{J} = \nabla \times \mathbf{H} = \frac{-\partial H_z}{\partial x} \mathbf{e}_y \, \mathcal{I} \mathbf{J} = \sigma \mathbf{E}$ 可得 $J_y(x) = \frac{-kB_o}{\mu} \sinh(kx). \sinh(kx), \cosh(kx)$ 分别 是双曲正弦、双曲余弦函数.

将 $k = \sqrt{j\omega\sigma\mu} = \sqrt{\omega\sigma\mu/2}(1+j) = \gamma + j\beta$ 代入(10)式可得

$$|B_z(x)| = |B_o|\sqrt{\frac{1}{2}(\cosh 2\gamma x + \cos 2\gamma x)}.$$
 (11)

同理可得

$$|J_y| = \left|\frac{kB_o}{\mu}\right| \sqrt{\frac{1}{2}(\cosh 2\gamma x - \cos 2\gamma x)}.$$
 (12)

电涡流在两线圈之间的圆柱体内产生的电涡流损耗功率为

$$P_{\rm eddy} = \int_{v} \sigma |E|^2 \,\mathrm{d}v, \qquad (13)$$

其中v为两线圈之间的圆柱体海水,底面半径为r, 高为h,即传输距离.由于 $E_y(x) = \frac{-kB_o}{\mu\sigma}\sinh(kx)$, 且圆周上的电场强度都相等,可得

$$P_{\text{eddy}} = \int_{v} \sigma \left| \frac{kB_{o}}{\mu\sigma} \sinh(kx) \right|^{2} \mathrm{d}v$$
$$= \int_{v} \frac{\omega \left| B_{o} \right|^{2}}{\mu} |\sinh(kx)|^{2} \mathrm{d}v. \quad (14)$$

将积分区域代入上式可得

ъ

$$= \frac{\pi h \omega \left|B_o\right|^2}{\mu} \left[\frac{r}{2\gamma} (\sinh 2\gamma r - \sin 2\gamma r)\right]$$

$$-\frac{1}{4\gamma^2}(\cosh 2\gamma r + \cos 2\gamma r) + \frac{1}{2\gamma^2}\bigg].$$
 (15)

引入磁感应强度沿截面的平均值^[23]B_{zav}:

$$B_{zav} = \frac{1}{2r} \int_{-r}^{r} B_z \mathrm{d}x,$$

代入(10)式,可得

$$B_{zav} = \frac{B_o}{rk} \sinh kr.$$
 (16)

由(16)式可得

$$B_o = B_{zav} \frac{rk}{\sinh kr}.$$
 (17)

将(17)式代入(15)式可得

$$P_{\text{eddy}} = \frac{\omega \left| B_{zav} \right|^2 \pi h}{\mu} \left[\frac{r}{2\gamma} (\sinh 2\gamma r - \sin 2\gamma r) - \frac{1}{4\gamma^2} (\cosh 2\gamma r + \cos 2\gamma r) + \frac{1}{2\gamma^2} \right] \times \frac{r^2 \omega \mu \sigma}{\frac{1}{2} (\cosh 2\gamma r - \cos 2\gamma r)}.$$
 (18)

当 $r\gamma \ll 1$,即低频时,将 $\sinh 2\gamma r$, $\sin 2\gamma r$, $\cosh 2\gamma r$, $\cos 2\gamma r$ 用级数展开,并略去高阶无穷小, 可得

$$P_{\rm eddy} \approx \frac{2\omega^2 \left|B_{zav}\right|^2 \pi h r^4 \sigma}{3}.$$
 (19)

通过(19)式,可得出电涡流损耗 P_{eddy} 近似与 频率ω的平方成正比,与磁场强度|B_{zav}|的平方成 正比.在频率较高时,损耗会急剧增大.B_o可通过 下式,用I₁,I₂产生的磁感应强度矢量相加来估算:

$$B_1 = \frac{\mu n I_1}{2r}, \quad B_2 = \frac{\mu n I_2}{2r}, \quad B_o = \sqrt{B_1^2 + B_2^2}.$$
(20)

海水中的效率 ηsea 可近似表达为

$$\eta_{\text{sea}} = \frac{P_{\text{in_sea}} - P_{\text{eddy}} - |I_1|^2 R_1 - |I_2|^2 R_2}{P_{\text{in_sea}}} \times 100\%.$$
(21)

4 实验验证

为了验证上述理论分析的正确性,搭建实验系 统如图5所示.

实验原理为:用信号发生器和功率放大器产 生高频正弦信号,加入到初级发射线圈,然后通过 次级接收线圈接收并整流,再输入到功率电阻.系 统中将初级线圈和次级线圈套在用有机玻璃加工 的圆柱形筒上,通过此方式搭建实验系统,可满足 模型建立中将电涡流损耗限制在圆柱形筒中的假 设,即圆柱形筒外没有电涡流损耗(实际使用时,海 水介质只存在于电能传输间隙中,故此实验模型合 理).用筒中充满海水和空气两种情况来对比得到 电涡流损耗.

图 5 实验系统图 Fig. 5. The experiment system.

实验中预定指标为传输功率大于100 W、传输 距离大于50 mm,考虑到高频下的趋肤效应^[24]、高 频导致的电涡流损耗以及线圈参数影响下的互感 系数,通过计算机编程优化,选取各项参数取值如 表1所列.

参数	取值
初级侧线圈电感/μH	38.72
次级侧线圈电感/μH	38.94
初级侧谐振电容/nF	1, 2.2, 10
次级侧谐振电容/nF	1, 2.2, 10
初级侧线圈电阻/Ω	0.22
次级侧线圈电阻/Ω	0.24
负载电阻/Ω	30
初级侧、次级侧线圈匝数	8
漆包线线径/mm	1
线圈半径/cm	10

表1 实验参数 Table 1. The physical parameters for experiment.

4.1 空气中传输特性验证

在空气中,分别做了谐振电容为1,2.2,10 nF, 传输距离为20,30,40,50,60,70,80,90,100 mm, 输入功率分别为50,75,100,125,150,175 W的对 比实验.由于次级侧电路进行了整流,导致实际谐振频率比理论谐振频率偏小.

输入功率为150 W时,输出功率和效率的实验 结果如图6所示.从图6中的实验结果可以看出:

1) 在输入功率、谐振频率一定的条件下, 随着 传输距离的增加, 接收功率逐渐下降, 效率逐渐降 低; 传输距离增加, 导致互感 *M* 减小, 从而导致接 收功率逐渐下降、效率降低, 这与(7) 式中效率与互 感 *M* 的关系一致;

 2) 在传输距离、输入功率一定的条件下,随着 谐振频率的增大,接收功率逐渐增大,效率逐渐增 大,这与(7) 式中效率与频率ω的关系一致.

Fig. 6. The transmission characteristic in the air.

4.2 海水中传输特性和涡流损耗的验证

4.2.1 海水中传输特性

在海水中,首先研究了互感 M 在不同介质(海水、空气)的异同.根据(4)式可知,在线圈物理参数、距离一定时,互感只与介质的磁导率有关.空气和海水的磁导率几乎相等,所以相同的线圈在空气

和海水中的互感几乎是相等的,实验数据如图7所示.从图7的实验结果可知:线圈在海水和空气中的互感系数几乎是相等的,也即耦合系数几乎是相等的,所以相对于空气,在海水中进行电能传输时,效率降低的原因只能是电涡流损耗.

为了研究电涡流损耗,在线圈中间的圆柱形筒 中加满海水,做与空气中同样的实验进行对比,实 验结果如图8所示.

图 7 空气和海水中互感系数的对比

Fig. 7. The mutual inductance comparison in the air and seawater.

Fig. 8. The transmission characteristic in the seawater.

对比图8和图6中的实验结果,可以清晰地看 出电涡流损耗对电能传输的影响:

1) 在输入功率、谐振频率一定的条件下,随着 传输距离的增加,接收功率逐渐下降,效率逐渐降 低;传输距离增加,导致互感*M*减小,从而导致接 收功率逐渐下降、效率降低;

2) 在传输距离、输入功率一定的条件下, 随 着谐振频率的增大, 接收功率逐渐增大, 效率逐渐 增大.

4.2.2 电涡流损耗实验数据

对实验结果进行处理,计算得输入功率为 150 W时的电涡流损耗如图9所示. 从图9可以 看出:

1) 在输入功率、谐振频率一定的条件下, 随着 传输距离增加, 电涡流损耗逐渐增大, 这是因为随 着传输距离增大, 互感 *M* 逐渐减小, 导致反射阻抗 减小, 进一步导致电流增大, 磁感应强度 *B* 增大的 缘故, 同时, 海水介质厚度的增加, 也会导致电涡流 损耗增大; 这可验证 (19) 式中电涡流损耗随着磁感 应强度 *B* 增大而增大的特性;

2) 在输入功率、传输距离一定的条件下,随着 谐振频率的增大,电涡流损耗呈现先增大、后减小 的趋势,这是因为随着谐振频率增大,反射阻抗增 大,导致电流减小,进而导致磁感应强度 B 减小,由 谐振频率和磁感应强度 B 共同影响的结果;从这里 也可以看出,考虑到传输特性和电涡流损耗,适当 优化谐振频率,可以取到最优值.

图 9 输入功率为 150 W 时的电涡流损耗

4.2.3 电涡流损耗与海水介质厚度h的关系 实验中,通过给实验筒中慢慢加海水,测得不 同海水介质厚度下的电涡流损耗(传输距离为 30 mm, 频率为754 kHz), 实验结果如图 10 所示.

图 10 电涡流损耗与海水介质厚度 h 的关系 Fig. 10. The relations between current eddy loss and seawater thickness h.

从图 10 可以看出, 在输入功率一定的条件下, 随着海水介质厚度 h 的增加, 输出功率基本呈线性 减小, 说明电涡流损耗呈线性增大. 这验证了 (19) 式中电涡流损耗与海水介质厚度 h 成正比的特性.

4.2.4 电涡流损耗与电导率σ的关系

实验中采取往淡水中加氯化钠的方式来改变 水的电导率,研究电涡流损耗与电导率的关系(传 输距离为30 mm,频率为754 kHz),实验结果如 图11所示.

图 11 电涡流损耗与介质电导率的关系 Fig. 11. The relations between current eddy loss and dielectric conductivity.

从图 11 可以看出, 在输入功率一定的条件下, 随着介质电导率σ增加, 输出功率基本呈线性减小, 说明电涡流损耗呈线性增大. 这验证了 (19) 式中电 涡流损耗与介质电导率σ成正比的特性.

5 结 论

1)研究了空气中非接触式能量传输特性,并分 析了负载电阻 *R*_L、互感 *M*、谐振频率ω对传输效率 的影响.从实验中可以看出,随着谐振频率、互感 系数的增加,传输效率逐渐增大.从图6可以看出, 在空气中,按照本实验系统的参数,当传输距离为 50 mm、传输功率为100 W时,效率在80%以上.

2)研究了在海水介质和空气介质的互感系数 变化情况.通过实验可以看出,在空气中和海水 中互感系数几乎没有变化,即耦合系数几乎没有 变化.所以海水对非接触式能量传输的影响只能 是电涡流损耗.相对于空气,在海水中进行非接触 式能量传输时,效率会有所下降.从图8可以看出, 按照本实验系统的参数,在海水中,当传输距离为 50 mm、传输功率为100 W 时,效率约为67%.

3)研究了电涡流损耗与谐振频率ω、线圈半径 r、介质电导率σ、介质厚度h等的关系.通过实验可 以看出,电涡流损耗随着介质电导率σ、介质厚度h 的增大而线性增大.而磁感应强度B和谐振频率ω 共同影响着电涡流损耗,其二者相互制约,所以在 实际应用中要合理选择谐振频率、传输距离以及输 入电压等参数.

4)本文的研究为水下非接触式能量传输系统 设计提供了理论依据,也说明基于磁共振的水下非 接触式能量传输系统在水下航行器的应用中有广 阔的发展前景.

参考文献

- Ho Y L, McCormick D, Budgett D, Hu A P 2013 IEEE International Symposium on Circuits and Systems Beijing, China, May 19–23, 2013 p2787
- [2] Sibue J R, Meunier G, Ferrieux J P, Roudet J, Periot R 2013 IEEE Trans. Magn. 49 586
- [3] Ping S 2008 *Ph. D. Dissertation* (Auckland: The University of Auckland)
- [4] Yang Z, Liu W T, Basham E 2007 *IEEE Trans. Magn.* 43 3851
- [5] Covic G A, Boys J T, Lu H G 2006 Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications Singapore, May 24–26, 2006 p466
- [6] Dehennis A D, Wise K D 2005 J. Microelectromech. Syst. 14 12
- [7] Kurs A, Karalis A, Moffatt R, Joannopoulos J D, Fisher P, Soljacic M 2007 Science 317 83

- [8] Teck C B, Kato M, Imura T, Sehoon O, Hori Y 2013 IEEE Trans. Ind. Electron. 60 3689
- [9] Juseop L, Lim Y S, Yang W J, Lim S O 2014 IEEE Trans. Antennas Propag. 62 889
- [10] Lim Y, Tang H, Lim S, Park J 2014 IEEE Trans. Power Electron. 29 4403
- [11] Fukuda H, Kobayashi N, Shizuno K, Yoshida S, Tanomura M, Hama Y 2013 IEEE International Underwater Technology Symposium Tokyo, Japan March 5–8, 2013 p1
- [12] Shizuno K, Yoshida S, Tanomura M, Hama Y 2014 IEEE Oceans Newfoundland & Labrador, Canada, September 14–19, 2014 p1
- [13] Itoh R, Sawahara Y, Ishizaki T, Awai I 2014 IEEE 3rd Global Conference on Consumer Electronics Tokyo, Japan October 7–10, 2014 p459
- [14] Zhou J, Li D J, Chen Y 2013 J. Ocean Eng. 60 175
- [15] Chen X L, Lei Y Z 2015 Chin. Phys. B 24 030301
- [16] Li Y, Li Z, Shen Y, Ren M 2011 Third International Conference on Measuring Technology and Mechatronics Automation Shanghai, China, Jan. 6–7, 2011 p490
- [17] Zhu Q W, Wang L F, Liao C L, Guo Y J 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific Beijing, China, August 31–September 3, 2014 p1

- [18] Su Y G, Tang C S, Wu S P, Sun Y 2006 Proceedings of the International Conference on Power System Technology Chongqing, China, October 22–26, 2006 p794
- [19] Sun Y, Xia C Y, Zhao Z B, Zhai Y, Yang F X 2011 Adv. Technol. Electr. Eng. Energy 30 9 (in Chinese) [孙跃, 夏 晨阳, 赵志斌, 翟渊, 杨芳勋 2011 电工电能新技术 30 9]
- [20] Karalis A, Joannopoulos J D, Soljacic M 2008 Ann. Phys. 323 34
- [21] Lei Y Z 2000 The Analysis Method of the Time-varying Electromagnetic Field (Beijing: Science Press) p96 (in Chinese) [雷银照 2000 时谐电磁场解析方法 (北京: 科学 出版社) 第 96 页]
- [22] Wu J S, Wu C Y, Zhang R G 2014 Eddy Current Technology and Application (Changsha: Central South University Press) p209 (in Chinese) [吴桔生, 吴承燕, 张荣刚 2014 电涡流技术与应用 (长沙:中南大学出版社) 第 209 页]
- [23] Yan J C 2013 The Theory of Electromagnetic (Hefei: University of Science and Technology of China) p304 (in Chinese) [严济慈 2013 电磁学 (合肥:中国科技大学出版 社) 第 304 页]
- [24] Li Y 2012 Ph. D. Dissertation (Tianjin: Hebei University of Technology) (in Chinese) [李阳 2012 博士学位论 文 (天津: 河北工业大学)]

Modeling and analysis of eddy-current loss of underwater contact-less power transmission system based on magnetic coupled resonance

Zhang Ke-Han[†] Yan Long-Bin Yan Zheng-Chao Wen Hai-Bing Song Bao-Wei

(School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China)

(Received 11 September 2015; revised manuscript received 14 December 2015)

Abstract

In this paper, we investigate the transmission mechanism and eddy-current loss of the contact-less power transmission (CPT) system in seawater environment. Contact-less power transfer could be achieved in the three following ways: magnetic coupling, magnetic resonance coupling, and microwave radiation. When the primary and secondary coils are in resonance, a channel of low resistance in the magnetic resonance coupling system is formed. Therefore, it is used for medium-distance power transmission and it has less restrictions on orientation, which means that it has wide applications in many scenarios. Moreover, contact-less power transfer is safer and more concealed than traditional plug power supply, especially in underwater vehicles. Firstly, the mathematical model based on the mutual inductance model is proposed for the CPT system in the air, then the frequency analysis of the CPT model as well as theoretical explanation of the splitting phenomenon is conducted, after that we consider the seawater effect on the mutual inductance coefficient. Secondly, we build a mathematical model of the eddy-current loss in seawater circumstance according to the Maxwell's equations, where we introduce an average magnetic induction in cross section, then derive an approximate formula through Taylor expansion, and analyze the relations between eddy-current loss and the physical parameters including coil radius, resonance frequency, transmission distance, and magnetic induction. According to the theoretical results, we optimize these physical parameters and then design a 754 kHz CPT system, thereafter we validate the CPT system both in the air and in seawater and find the difference between these two circumstances, and verify the relations between eddy-current loss and the physical parameters which are proposed in our theory. It can be learned from the experiment that when transmission distance is 50 mm and transmission power is 100 W in the air, the transmission efficiency is over 80%, and when transmission distance is 50 mm and transmission power is 100 W in seawater, the transmission efficiency is over 67%. Apparently, our magnetic-resonance-coupling-based CPT system has potentials serving as an underwater vehicle.

Keywords: magnetic coupled resonance, mutual inductance model, frequency characteristic, eddycurrent loss

PACS: 84.30.Jc, 03.50.De

DOI: 10.7498/aps.65.048401

[†] Corresponding author. E-mail: zhangkehan210@163.com