物理学报 Acta Physica Sinica

磁控管用新型 Y_2O_3 -Gd $_2O_3$ -HfO $_2$ 浸渍W基直热式阴极研究

漆世锴 王小霞 罗积润 赵青兰 李云

A novel Y₂O₃-Gd₂O₃-HfO₂ impregnated W base direct-heated cathode in magnetron tube

Qi Shi-Kai Wang Xiao-Xia Luo Ji-Run Zhao Qing-Lan Li Yun

引用信息 Citation: Acta Physica Sinica, 65, 057901 (2016) DOI: 10.7498/aps.65.057901 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.057901 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I5

您可能感兴趣的其他文章 Articles you may be interested in

稀土La对bcc-Fe中Cu扩散行为影响的第一性原理研究

First-principles study of the effect of lanthanum on the Cu diffusion mechanism in bcc-Fe 物理学报.2014, 63(24): 248101 http://dx.doi.org/10.7498/aps.63.248101

拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性

Measurement uncertainty of metallic ductility in tensile tests: intermediate temperature embrittlement and strain rate embrittlement

物理学报.2014, 63(22): 228101 http://dx.doi.org/10.7498/aps.63.228101

不同加载条件下位错和溶质原子交互作用的数值模拟

Simulations of the interactions between dislocations and solute atoms in different loading conditions 物理学报.2014, 63(22): 228102 http://dx.doi.org/10.7498/aps.63.228102

用于真空电子太赫兹器件的微型热阴极电子束源研究 Study of mini-themionic electron sources for vacuum electron THz devices 物理学报.2014, 63(5): 057901 http://dx.doi.org/10.7498/aps.63.057901

等离子喷涂含钪氧化物阴极制备及发射特性研究

Preparation and emission characteristic study of plasma-sprayed scandia-doped oxide cathode 物理学报.2012, 61(7): 077901 http://dx.doi.org/10.7498/aps.61.077901

磁控管用新型Y₂O₃-Gd₂O₃-HfO₂浸渍W基 直热式阴极研究^{*}

漆世锴^{1)2)†} 王小霞¹⁾ 罗积润¹⁾ 赵青兰¹⁾ 李云¹⁾

1)(中国科学院电子学研究所,高功率微波源与技术重点实验室,北京 100190)

2) (中国科学院大学, 北京 100049)

(2015年9月30日收到;2015年12月18日收到修改稿)

本文研制了一种大功率连续波磁控管用新型难熔 Y₂O₃-Gd₂O₃-HfO₂ 浸渍 W 基直热式阴极,并对该阴极 的直流发射特性进行了测试,结果显示该阴极在1400 °C 温度下即可提供超过1 A/cm² 的空间电荷限制区电 流密度,1700 °C 温度下可以提供超过10.5 A/cm² 的空间电荷限制区电流密度.利用理查森直线法求得该阴 极的绝对零度逸出功仅为1.68 eV,理查森-道舒曼公式法求得该阴极的有效逸出功为2.6—3.1 eV. 寿命实验 结果显示,该阴极在工作温度为1600 °C,直流负载为1.5 A/cm² 的条件下,寿命已经超过3600 h. 最后,分别 利用扫描电子显微镜、俄歇能谱、能谱仪等分析手段对该阴极表面的微观结构、元素成分及含量进行了研究, 结果表明,该阴极在高温激活过程中,表面形成了一层空穴导电的Y₂O_{3-x}半导体层,该半导体层的形成改 善了阴极表面导电性,间接降低了逸出功,提高了阴极的热发射能力.此外,还对该阴极的耐电子轰击性能 进行了研究,结果显示该阴极在经过150 h 电子连续轰击后,电流密度从初始1.5 A/cm² 线性下降并稳定至 0.4 A/cm².

关键词: 直热式阴极, 逸出功, 寿命, 磁控管 **PACS:** 79.40.+z, 81.05.Bx

DOI: 10.7498/aps.65.057901

1引言

自从1924年霍尔发明磁控管以来,至今磁控 管已经广泛应用于雷达发射机、线性加速器、微 波加热源等领域^[1-3]. 阴极是磁控管的电子发射 源,阴极的电子发射能力是决定磁控管输出功率的 大小及寿命的关键因素之一^[4].

在磁控管正常工作过程中,由阴极表面发射出 的热电子经过磁场偏转后,将会有一部分电子回轰 阴极,从而产生次级电子发射^[5,6].因此,磁控管阳 极电流主要由热发射电流和次级发射电流两部分 组成.随着磁控管向着高输出功率、连续波、长寿命 方向发展,对阴极的热发射、次级发射及耐电子、离 子轰击等^[7]都提出了较高的要求. 目前,大功率磁控管常用阴极主要有变体氧化 物阴极^[8,9],Ba-W阴极^[10]以及Th-W阴极等^[11]. 氧化物阴极具有较大次级电子发射系数,但是其耐 电子、离子轰击能力差,并且高电压下易发生电火 花.Ba-W阴极虽然具有较好的耐高压能力,但是 在大功率连续波状态下,其耐电子轰击能力也比较 弱,而且这种阴极制作工艺复杂.Th-W阴极具有 很好的耐电子轰击能力,但是该阴极面临的最大问 题就是Th元素的放射性污染^[11].因此,大功率(大 于10 kW)连续波磁控管一般采用纯W丝阴极,因 为纯W丝阴极具有耐高温,耐电子、离子轰击,高 温下具有机械强度高,延展性好等优点.但是纯W 丝阴极的热电子发射和次级电子发射都比较小,因 而导致纯W丝阴极需要工作在2450—2700 K^[12]

* 国家重点基础研究发展计划(批准号: 2013CB32801)和国家自然科学基金(批准号: 11305177)资助的课题.

© 2016 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: kaishiqi@126.com

温度下才能保证正常的连续波大功率输出,显然过 高的工作温度将会加速阴极寿命的终结.为了满足 大功率连续波磁控管对输出功率和寿命越来越高 的要求,一种不仅具有较高热发射、次级电子发射, 而且具有良好的耐电子、离子轰击能力,同时又能 适应大功率磁控管工作环境的新型阴极有待被研 制出来.

俄罗斯 SRPC ISTOK 的鲍里斯·杜伯等^[13,14] 对大功率磁控管用合金阴极进行了研究,他们发 现 Ir-La, Os-Th, Re-Th 合金阴极不仅具有较大的 次级电子发射系数,分别为2.5, 2.07, 1.95, 而且 具有相对较低的逸出功,分别为2.7,3.08,3.09 eV (工作在1300°C). 其中Ir-La合金阴极在1750 K 工作温度下, 电流密度可以达到10 A/cm², 寿命 达10000 h. 但是这些合金阴极的发射机理尚不 明确,而且价格昂贵,因此大量应用受到限制.国 内聂祚仁等[15] 早期采用 La2O3-Mo 阴极尝试代替 磁控管用的ThO₂-W,该阴极在1400°C时可以 提供0.367 A/cm²的直流发射电流密度,但发现 La₂O₃-Mo 阴极的热发射不稳定. 当采用Y₂O₃代 替La2O3后,解决了该阴极热发射不稳定的问题. 后期, 王金淑等^[16]对La₂O₃/Y₂O₃-Mo阴极热发 射机理进行了合理的解释,而且还对单元以及多元 稀土氧化物掺杂Mo阴极的次级电子发射进行了大 量的研究,获得了最大次级电子发射系数超过3.0 的多元稀土氧化物掺杂 Mo 阴极. 稀土氧化物掺杂 Mo 阴极不仅具有较大热发射、次级电子发射系数, 而且价格低廉. 但是在大功率连续波工作条件下, 阴极表面活性物质蒸发过快, 阴极寿命依旧得不到 保证. 为了降低大功率连续波磁控管阴极工作温 度, 需要提高其热电子发射能力. 本文将采用含稀 土氧化物难熔盐(Y2O3-Gd2O3-HfO2) 浸渍W 基 制备大功率连续波磁控管直热式阴极,并对该浸渍 W基直热式阴极的热发射特性、逸出功、寿命特性、 热发射机理以及耐电子轰击性能等进行了研究.

Y₂O₃-Gd₂O₃-HfO₂浸渍W基直热式 阴极的制备及热发射测试

本文制备的活性物质 (Y₂O₃-Gd₂O₃-HfO₂)中 Y₂O₃, Gd₂O₃ 是具有较高次级电子发射能力的新 型稀土氧化物^[17,18]. HfO₂ 是一种具有较高熔点, 低饱和蒸气压的具有较高次级电子发射能力的难 熔过渡金属氧化物^[19]. HfO₂的添加将会间接提高稀土难熔氧化物活性物质的发射性能,降低阴极表面活性物质的蒸发,延长阴极的寿命.

2.1 新型活性物质Y₂O₃-Gd₂O₃-HfO₂ 的制备

选取纯度为99.9 wt%、平均粒度为2-10 µm 的Y₂O₃, Gd₂O₃, HfO₂, 按重量百分比为45%— 50%:5%-10%:45%-50%混合后放入带球的玛 瑙罐中. 在玛瑙罐中倒入2/3体积的分析纯无水 乙醇或去离子水,在球磨机上球磨混合24 h以上, 混合均匀. 将上述悬浊液倒入称量瓶中置于红外 灯下,烘干获得混合好的粉末,并将粉末放入模具 中,在油压机上以40 kgf/cm² 压力下压制成直径 为10 mm, 高为1-2 mm的饼状块; 将饼块放入高 温马弗炉中,在空气或者CO2气氛中进行烧结,烧 结温度为(1450±50)°C,保温时间2-4 h. 然后, 将烧结好的含Y2O3-Gd2O3-HfO2活性物质饼块放 入玛瑙钵中研磨2h以上,直至研磨到合适颗粒大 小为止,从而获得活性物质.该活性物质的XRD 物相分析结果如图1所示,由图可知活性物质主要 物相为Y₂O₃和HfO₂.

图 1 (网刊彩色) 新型活性物质的 XRD 物相图 Fig. 1. (color online) XRD pattern of the novel activation material.

2.2 W海绵基的制备

首先,选取直径为0.26 mm的纯W丝,经 过表面清洗后将该W丝放入高温氢炉中,在 (1300±10)°C下退火10 min. 然后,将退过火的 W丝表面进行喷砂毛化处理,以提高其表面对金属 W粉的储存能力和黏接力.最后,利用传统喷枪将 直径为1—2 μm的W粉均匀喷涂在W丝表面,然 后放入高温氢炉中,在(1600±10)°C下烧结5min 完成W海绵基的制备.W海绵基表面微观形貌如 图2所示,从图中可知W颗粒之间熔融较好,形成 了具备存储活性物质能力的海绵层形貌.

图 2 (网刊彩色) 钨海绵基底扫描电镜形貌图 Fig. 2. (color online) SEM image of the W sponge base.

2.3 活性物质浸渍W海绵基直热式阴极 的制备

将制备好的Y₂O₃-Gd₂O₃-HfO₂活性物质与质 量分数为1.5%的硝棉溶液在玛瑙钵中研磨混合 1—2h直至均匀后,利用微型刷将混合好后的溶液 均匀浸渍进W海绵层中,最后将完成浸渍的W丝 放置于红外灯下烘烤,直至硝棉溶液完全蒸发,进 而完成该直热式阴极的制备.该阴极的结构示意图 如图3所示.

图 3 (网刊彩色) Y₂O₃-Gd₂O₃-HfO₂ 浸渍 W 基直热式 阴极结构示意图

Fig. 3. (color online) Schematic of the Y_2O_3 -Gd $_2O_3$ -HfO $_2$ impregnated W base direct-heated cathode.

2.4 直热式阴极热发射测试

图4为直热式阴极热发射测试用真空二极管 系统示意图,该系统由高真空接口、吸气剂、W丝阴 极、云母片、Mo筒阳极、温度测量孔、导电芯柱等 部分组成.图中Mo筒阳极的高度为5mm,外径为 5 mm, 内径为3 mm. 测试中直热式阴极丝应插入 Mo筒阳极中心来保证阴极丝到Mo筒阳极内壁的 距离相等. 测试过程中将高真空接口接入真空系统 中(由机械泵、分子泵和离子泵组成), 以此来保证 热发射测试时真空二极管始终处于高真空环境下 (10⁻⁶ Pa). 热发射测试中利用云母片来隔离Mo筒 阳极外热电子的影响, 通过Mo筒中间的温度测量 孔来监测阴极的工作温度. 热发射测试完毕后, 高 真空接口将会被密封, 吸气剂将被用来维持真空二 极管内的高真空度.

图 4 (网刊彩色) 直热式阴极热发射测试用真空二极管系 统示意图

Fig. 4. (color online) Schematic of the diode system used in thermionic emission for direct-heated cathode.

热发射测试前,首先将真空二极管系统在500°C下保温1—1.5 h,然后依次在50mA高频电流下去气5min,80mA高频电流下去气2min,最后在真空度优于10⁻⁶Pa、温度为1800°C下激活0.5—1.5 h,接着在1600°C温度下老练12h后开始阴极的热发射特性测试.

3 Y₂O₃-Gd₂O₃-HfO₂浸渍W基直热式 阴极的直流发射特性及逸出功

3.1 直热式阴极直流发射特性

图 5 所示为不同温度下阴极的直流发射电流 密度随阳极电压变化关系曲线.若选用不同温度 下阴极 *j-U* 特性的空间电荷偏离点电流密度衡量 阴极发射水平,那么由图 5 可知,当阴极温度分别 为1300,1400,1500 °C时,*j-U* 特性曲线出现了明 显的空间电荷偏离点,对应的电流密度分别为0.4, 1.0, 4.0 A/cm². 当阴极温度为1600和1700°C,阳极电压达到300 V时, *j*-U特性曲线仍然没有出现明显的空间电荷偏离点,考虑到过高的阳极电压将会使Mo筒阳极因为接收过大阴极电流而温度过高,从而使得测试结果不准确,因此将最高阳极电压限制在300 V. 从图5可见,当温度分别为1600,1700°C,300 V阳极电压对应的阴极热发射电流密度分别为7.74,10.5 A/cm².大功率连续波磁控管工作在正常输出功率时,纯W丝阴极的工作温度在2450—2700 K之间,对应的最大热发射电流密度仅为1.98 A/cm²,而本文中所研制的阴极仅在1450°C就能提供超过2 A/cm²的热发射电流密度.

3.2 直热式阴极寿命特性

将进行阴极热发射特性测试后的真空二极管 装入寿命台进行寿命特性测试,图6所示为该阴极 的寿命特性测试曲线.从图中可知,阴极在1600°C

温度、1.5 A/cm² 直流负载下连续工作 3600 h后, 发射电流密度没有明显的衰减迹象,稳定的寿命曲 线说明该阴极具有较高的可靠性.

3.3 直热式阴极的逸出功

从金属中取出任何一个电子所需做的功称为 逸出功.逸出功一般可以分为绝对零度逸出功和有 效逸出功.绝对零度逸出功,即假定逸出功与阴极 温度没有关系,由理查森直线法给出,又称为理查 森逸出功;有效逸出功,即考虑到温度对逸出功的 影响,是通过实验中的温度T和零场发射电流密度 j₀计算得来的,用来比较各种阴极的热发射性能.

当考虑外电场对热发射的影响时, 热发射电流 密度可以写成

$$j_{\rm e} = j_0 \,{\rm e}^{0.44\sqrt{\alpha U_{\rm a}}/T},$$
 (1)

将(1)式两边取对数,得到

$$\lg j_{\rm e} = \lg j_0 + 0.191 \frac{\sqrt{\alpha}}{T} \sqrt{U_{\rm a}}, \qquad (2)$$

式中, α 取决于电极形状和距离, U_a 为阳极电压, j_0 为零场发射电流密度. 当阴极工作在温度限制区时, $\lg j_e 与 \sqrt{U_a}$ 呈线性关系, 此时 $\lg j_e - \sqrt{U_a}$ 直线称 为肖特基直线^[20]. 该直线的截距即为零场发射电流密度 j_0 . 根据零场发射电流密度公式 (理查森-道 舒曼公式)^[20]:

$$j_0 = A_0 T^2 \,\mathrm{e}^{-\frac{e\phi}{kT}},\tag{3}$$

对(3)式两边取对数,得到

$$\lg\left(\frac{j_0}{T^2}\right) = \lg A_0 - 0.434 \left(\frac{\phi}{k}\right) \frac{1}{T},\tag{4}$$

其中, A_0 为理查森发射常数, k为玻尔兹曼常量, 其 值为1.38 × 10²³ W·s/°C, 将 k 值代入(4) 式中, 可 得

$$\lg\left(\frac{j_0}{T^2}\right) = \lg A_0 - 5040\phi \frac{1}{T}.$$
 (5)

由 (5) 式可知, $lg(j_0/T^2)$ 与 1/T 成直线关系, 该直 线称为理查森直线 ^[20].根据该直线法获得的逸出 功 ϕ 又称为理查森逸出功.

图 7 (a) 所示为阴极的 lg *j*-*U*^{1/2} 曲线, 即肖特 基直线. 根据该方法求得的 1300, 1400, 1500, 1600, 1700 °C 温度下对应的零场发射电流密度 *j*₀₁, *j*₀₂, *j*₀₃, *j*₀₄, *j*₀₅ 分别为 0.2215, 0.9863, 1.9770, 3.1915, 4.7621 A/cm². 根据 (2) 式, 当不考虑热效应带来 的影响时, 若测试温度相差不是很大, 肖特基直线 应该是平行的. 考虑到温度过高和过低时求得的零 场发射电流密度准确性较差,因此利用理查森直线 法求逸出功时不考虑这两种情况对应的零场发射 电流密度点.如图7(b)所示为去掉这两点之后的 理查森直线.根据该直线的斜率求得的阴极绝对零 度逸出功为1.68,接近文献[20]中给出的稀土氧化 物Y₂O₃的绝对零度逸出功.

此外,根据(3)式,求得有效逸出功 ϕ 的表 达式为

$$\phi = \left(\frac{kT}{e}\right) \ln\left(\frac{A_0 T^2}{j_0}\right). \tag{6}$$

取 A₀ 值为 120 A/(cm²·°C²),将不同温度下对应的 零场发射电流密度 j₀ 数值代入 (6) 式中,求得 1300,

表 1

1400, 1500, 1600, 1700 °C 温度下阴极的逸出功分 别为2.83, 2.84, 2.91, 3.0, 3.1 eV.

4 Y₂O₃-Gd₂O₃-HfO₂浸渍W基直热式 阴极热发射机理讨论

4.1 直热式阴极表面形貌及元素组成分析

采用国产KYKY2800型扫描电镜(SEM)对直 热式阴极表面微观结构成像,并用该电镜自带的 能谱仪(EDS)对阴极表面数个微米深度元素及含 量进行分析. 图8所示为激活前阴极表面SEM 微 观结构形貌图,由图可知,活性物质Y2O3-Gd2O3-HfO2 在阴极表面形成了一种相对致密和均匀的熔 融状形貌,从而能增强活性物质与W基底的粘结 度,提高阴极表面的导电性^[21],增大阴极的热发 射能力. 任意选取图8中a, b, c三个区域做元素成 分及含量分析,并将结果列于表1中.由表1可知, 阴极表面主要由Y, Gd, Hf, O元素组成, 其原子 百分数和质量百分数接近活性物质Y2O3-Gd2O3-HfO₂的原始配比,分别为22.40%,1.55%,13.37%, 62.68%和35.42%, 4.32%, 42.43%, 17.83%. 阴极表 面a, b, c三个区域元素的含量基本相同, 说明该活 性物质混合和浸渍得都比较均匀.

图 8 阴极表面 SEM 微观结构形貌图 Fig. 8. SEM microstructure image of the cathode.

Table 1.	Concentration	of th	e elements	at the	e a, l	b, c area	surface	of the	cathode.

阳极。ト。区域表面元表成分及今景

Elements -	a area surface		b area	surface	c area surface		
	Atom fraction/ $\%$	Mass fraction/ $\%$	Atom fraction/ $\%$	Mass fraction/ $\%$	Atom fraction/%	Mass fraction/ $\%$	
Y	21.89	35.33	20.90	36.01	22.34	34.67	
Gd	1.62	4.31	1.51	4.45	1.58	4.18	
$_{\rm Hf}$	13.74	42.23	15.86	43.12	14.69	43.06	
Ο	62.75	18.13	61.73	16.42	61.39	18.09	
Total	100.00	100.00	100.00	100.00	100.00	100.00	

4.2 直热式阴极表面及深度剖析

俄歇能谱 (AES) 分析是采用单能电子束辐射 置于真空中的样品,随着入射电子与表面原子发射 相互作用,由俄歇跃迁效应致使从样品表面发射出 电子,测量这些俄歇电子的能量,就可以知道表层 元素成分以及含量的相关信息.由于能够保持特征 能量而逸出表面的俄歇电子,发射深度仅限于表面 以下1 nm 左右^[22]的深度,约相当于表面数个原子 层厚度,所以俄歇分析是一种"真正的表面"分析. 本次实验同时利用 AES 自身携带的表面深度剖析 分析仪对距离阴极表面一定深度的元素成分及含 量进行分析.本次实验使用的PHI 700型俄歇电镜 由清华大学分析中心提供.

图9所示为激活后阴极表面AES微观结构形 貌图, AES分析中采用的入射电子能量一般不高 (约2 keV),导致AES成像清晰度远不如SEM,因此 AES一般仅用来做能谱分析^[22].任意选取图9中 1,2,3三个区域做AES元素成分及含量分析,并将 结果列于表2中. 由表2可知, 阴极表面主要由O, Y, Hf, C元素组成, 四种元素在区域1, 2, 3中的含 量基本相同,再次证明活性物质混合和浸渍得比较 均匀. 与EDS能谱分析结果相比, AES分析没有检 测到Gd元素,这可能是由于Gd₂O₃含量较低,而 且与Y₂O₃都同属稀土族氧化物,有着相同的分子 化学结构, 高温处理过程中Y原子与Gd原子之间 可能容易发生置换的原因.此外,检测到含量极低 的C元素,这可能是由于阴极样品在送检过程中, 表面吸附了环境中的C元素,而且AES电镜在分 析过程中对轻元素也特别敏感^[22].

图 10 所示为激活后阴极剖面 AES 元素成分及

含量. 深度剖析采用氩离子轰击蚀刻, 蚀刻速率为 20 nm/min. 如图 10 所示, 起始时阴极表面原子浓 度基本上接近 AES 表面分析数值, 随着蚀刻时间 的增加, O原子的浓度稍有增加, 最终从 52% 增大 至 56% 左右; Y原子的浓度稍有下降, 最终从 28% 下降至 26% 左右; 而 Hf 原子和 W原子的浓度基本 上没有发生变化. 阴极剖面 AES 分析中, 没有再次 检测到 C 元素, 这说明 C 元素仅是在样品送检过程 中吸附到阴极表面的.

图 9 阴极表面 AES 微观结构形貌图

Fig. 9. AES microstructure image of the cathode.

表 2 阴极 1, 2, 3 区域表面元素成分及含量

Elements ·	1 area surface		2 area	surface	3 area surface		
	Atom fraction/ $\%$	Mass fraction/ $\%$	Atom fraction/ $\%$	Mass fraction/ $\%$	Atom fraction/ $\%$	Mass fraction/ $\%$	
О	50.2	12.6	49.7	12.6	51.3	12.9	
Υ	27.4	38.4	28.9	40.7	28.4	39.8	
Hf	17.1	48.0	16.6	45.6	16.5	46.6	
\mathbf{C}	5.3	1.0	5.8	1.1	3.8	0.7	
Total	100.00	100.00	100.00	100.00	100.00	100.00	

Table 2. Concentration of the elements at the 1, 2, 3 area surface of the cathode.

4.3 直热式阴极热发射机理讨论

目前,热阴极发射理论主要有单原子层理论 (偶极子理论)、半导体理论以及动态表面发射中心 理论等. 文献 [23] 中讨论了碳化 Mo-Y₂O₃ 阴极的 发射机理,认为该阴极在高温工作过程中Mo₂C将 Y₂O₃还原成单质Y, 被还原出来的Y原子吸附在 基底上, 被吸附的Y原子本身并不参与发射. 但是 Y原子极化后在基底表面形成偶极矩,间接降低了 基底金属的逸出功,帮助电子从基底金属中逸出, 增大了热发射.本文中的Y2O3-Gd2O3-HfO2浸渍 W基阴极与上述的碳化Mo-Y₂O₃阴极制备方法不 同.碳化Mo-Y₂O₃ 阴极采用Y₂O₃ 与Mo掺杂方式 制备, 使得Y₂O₃与Mo可以在微观层面上良好接 触,易于完成反应.而本文中的阴极采用浸渍法制 备,即在W基表面上浸渍一层较厚的含Y2O3难熔 氧化物完成该阴极的制备. 这种含Y2O3 难熔氧化 物化学性质稳定,在没有还原剂参与的情况下,很 难被还原成单质Y,形成Y单原子层.因此,偶极子 理论可能并不适合用来解释这种直热式阴极的发 射机理.

本文中的Y2O3-Gd2O3-HfO2浸渍W基阴极, 同传统的氧化物阴极一样,属于厚涂层阴极.关 于厚涂层氧化物阴极, 文献 [24] 提出了动态表面发 射中心理论来解释氧化物阴极的发射机理. 该理 论认为氧化物涂层基底金属为阴极提供了激活剂, 使BaO还原成金属Ba单质. 金属Ba单质并没有 进入晶粒内部, 而是在晶粒与基底金属表面上形 成配合得当的原子集团,这些原子集团正是电子 发射的根源所在.本文中Y2O3-Gd2O3-HfO2浸渍 W基阴极的主要热发射物质Y₂O₃化学性质稳定, 即使在高温高真空下,有金属还原剂存在时,也只 能转变为缺氧型氧化物^[25].假设在高温下Y₂O₃ 被阴极基底金属W还原成单质Y, 若单质Y能在 含Y2O3 难熔氧化物涂层中顺利地扩散和流通,需 要形成Y蒸汽,而单质Y的熔点较Ba高很多,低 温下很难形成Y蒸汽.此外,如图5所示,1300°C 时Y₂O₃-Gd₂O₃-HfO₂浸渍W基阴极即能够提供 超过0.4 A/cm²的热发射电流密度,此时的温度尚 未达到单质Y的熔点,因此Y2O3被阴极基底金属 W还原成单质Y的假设并不成立. 这说明动态表 面发射中心理论可能并不适合用来解释这种直热 式阴极的发射机理.

根据目前的实验结果,热阴极的半导体理论可 能更适合用来解释 Y₂O₃-Gd₂O₃-HfO₂浸渍 W基 阴极的发射机理. 半导体理论认为,阴极在高温激 活的过程中,在氧化物晶粒内部产生了一定数量的 氧离子空位(施主). 所产生的氧负离子空位式缺陷 将会使氧化物层变成半导体,这种氧空位越多,涂 层导电性就会越好,电子在该氧化物涂层中就更容 易传输和补充,阴极发射性能也会因此得到较大的 提高. 文献 [26] 观察到氧化物阴极在工作过程中, 涂层中间层电阻的存在明显影响到阴极的热发射 性能,造成阴极发射电流下降. 这间接说明厚涂层 阴极涂层的导电性对阴极的热发射相当重要.

根据表 1 中 EDS 分析结果可知, 激活前直热式 阴极表面活性物质 Y_2O_3 中 Y/O 的比例约为 1/1.5, 符合 Y_2O_3 分子中的 Y 与 O 的原子比. 然而, 根据 表 2 中 AES 分析结果可知, 激活后阴极表面活性物 质 Y_2O_3 中 Y/O 的比例由 1/1.5 升高至 1/0.6, 活性 物质 Y_2O_3 丢失了较多的晶格氧. 由此可以推断在 高温处理过程中 Y_2O_3 可能发生了下面的化学反 应 [27]:

$$Y_2O_3 = Y_2O_{3-x} + \frac{1}{2}xO_2 + 2xe^-.$$
 (7)

(7)式说明直热式阴极在高温激活过程中, Y₂O₃ 丢 失掉较多的晶格O, 变成了n型半导体Y₂O_{3-x}.这 些晶格O是以氧负离子空位式缺陷形式存在的,这 种n型半导体Y₂O_{3-x}越多,含Y₂O₃ 难熔氧化物 涂层导电性就会越好, 阴极的热发射性能就会得到 提高^[28].此外, 阴极表面施主(Y₂O_{3-x})浓度越大, 则阴极表面能带弯曲就会变小,导致逸出功降低, 使得阴极的热发射得到增大^[29].

图 10 所示为Y₂O₃-Gd₂O₃-HfO₂ 浸渍W基阴极剖面元素成分及含量.由图可知,氩离子蚀刻前,阴极表面Y/O结果与表2中AES的分析结果相符.随着氩离子蚀刻时间的增加,在阴极表面 0—400 nm深度内,O原子的浓度逐渐增大,Y原子的浓度逐渐降低,这可能是由于距离阴极表面越近, (7)式中产生的O₂更加容易向真空中扩散.因此,距离阴极表面越近,化学反应(7)式更加容易进行,此时Y/O值能够达到最大.随着蚀刻深度的进行, Y/O值逐渐变小,此时O₂扩散速率变慢,形成n型 半导体Y₂O_{3-x}的量也会相应减少,导致导电性较 阴极表面差.本文所研究的Y₂O₃-Gd₂O₃-HfO₂ 浸 渍W基直热式阴极属于厚涂层阴极,文献[30]认为 厚涂层阴极的电导主要是阴极表面电导,而不是 "体内"电导,本文发现的这种现象与文献中理论基 本一致.

根据图10所示结果可知, 阴极剖面W原子的 含量始终接近零,这说明阴极在热发射过程中W 可能不起作用.此外,Hf原子的含量一直稳定在 18% 左右, 这说明阴极在热发射过程中Hf的作用 比较稳定.关于HfO2对热发射的贡献,文献[31]中 采用Y2O3-Gd2O3-ZrO2浸渍W基制备直热式阴 极,1500°C时获得了约2 A/cm²的热发射电流密 度. 通常多元稀土金属氧化物与单元稀土金属氧 化物的热发射水平差别不大[32]. 这是因为高温下 稀土金属氧化物可能为杂质半导体,而决定热发射 的价电子是相同的, 当晶体结构一样时, 稀土金属 氧化物相互掺杂后并没有引起晶格内部能级的显 著变化,因此稀土金属氧化物之间的掺杂对热发射 并不能起很大作用. 如果采用不同族过渡金属氧 化物掺杂稀土金属氧化物,则可能改变晶格内部的 能级,降低阴极表面逸出功.例如,过渡金属氧化 物ZrO2掺杂稀土氧化物,则改变了晶格内部能级, 获得了较好的热发射,从而间接证明了该理论的正 确性. 在元素周期表中, Hf与Zr同属IVB族元素, 根据文献[24]可知,同一族元素中,随着原子序数 的增加,原子核的吸引力、价电子的运动能态都同 时增加. 但是逸出功会随着原子序数的增加而下 降,这说明原子核外价电子起着更大的作用. 已知 Hf的原子序数比Zr 要大, 其核外价电子能态更高, 因此HfO2掺杂稀土氧化物可能会降低阴极的逸出 功, 增大热发射. 此外, 由于 HfO₂ 熔点较 ZrO₂高, 饱和蒸气压较ZrO2低,采用HfO2掺杂制备阴极, 在相同的工作温度下能够延长阴极的使用寿命.如 图5所示,采用Y₂O₃-Gd₂O₃-HfO₂浸渍W基制备 直热式阴极, 1500°C时即可提供超过4 A/cm²的 热发射电流密度.如图6所示,该阴极在1.5 A/cm² 直流负载、1600°C工作温度下,寿命达到3600 h, 远超过文献[31]中给出的2600h寿命,实验数据与 上述理论的一致性较好.

5 Y₂O₃-Gd₂O₃-HfO₂浸渍W基直热式 阴极耐电子轰击实验研究

磁控管正常工作时, 阴极表面一直受到电子的 轰击, 大功率连续波磁控管阴极更是受到约占输出 功率2%—10%的电子轰击,普通氧化物、钡钨阴极 在这种情况下会丧失热发射能力.因此,耐电子轰 击能力是衡量磁控管阴极发射性能好坏的一项重 要数据^[12].

实验中采用的电子轰击功率为10 W/cm², Y₂O₃-Gd₂O₃-HfO₂浸渍W基直热式阴极的工作温 度为1600 °C,初始热发射电流密度为1.5 A/cm². 如图 11 所示为直热式阴极热发射电流密度随轰击 时间变化关系曲线. 由图可知,浸渍阴极在经过 100 h电子轰击后,热发射电流密度从1.5 A/cm² 线性下降至0.5 A/cm²,再经过50 h电子轰击后, 热发射电流密度下降并稳定在0.4 A/cm².

图 11 发射电流密度随轰击时间关系曲线 Fig. 11. Current density curves as a function of bombing time.

6 结 论

本文研制了一种大功率连续波磁控管用新型 Y₂O₃-Gd₂O₃-HfO₂ 浸渍W基直热式阴极,对该新 型阴极的热发射性能、逸出功、热发射机理以及耐 轰击性能等进行了研究,结果表明该阴极具有较好 的热发射能力、相对较低的逸出功,并具有一定的 耐电子轰击能力.

1) 热发射结果显示, 1300, 1400, 1500, 1600, 1700 °C温度下, 该新型直热式阴极的空间电荷限制区电流密度分别为 0.4, 1.0, 4.0, 7.74, 10.5 A/cm². 相比之下, 纯W丝阴极在工作温度为 2450—2700 K时, 对应的最大热发射电流密度仅为 1.98 A/cm², 而本文中所研究的阴极仅在 1450 °C 就能提供超过 2 A/cm² 的热发射电流密度.

2)采用两种方法来计算新型直热式阴极的
 逸出功:理查森直线法和理查森-道舒曼公式

法. 通过理查森直线法求得该阴极的绝对零度逸出功仅为1.68, 理查森-道舒曼公式法求得该阴极在1300—1700°C温度下的有效逸出功为 2.6—3.1 eV. 说明该新型阴极具有较好的热发射能力.

3)利用扫描电镜、俄歇能谱及其自带的能谱仪 对该新型阴极的表面及剖面元素成分及其含量进 行了研究,结果表明该阴极在高温激活过程中其表 面形成了一层n型Y₂O_{3-x}半导体层,该半导体层 的形成提高了阴极表面的导电性,降低了阴极表 面逸出功,增大了阴极的热发射.异族过渡金属氧 化物HfO₂掺杂稀土氧化物改变了晶格内部能级, 降低了阴极表面逸出功,进一步增大了阴极的热 发射.

4) 此外, 还对Y₂O₃-Gd₂O₃-HfO₂ 浸渍W基直 热式阴极的耐电子轰击性能进行了研究. 结果显 示, 经过150 h, 10 W/cm²的连续电子轰击后, 该 阴极电流密度从初始1.5 A/cm²线性下降并最终 稳定在0.4 A/cm².

感谢刘燕文研究员、俞世吉研究员和阴生毅研究员在 该新型阴极发射机理上做的有益讨论.

参考文献

- Yue S, Zhang Z C, Gao D P 2013 Acta Phys. Sin. 62 178401 (in Chinese) [岳松, 张兆传, 高东平 2013 物理学报 62 178401]
- [2] Yue S, Zhang Z C, Gao D P 2014 Chin. Phys. B 23 88402
- [3] Bisello D, Candelori A, Giubilato P, Kaminsky A, Mattiazzo S, Nigro M, Pantano D, Rando R, Silvestrin L, Tessaro M, Wyss J 2008 NuclInstrum. Meth. B 266 173
- [4]~ Zhang E Q 1980 IEEE Trans. Elec. Dev. ${\bf 27}$ 1280
- [5] Qi S K, Wang X X, Luo J R, Zhao S K, Zhao Q L, Li Y, Zhang Q 2014 Proceedings of IVESC Saint-Petersburg, Russia, June 30–July 4, 2014 p18
- [6] Zhang X, Wang Y, Fan J J, Zhu F, Zhang R 2014 Acta Phys. Sin. 63 167901 (in Chinese) [张雪, 王勇, 范俊杰, 朱芳, 张瑞 2014 物理学报 63 167901]
- [7] Wang J S, Zhou M L, Ma S Y, Zuo T Y 2006 J. Alloy. Compd. 419 172
- [8] Wang X X, Liu Y W, Luo J R, Zhao Q L, Li Y, Zhang Q 2014 IEEE Trans. Elec. Dev. 61 605
- [9] Wang X X, Liao X H, Luo J R, Zhao Q L, Zhang M, Wang Q F, Li Y 2014 IEEE Trans. Elec. Dev. 59 491

- [10] Liu Y W, Tian H, Han Y, Liu P K, Lu Y X 2012 IEEE Trans. Elec. Dev. 59 3618
- [11] Heißl M, Mitterer C, Granzer T 2014 Int. J.Refract. Met. Hard Mat. 43 181
- [12] Electronic Tube Design Handbook Editorial Committee
 1979 Magnetron Design Handbook (Beijing: National Defence Industry Press) p193, p211, p420 (in Chinese)
 [电子管设计手册编辑委员会 1979 磁控管设计手册 (北京: 国防工业出版社) 第 193, 211, 420 页]
- [13] Djubua B C, Polivnikova O V 2014 Proceedings of IVESC Beijing, China, 6–10 September, 2004 p177
- [14] Djubua B C, Polivnikova O V 2003 Appl. Surf. Sci. 215 242
- [15] Nie Z R, Zuo T Y, Zhou M L, Wang Y M, Wang J S, Zhang J X 2000 J. Rare Earth. 18 110
- [16] Wang J S, Liu J, Zhou M L, Li H Y, Zhang J X, Zuo T Y 2003 Trans. Nonferrous Met. Soc. Chin. 13 38
- [17] Wang J S, Li H Y, Zhou M L, Yang S, Tao S W, Zhang J X 2003 J. Chin. Rare Earth. Soc. 21 295
- Bruining D H, MBE 1954 Physics and Application of Secondary Electron Emission (Oxford: Pergamon Press LTD) p19
- [19] Chia C Y, Moon S J, Byung J C 2004 Thin Solid Films. 462 90
- [20] Liu X Q 1980 Cathode Electronics (Beijing: Publ. House Sci) p95, p149, p184, p211 (in Chinese) [刘学悫 1980 阴 极电子学 (北京: 科学出版社) 第 95, 149, 184, 211 页]
- [21] Zhang M, Wang X X, Luo J R, Zhao Q L, Liao X H 2011 IEEE Trans. Elec. Dev. 58 2143
- [22] Chang T J, Qi X 1999 Modern Analysis Methods of Materials (Harbin: Harbin Institute of Technology Press) pp124–125 [常铁军, 祁欣 1999 材料近代分析测试方法(哈 尔滨:哈尔滨工业大学出版社)第124—125页]
- [23] Wang J S, Zhou M L, Zuo T Y, Zhang J X, Nie Z R, Hu Y C 2001 Chinese Journal of Rare Metals 25 170 (in Chinese) [王金淑, 周美玲, 左铁镛, 张久兴, 聂祚仁, 胡 延槽 2001 稀有金属 25 170]
- [24] Zhang E Q 1976 Acta Phys. Sin. 25 23 (in Chinese) [张 恩虬 1976 物理学报 25 23]
- [25] Liu H Q 1987 Function of Rare Earth in Catalytic (Beijing: Publ. House Sci) p13 (in Chinese) [刘恒潜 1987稀 土在催化中的应用 (北京: 科学出版社) 第 13 页]
- [26] Liao X H, Wang X X, Zhao Q L, Li Y 2010 Journal of Microwaves S1 534 (in Chinese) [廖显恒, 王小霞, 赵青 兰, 李云 2010 微波学报 S1 534]
- [27] Wang J S, Liu W, Ren Z Y 2010 Mater. Res. Bull. 45 324
- [28] Dearnaley G 1969 Thin Solid Films 3 161
- [29] Surplice N A 1968 J. Phys. D. Ser. ${\bf 1}$ 1245
- [30] Zalm P 1968 Adv. Electron. El. Phys. 25 211
- [31] Qi S K, Wang X X, Luo J R, Hu M W, Li Y 2015 Proceedings of IRMMW-THz Hong Kong, China, 23–28 August, 2015 p12
- [32] Li X Q, Liao X H, Liu G Q 1965 Acta Electr. Sin. 1 48 (in Chinese) [李小琼, 廖显恒, 刘桂全 1965 电子学报 1 48]

A novel Y_2O_3 - Gd_2O_3 - HfO_2 impregnated W base direct-heated cathode in magnetron tube^{*}

Qi Shi-Kai^{1)2)†} Wang Xiao-Xia¹⁾ Luo Ji-Run¹⁾ Zhao Qing-Lan¹⁾ Li Yun¹⁾

1) (Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 30 September 2015; revised manuscript received 18 December 2015)

Abstract

As the heart of a magnetron, cathode plays an important role in the device. At present, the pure W cathode is mainly used in high-power continuous wave magnetron tube. However, the pure W cathode has low thermionic emission capability and secondary electron emission yield (1.25-1.50), which result in the cathode operating at a high temperature (2450–2700 K). The higher the operating temperature of the cathode, the faster the evaporation of its surface is, which can shorten the cathode lifetime. In order to enhance the emission current, reduce the operation temperature and prolong the lifetime of the pure W cathode, a novel refractory Y₂O₃-Gd₂O₃-HfO₂ impregnated W base direct-heated cathode (Y-Gd-Hf-O impregnated cathode) is developed in this paper. The present investigation mainly focuses on the thermionic emission, work function, lifetime, emission mechanism, and anti-bombing property. The direct current emission properties of the Y-Gd-Hf-O impregnated cathode are investigated, showing that it can provide more than 0.4, 1, 4.0, 7.74, 10.5 A/cm² current density for the space charge limitation at 1300, 1400, 1500, 1600, 1700 °C respectively. Absolute zero work function for the cathode is only 1.68 eV obtained by the Richardson line method. The effective work function for the cathode is in a range of 2.6–3.1 eV obtained by the Richardson-Dushman formula. The lifetime for the cathode is more than 3600 h with an initial load of 1.5 A/cm^2 at 1600 °C. The surface microstructure, element composition and content of the Y-Gd-Hf-O impregnated cathode are analyzed by the scanning electron microscope, Auger electron spectroscopy, and energy disperse spectroscopy. The analysis results show that the surface of the cathode contains the Y_2O_{3-x} semiconductor layer, which causes an improvement of the electro-conductivity during the activation. The work function of the cathode can also be reduced due to the improvement of the electro-conductivity. Besides, the addition of the transition-metal oxide HfO₂ changes the internal lattice energy level, which can further reduce the work function. Therefore, the Y-Gd-Hf-O impregnated cathode has good thermionic emission capability. In addition, the anti-bombing performance of the cathode is also studied, which shows that the dc emission current density decreases linearly from the initial current density of 1.5 A/cm² to 0.4 A/cm² after 150-h continuous electron bombing at 10 W/cm². In the future research, we will focus on enhancing the anti-bombing property for the Y-Gd-Hf-O impregnated cathode by using Y-Gd-Hf-O doped W base direct-heated cathode.

Keywords: direct-heated cathode, work function, lifetime, magnetron tubes

PACS: 79.40.+z, 81.05.Bx

DOI: 10.7498/aps.65.057901

^{*} Project supported by the National Basic Research Program of China (Grant No. 2013CB328901) and the National Natural Science Foundation of China (Grant No. 11305177).

[†] Corresponding author. E-mail: kaishiqi@126.com