物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

不同组分厚度比的LaMnO₃/SrTiO₃异质界面电子结构和磁性的第一性原理研究 颜送灵 唐黎明 赵宇清 First-principles study of the electronic properties and magnetism of LaMnO₃/SrTiO₃ heterointerface with the different component thickness ratios Yan Song-Ling Tang Li-Ming Zhao Yu-Qing

引用信息 Citation: Acta Physica Sinica, 65, 077301 (2016) DOI: 10.7498/aps.65.077301 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.077301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I7

您可能感兴趣的其他文章 Articles you may be interested in

阻挡杂质带红外探测器中的界面势垒效应

Interfacial barrier effects in blocked impurity band infrared detectors 物理学报.2015, 64(22): 227302 http://dx.doi.org/10.7498/aps.64.227302

F8BT 薄膜表面形貌及与 AI 形成界面的电子结构和反应

Surface morphology of F8BT films and interface structures and reactions of AI on F8BT films 物理学报.2015, 64(7): 077304 http://dx.doi.org/10.7498/aps.64.077304

Cd_{0.96}Zn_{0.04}S/Cd_{0.97}Mn_{0.03}S/Cd_{0.96}Zn_{0.04}S多层纳米线中s-d交换作用的研究 Observation of s-d exchange interaction within $Cd_{0.96}Zn_{0.04}S/Cd_{0.97}Mn_{0.03}S/Cd_{0.96}Zn_{0.04}S$ multilayer nanowires 物理学报.2014, 63(18): 187302 http://dx.doi.org/10.7498/aps.63.187302

拓扑绝缘体Bi₂Te₃的热膨胀系数研究

Research of thermal expansion coefficient of topological insulator Bi₂Te₃ 物理学报.2014, 63(11): 117301 http://dx.doi.org/10.7498/aps.63.117301

BaTiO₃/p-Si异质结的整流特性和光诱导特性的研究 Rectifying behavior and photocarrier injection effect in BaTiO₃/p-Si heterostructure 物理学报.2013, 62(14): 147305 http://dx.doi.org/10.7498/aps.62.147305

不同组分厚度比的LaMnO₃/SrTiO₃异质界面 电子结构和磁性的第一性原理研究^{*}

颜送灵 唐黎明† 赵宇清

(湖南大学物理与微电子科学学院,长沙 410082)

(2015年9月23日收到;2016年1月21日收到修改稿)

基于密度泛函理论的第一性原理计算,研究了 (LaMnO₃)_n/(SrTiO₃)_m(LMO/STO) 异质界面的离子弛 豫、电子结构和磁性质.研究表明,不同组分厚度比及界面类型时,离子弛豫程度各不相同,并且界面处的电 子性质受此影响较大.对于n型界面,当LMO 的厚度达到6个单胞层后,电子会从LMO 转移到STO,转移的 电子占据界面层 Ti 原子的3d 电子轨道,界面处出现二维电子气.对于n型界面 (LMO)_n/(STO)₂,随着LMO 厚度数n的增加,由离子弛豫造成的结构畸变减小,而界面处 Ti 原子周围电子的态密度和自旋极化却增大, 表明高厚度比的n型界面有利于产生高迁移率的二维电子气和自旋极化.而对于p型 (LMO)₂/(STO)₈界面, 在 STO 一侧基本没有结构畸变,界面处无电子转移和自旋极化现象.通过计算平均静电势发现n型和p型界 面处的势差大小相差 2 eV,解释了p型界面不容易发生电荷转移的原因.

关键词: LaMnO₃/SrTiO₃, 电子结构, 异质界面, 第一性原理 PACS: 73.40.-c, 73.20.-r, 75.70.Cn, 73.20.At

DOI: 10.7498/aps.65.077301

1引言

近年来,随着先进的外延薄膜生长技术的进步,实验上利用分子束外延和脉冲激光沉积技术,可以制备出具有原子级平整的薄膜结构,过渡金属氧化物界面得到了广泛的研究^[1-6].众所周知,钙 氧化物界面得到了广泛的研究^[1-6].众所周知,钙 钛矿型过渡金属氧化物本身具有丰富的物理性质, 如高温超导性、铁电铁磁性、电荷轨道自旋有序、 La_{1-x}Sr_xMnO₃的巨磁阻效应,当两种不同的钙钛 矿氧化物材料组成异质界面时,界面处两侧的对称 性破缺,就可能会发生氧八面体的结构畸变、电荷 转移、自旋极化、轨道重构等现象,从而在界面处获 得不同于单独块体材料所具有的新奇量子态^[7-11]. 氧化物界面具有的潜在应用前景使其成为现代电 子信息材料的研究热点^[12-14].

据 Jang 等^[15] 的实验研究报道,在 SrTiO₃ 的 薄层中间插入一个 LaO 单原子层,界面层中就会 出现导电的二维电子气(2-dimensional electronic gas, 2DEG), 他们认为该2DEG的出现与界面处邻 近原子层的晶体结构和电子态的变化有关,界面的 导电性取决于电子间的强关联特性. Gabriel 等^[16] 对LaMnO₃/SrTiO₃(以下简称LMO/STO)超晶格 界面进行的实验表明,界面两侧的厚度层数比值 不同时,会测量到不同的电子输运和磁行为,并 且发生不同程度的氧八面体畸变. 另外, 据有关 实验报道^[17,18],在LMO/STO界面处存在一个电 荷"泄漏"的过程,电子从LMO一侧转移到STO一 侧,该过程也可由界面结构组分厚度比来调控,通 过改变衬底层STO的厚度,可以实现在LMO层 中的电子掺杂或空穴掺杂. 第一性原理计算出 LMO/STO体系为半金属性质^[19], LMO中的Mn 原子间由自旋-自旋超交换作用而呈铁磁序排列, 这不同于块体LMO的A型反铁磁序排列,不仅Mn 原子携带磁矩, Ti原子经诱导也可产生一个微小的 磁矩^[20]. Garcia-Barriocanal等^[18]曾报道界面处

^{*} 国家自然科学基金(批准号: 11347022)资助的课题.

[†]通信作者. E-mail: lmtang@semi.ac.cn

^{© 2016} 中国物理学会 Chinese Physical Society

Ti原子磁矩的产生伴随着STO不同程度的Jahn-Teller 结构畸变; Zhai 等^[21] 报道钙钛矿氧化物体 系中LaMnO_{3+ δ}/SrTiO₃ 的氧八面体扭转模式重 构对界面磁性起着重要的调制作用.

最近, Du 等 ^[22] 研究了 MgO/BaTiO₃ 的界面 性质,发现 n型和 p型界面处都存在金属性的 2DEG, n型界面处的Ti-3d 电子是金属性和磁性 质的来源, p型界面的导电性来源于空穴会优先地 占据界面层的O-2p_y态, MgO界面层中O-2p态的 自旋劈裂会导致界面附近的氧原子产生约 $0.25\mu_B$ 的磁矩. Du 等 ^[23] 对 (110)方向LaAlO₃/STO界面 的研究表明,部分填充的二重简并 t_{2g} 轨道是界面 2DEG 的起源,由晶格失配导致的类铁电结构畸变 是 Ti-3d 电子自旋劈裂及磁矩产生的原因.

到目前为止,用第一性原理计算LMO/STO异 质界面的结构畸变、电子结构和磁性的工作还非常 稀缺.为了更清楚地和实验结果进行比较,研究不 同组分厚度比以及不同的界面类型与离子弛豫、电 荷转移、界面Ti磁性之间的关系很有必要.

2 计算方法及理论模型

2.1 计算方法

本文采用基于密度泛函理论的第一性原理 计算程序 VASP 软件完成^[24],采用 Perdew-Burke-Ernzerhof 形式的广义梯度近似 (generalized gradient approximation, GGA) 方法处理电子间的交换 关联泛函^[25],投影缀加波方法用来近似描述离子 和电子间的作用势^[26],平面波截断能设为400 eV, 布里渊区 k点网格采用 Monhkorst-Pack 方案自动 产生^[27], 网格大小设定为7×7×1,结构优化的收敛 标准为作用在每一个原子上的Hellmann-Feynman 力小于 0.02 eV/Å. 对于过渡金属原子间的强关联 效应,设置有效库仑相互作用 $U_{eff} = U - J = 4$ eV 处理局域化的 d 电子轨道^[28],考虑到体系的磁性, 所有的结构都进行自旋极化计算,选取的价电子有 O 2s²2p⁴; Ti 4s²3d²; Mn 4s²3d⁵; Sr 4s²4p⁶5s²; La 5s²5p⁶5d¹6s²; 其余电子视作芯电子. 这些参数的 选择保证了计算的精度和收敛速度.

2.2 理论模型

体相STO具有典型的钙钛矿立方结构, 空间 群为Pm3m. 块体LMO在室温下呈正交型结构, 通常近似为立方结构. 实验晶格常数大小: LMO 为3.918 Å, STO 为3.942 Å^[20], 异质结的初始晶 格常数取其平均值3.93 Å. 为了模拟异质结界面 结构,沿着(001)晶体方向,用交替排列的LaO, MnO_2 及SrO, TiO₂原子层堆叠组成, 在z轴方向 用厚度大于10Å的真空层隔离,以避免上下表面 原子间的静电库仑相互作用. 界面模型结构用 $(LMO)_n/(STO)_m$ 表示, n表示LMO的单胞个数 (unit cell, u.c.), m 表示STO的单胞个数. 根据原 子层堆叠的顺序不同,可以得到两种不同的界面 类型, 如图1所示. 图1(a) 是n型的LaO/TiO₂界 面, 图1(b) 是 p型的 SrO/MnO₂ 界面. 为了研究不 同厚度比的LMO/STO对体系电子结构和磁性的 影响,对于n,p型界面计算了两种不同的厚度比结 构,第一种是LMO的厚度由薄到厚,STO固定为 超薄层的结构: $(LMO)_n/(STO)_2$ $(n = 4, 6, 8, \dots,$ 16); 第二种结构中, LMO为超薄层, STO视为较 厚层,用来与第一种结构做对比分析,包括n型和p 型 (LMO)₂/(STO)₈.

图 1 (网刊彩色) LMO/STO 异质界面结构示意图 (红色小球表示氧原子) (a) n 型 LaO/TiO₂ 界面; (b) p 型 SrO/MnO₂ 界面

Fig. 1. (color online) Heterointerface structure schematic of LMO/STO (the red balls show oxygen atoms): (a) n-type LaO/TiO₂ interface; (b) p-type SrO/MnO₂ interface. 3 计算结果与分析讨论

3.1 不同厚度比的n型和p型界面的结构 弛豫分析

为了讨论不同组分厚度比的LMO/STO对体 系中氧八面体结构畸变的影响,我们计算了各原子 层中离子弛豫量的大小.离子弛豫量可这样来描 述:沿着z轴方向在同一原子层中(如LaO, MnO₂, SrO, TiO₂原子层)氧离子相对于阳离子的位移差 值.相对位移差值体现了结构优化后原子层的褶 皱程度,也体现了以Mn为中心的MnO₆八面体和 以Ti为中心的TiO₆八面体的畸变程度,同时,相 对位移差值的正负可表示氧八面体的畸变模式. 实验上已报道氧八面体结构的畸变模式对调制界 面电子行为和磁性质起重要的作用^[29,30].图2给 出了n型和p型界面、不同厚度比结构的离子弛 豫.对优化后的n型LaO/TiO₂界面,如图2(a)所 示,越靠近界面的原子层弛豫量越小,相对位移 差值从0.2 Å逐渐减小到0.05 Å,在LMO一侧各 原子层相对位移都为正值,而界面另一侧的STO 相对位移差值为负,极化畸变符号与LMO一侧 相反,位于界面处的TiO2层及其相邻的SrO层存 在明显的褶皱, STO 一侧最大的弛豫量发生在界 面 TiO₂ 层. 比较图 2 (a) 中的 (LMO)₈/(STO)₂ 和 (LMO)₆/(STO)₂可知, LMO的厚度越大, 原子层 弛豫量就越小. 另一方面, 对于超薄的LMO层与较 厚STO 层构成的 (LMO)₂/(STO)₈ 界面, 从图 2(c) 可知, STO一侧的原子层相对位移差值非常小, 平 均弛豫量为-0.04 Å, 表明这种厚度比的结构中, TiO₂平面和SrO平面都很平坦,这与Pentcheva和 Pickett^[31]计算LAO/STO 界面得到的结果类似. 对于优化后的p型MnO₂/SrO界面,如图2(b)所 示,在LMO一侧,越靠近界面原子弛豫程度越大, 从0.05 Å逐渐增大到界面层的0.2 Å,在界面处的 MnO₂ 层和LaO 层达到最大弛豫量,表明p型异质 结构在界面处会出现较大的极化畸变,这与n型界

图 2 (网刊彩色) 各原子层中阳离子相对于氧离子的位移 (a) n型界面的离子弛豫; (b) p型界面的离子弛豫; (c) 由超薄 LMO 层和较厚 STO 层构成的 n型界面的离子弛豫; (d) 由超薄 LMO 层和较厚 STO 层构成的 p型界面的离子弛豫; 负号表示相对位移的方向沿 - z 轴

Fig. 2. (color online) The displacement of cation relative to oxygen ions in each atomic layers: (a) Ionic relaxation of n-type interface; (b) ionic relaxation of p-type interface; (c) ionic relaxation of n-type interface consisting of ultrathin LMO and thick STO; (d) ionic relaxation of p-type interface consisting of ultrathin LMO and thick STO; interface of the direction of the relative displacement along the -z axis.

面的弛豫恰好相反,这种由极化畸变产生的退极 化场对极性不连续造成的内建电场起着屏蔽作 用,该屏蔽作用一定程度上阻碍了电荷的转移^[16], 在STO一侧,各原子层极化畸变很小,在图2(b) 中,SrO原子层和TiO2原子层的位移差值符号 一正一负,说明在STO一侧p型界面氧八面体畸 变模式不同于n型界面.对于同样厚度比结构的 (LMO)₂/(STO)₈,比较图2(c)和图2(d)发现,p型 界面中STO的极化畸变比n型界面更小,几乎没有 发生氧八面体的结构畸变,这与Gabriel等^[18]报道 的实验观测结果相符合,结构弛豫的计算证实了实 验所得的结果.

3.2 (LMO)_n/(STO)_m 异 质 界 面 的 Ti 原子自旋态密度和磁性

为了分析结构弛豫后的电子转移情况,图3给 出了投影到Ti原子3d轨道的自旋分波态密度,图 中零位置处的虚线表示费米能级,从图3(a)--(f) 可知,在n型界面中,转移的电子占据Ti原子的 3d 电子轨道,导带底中的 d_{xu}轨道进入费米面,分 析图3(a)—(d)发现,随着极性层LMO厚度的增 $mn = 6, 8, 16 \text{ u.c.}, 费米能级进入d_{xy}$ 轨道的位 置越深,转移的电荷数增多;电荷的转移使Ti原 来的+4价变成+4和+3的混合价态^[32].实验上 发现LMO/STO在界面处有轨道Ti磁性^[33,34],根 据图3(b)—(d)可知, LMO厚度从6个单胞层开始, 分布在2.5—4 eV 能量区间的 $d_{x^2-y^2}$ 和 $d_{3z^2-r^2}$ 轨 道开始出现高自旋极化,上自旋态消失,只有下自 旋态占据,自旋向上和自旋向下的态密度不对称, 会诱导界面层的Ti产生磁矩,磁矩主要来源于导 带中Ti e_g 电子态的自旋劈裂, LMO厚度数n从6 增大到16的过程中,自旋极化程度增强,诱导的磁 矩不断增大. 如表1所列, n = 16 u.c. 的结构中, 界面层 Ti 磁矩高达 0.049 $\mu_{\rm B}$, 比 n = 4 u.c. 的结构 要大0.03µB. 从图3(f)可知, LMO为超厚层, STO 为超薄层的(LMO)16/(STO)2结构,转移的电子会 渗透到邻近界面第二层的TiO2内,第二层中Ti的 磁矩也达到了 0.041µB. 相反, 如果 LMO 为超薄层, STO 为较厚层的结构 (LMO)₂/(STO)₈, 从图 3 (e) 发现, Ti的d_{xy}轨道没有穿过费米能级, 导带中自 旋向上和自旋向下的电子态密度全都对称分布,界 面层Ti的磁矩非常小,只有0.009μB,表明此种厚 度比的结构由于极性层LMO 的厚度很小,内部电

势没有发散,界面处的极性不连续产生的内建电场 不足以造成电子的转移.

表 1 n型界面和 p 型界面的 Ti 原子磁矩 Table 1. The Ti magnetic moments of n-type interface and p-type interface.

界面类型	结构组分	Ti 磁矩/µB
n 型	$(\mathrm{LMO})_4/(\mathrm{STO})_2$	0.019
	$(\mathrm{LMO})_6/(\mathrm{STO})_2$	0.026
	$(\mathrm{LMO})_8/(\mathrm{STO})_2$	0.033
	$(\mathrm{LMO})_{16}/(\mathrm{STO})_2$	0.049 (第二层 0.041)
	$(\mathrm{LMO})_2/(\mathrm{STO})_8$	0.004
p型	$(LMO)_8/(STO)_2$	0.024
	$(\mathrm{LMO})_2/(\mathrm{STO})_8$	0.025

为了对比分析不同界面类型的电子行为, 图3(g)和图3(h)给出了p型界面MnO₂/SrO中邻 近界面层的Ti原子分波态密度,图中显示了无论对 于(LMO)₈/(STO)₂还是(LMO)₂/(STO)₈的结构, 费米能级处都存在约2 eV的带隙,表明p型界面不 易发生电子转移.从表1可知,不同组分厚度比的 p型界面Ti磁矩大小几乎相同,不随组分厚度比的 变化而变化,这不同于n型界面.此外,对于高厚度 比的n型LaO/TiO₂界面,Ti原子的d_{xy}轨道有少 量自旋向上和自旋向下态密度进入费米能级,从而 使n型异质结界面表现出一定的金属性,这与实验 上得到的带隙所表现出的绝缘性存在差异^[21],其 中的一个原因可能是基于密度泛函理论的GGA给 出的带隙值往往偏低,带隙的低估会影响异质结所 表现出的导电性特征.

3.3 (LMO)_n/(STO)_m界面 Mn 分态密度 和平均静电势

一般情况下, Mn^{3+} 的 3d 轨道上占据着 4 个电 子, 3 个电子占据低能级的 t_{2g} 轨道, 另一个电子占 据高能级的 e_g 轨道,构成 $t_{2g}^3 e_g^1$ 的电子组态,此类电 子组态容易发生氧八面体结构畸变,不同的结构 畸变将导致不同的电子轨道占据^[34],块体 STO 中 Ti⁴⁺的 3d 轨道上无电子占据,通常不存在 Jahn-Teller 效应引起的畸变.类似于 LAO/SMO 的界 面^[35], LMO/STO 界面发生结构畸变的同时电子 重新分布,重组的电子有可能来源于 Mn 的 e_g 电子, 而不是 Mn 的 t_{2g} 电子.

图 3 (网刊彩色)不同厚度比结构的界面层 Ti 原子的分波态密度 (a) n型(LMO)₄/(STO)₂; (b) n型(LMO)₆/(STO)₂; (c) n型(LMO)₈/(STO)₂; (d) n型(LMO)₁₆/(STO)₂; (e) n型(LMO)₁₆/(STO)₂ 界面第二层; (f) n型(LMO)₂/(STO)₈; (g) p型(LMO)₈/(STO)₂; (h) p型(LMO)₂/(STO)₈; 竖直虚线表示费米能级 Fig. 3. (color online) Partial density of states of interface layer Ti atom with different thickness ratios structure: (a) n-type (LMO)₄/(STO)₂; (b) n-type (LMO)₆/(STO)₂; (c) n-type (LMO)₈/(STO)₂; (d) n-type (LMO)₁₆/(STO)₂; (e) the second layer of n-type (LMO)₁₆/(STO)₂ interface; (f) n-type (LMO)₂/(STO)₈; (g) p-type (LMO)₈/(STO)₂; (h) p-type (LMO)₂/(STO)₈. The vertical dashed lines refers to Fermi level.

077301-5

图 4 (网刊彩色) 界面 Mn 原子的分波态密度 (a) n型 (LMO)₄/(STO)₂; (b) n型 (LMO)₈/(STO)₂; (c) n型 (LMO)₁₆/(STO)₂; (d) n型 (LMO)₂/(STO)₈; (e) p型 (LMO)₈/(STO)₂; (f) p型 (LMO)₂/(STO)₈ Fig. 4. (color online) Partial density of states of interface Mn atom: (a) n-type (LMO)₄/(STO)₂; (b) n-type (LMO)₈/(STO)₂; (c) n-type (LMO)₁₆/(STO)₂; (d) n-type (LMO)₂/(STO)₈; (e) p-type (LMO)₈/(STO)₂; (f) p-type (LMO)₈/(STO)₂.

为了进一步分析界面处的电子态密度和磁性质,图4给出了界面Mn的各电子轨道的自旋态密度.从图4中可知,自旋向上和自旋向下的态密度存在不对称的特点,eg轨道自旋向上的电子态贯穿费米能级,自旋向下的电子态存在约2 eV的带隙;对于 t_{2g} 轨道,自旋向上和自旋向下的电子态在费米能级处都存在一带隙,表现出绝缘性.已知块体LMO和STO是Mott绝缘体和能带绝缘体,但从界面Ti,Mn的态密度图发现,在LMO厚度数n大于6时,由这两种材料构成的n型

异质结是金属导电性的.两种界面类型中 Mn 的磁 矩约为 $3.9\mu_B$,与 Nanda 等^[32] 报道的磁矩大小相 当.对n型(LMO)_n/(STO)₂ 界面,随着 LMO 厚度 n的增加,体系中 Mn 原子总的 eg 电子数增多,从 图 4 (a)—(c)发现,导带中 eg 轨道自旋向下的电子 态密度却逐渐减少,当厚度 n 高达 16 u.c.时,由 图 4 (c)发现,位于导带中的 eg 自旋向下的态密度 消失,界面 Mn 的磁矩增大到 4.003 μ_B ,这说明发 生转移的电子主要来源于 Mn 的 eg 电子,由较厚 的 LMO 和超薄的 STO 组成的 n 型界面,转移出去 的 eg 电子数量随 LMO 厚度的增加不断增多,在界 面附近形成高迁移率的 2DEG.相反,超薄的 LMO 层和较厚的 STO 层构成的 n型 (LMO)₂/(STO)₈ 界 面,体系中 eg 电子总数很少,图4 (d)发现,导带中 却有较高的 eg 自旋向下态密度,结合前面的图 3 (e) 可证实,厚度比 (LMO)₂/(STO)₈ 的结构不易发生 电子转移,这种结构的界面 Mn 磁矩只有 3.7μ_B, 比 (LMO)₁₆/(STO)₂ 结构的界面 Mn 磁矩小0.3μ_B. 对于 p型界面,从图 4 (e)和图 4 (f)可发现,无论对 于 (LMO)₈/(STO)₂ 结构,还是 (LMO)₂/(STO)₈ 结 构,费米能级以上的导带中都有较高的 eg 自旋向下 态密度,这两个不同组分厚度比的 p型界面,界面 Mn 磁矩大小都为 3.9μ_B,不随厚度比而发生变化. 这与界面 Ti 的分态密度共同揭示了 p型界面不容 易发生电荷转移.

根据Nanda等^[36]对LaMnO₃/SrMnO₃界面

的第一性原理计算发现,从极性层LMO转移到 非极性层SrMnO₃的电子浓度和界面处的势垒大 小有重要的关系,为了更好地理解n型LaO/TiO₂ 和p型SrO/MnO₂两种不同的界面类型电子转移 情况差别较大的原因,本文计算了LMO/STO异质 结界面沿z轴方向的面内平均静电势,如图5所示, 势差方向垂直于界面.从图5中可以发现,STO一 侧的静电势都高于LMO一侧,根据结构畸变产生 的退极化电场可以改变界面两侧的静电势差^[15], 并且两种类型界面的结构弛豫程度不同.由此,比 较图5(a)和图5(b)以及图5(c)和图5(d)在界面 处的平均静电势可得,n型界面处的平均静电势差 约4 eV,p型界面处的平均静电势差约6 eV,p型界 面相比n型界面都存在2 eV的势差,这在一定程度 上阻碍了p型界面电子转移的发生.

图 5 (网刊彩色) 平均静电势 (a) n型 (LMO)₆/(STO)₂ 界面的静电势; (b) n型 (LMO)₁₀/(STO)₄ 界面的静电势; (c) p 型 (LMO)₈/(STO)₂ 界面的静电势; (d) p型 (LMO)₂/(STO)₈ 界面的静电势; 红色实线表示沿 z 轴方向的平均静电势 Fig. 5. (color online) Average electrostatic potential: (a) The electrostatic potential of n-type (LMO)₆/(STO)₂ interface; (b) the electrostatic potential of n-type (LMO)₁₀/(STO)₄ interface; (c) the electrostatic potential of ptype (LMO)₈/(STO)₂ interface; (d) the electrostatic potential of p-type (LMO)₂/(STO)₈ interface. The red solid lines show the along z axis direction average electrostatic potential.

4 结 论

采用基于密度泛函理论的第一性原理计算方

法,研究了异质结 $(LaMnO_3)_n/(SrTiO_3)_m$ 的n型 LaO/TiO₂和p型SrO/MnO₂两种界面的离子弛 豫、电子结构和磁性质.研究表明,组分厚度比及界 面类型对离子弛豫有重要影响,n型LaO/TiO₂越 靠近界面离子弛豫越小, p型SrO/MnO2越靠近界 面离子弛豫越大. 随着LMO 厚度的变化, 会发生 不同的转移电子浓度,临界厚度为6 u.c., Mn的e。 电子转移到STO 中Ti的d_{xu}轨道上. 组分厚度比 为 $(LMO)_n/(STO)_2$ 的n型界面结构,随LMO厚度 n不断增加,体系由于离子弛豫造成的极化畸变不 断减小,在界面处可形成高迁移率的2DEG,同时, 界面层Ti的自旋极化越明显,诱导的磁矩增大到 0.05μ_B. 相反, 厚度比为(LMO)₂/(STO)₈的结构, 无论对于n型或p型界面,在STO一侧都基本上无 结构畸变,也无电子转移和自旋极化.对平均静电 势的计算表明,n型和p型界面处的势垒相差2 eV, 进一步说明了p型界面不易发生电荷转移的原因. 离子弛豫的计算证实了实验所观测的结果,计算结 果可为钙钛矿型过渡金属氧化物界面薄膜材料的 研究提供理论指导.

参考文献

- Jilili J, Cossu F, Schwingenschlögl U 2015 Sci. Rep. 5 13762
- [2] Yamada H, Ogawa Y, Ishii Y 2004 Science **305** 646
- [3] Wang Z G, Xiang J Y, Xu B, Wan S L, Lu Y, Zhang X F 2015 Acta Phys. Sin. 64 067501 (in Chinese) [王志 国, 向俊尤, 徐宝, 万素磊, 鲁毅, 张雪峰 2015 物理学报 64 067501]
- [4] Ohtomo A, Muller D A, Grazul J L 2002 Nature 419 378
- [5] Li L M, Ning F, Tang L M 2015 Acta Phys. Sin. 64
 227303 (in Chinese) [李立明, 宁锋, 唐黎明 2015 物理学报
 64 227303]
- [6] Tokura Y, Hwang H Y 2008 Nat. Mater. 7 694
- [7] Oja R, Tyunina M, Yao L, Pinomaa T, Kocourek T, Dejneka A, Stupakov O 2012 *Phys. Rev. Lett.* **109** 127207
- [8] Reiner J W, Wallker F J, Ahn C H 2009 Science 323 1018
- [9] Okamoto S, Millis A J 2005 Phys. Rev. B 72 235108
- [10] Li D F, Wang Y, Dai J Y 2011 Appl. Phys. Lett. 98 122108

- [11] Ohtomo A, Hwang H Y, Bjorkholm J E 2004 Nature 427 423
- [12] Wang Y, Niranjan M K, Jaswal S S 2009 Phys. Rev. Lett. 103 016804
- [13] Tokura Y, Nagaosa N 2000 Science 288 462
- [14] Pentcheva R, Pickett W E 2009 Phys. Rev. Lett. 102 107602
- [15] Jang H W, Felker D A, Bark C W, Wang Y, Niranjan M K 2011 Science 331 886
- [16] Gabriel S S, Mariona C, Maria V, Garcia-Barriocanal J, Stephen J 2014 Microsc. Microanal. 20 825
- [17] Shah A B, Ramasse Q M, Zhai X F, Wen J G 2010 Adv. Mater. 22 1156
- [18] Garcia-Barriocanal J, Cezar J C, Bruno F Y, Thakur P, Brookes N B, Utfeld C, Rivera-Calzada A 2010 Nat. Commun. 1 1080
- [19] Cossu F, Singh N, Schwingenschlögl U 2013 Appl. Phys. Lett. 102 042401
- [20] Liu H M, Ma C Y, Zhou P X, Dong S, Liu J M 2013 J. Appl. Phys. 113 17D902
- [21] Zhai X F, Cheng L, Liu Y, Schlepüz C M, Dong S, Li H, Zhang X Q, Chu S Q, Zheng L R, Zhang J, Zhao A D, Hong H, Zheng C G 2014 Nat. Commun. 5 4283
- [22]~ Du Y L, Wang C L, Li J C 2015 Chin. Phys. B $\mathbf{24}~037301$
- [23] Du Y L, Wang C L, Li J C 2014 Chin. Phys. B 23 087302
- [24] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
- [25] Perdew J P, Burke K, Ernzerhof M 1996 *Phys. Rev. B* 77 3865
- [26] Blöchl P E, Ashkin A 1994 Phys. Rev. B 50 17953
- [27] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [28] Yang Z, Huang Z, Ye L 1999 Phys. Rev. B 60 15674
- [29] Yamamoto R, Bell C, Hikita Y 2011 Phys. Rev. Lett. 107 036104
- [30] Pauli S A, Leake S J, Delley B 2011 Phys. Rev. Lett. 106 036101
- [31] Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106
- [32] Aezami A, Abolhassani M, Elahi M 2014 J. Alloys. Compd. 587 778
- [33] Garcia-Barriocanal J, Bruno F Y, Rivera-Calzada A, Sefrioui Z, Nemes N M, Garcia-Hernandez M, Rubio-Zuazo J 2010 Adv. Mater. 22 627
- [34] Woo S C, Jeong D W, Seo S S A, Lee Y S 2011 Phys. Rev. B 83 195113
- [35] Hou F, Cai T Y, Ju S 2012 ACS Nano 6 8552
- [36] Nanda B R K, Satpathy S 2009 Phys. Rev. B 79 054428

First-principles study of the electronic properties and magnetism of $LaMnO_3/SrTiO_3$ heterointerface with the different component thickness ratios^{*}

Yan Song-Ling Tang Li-Ming[†] Zhao Yu-Qing

(School of Physics and Microelectronics Science, Hunan University, Changsha 410082, China)

(Received 23 September 2015; revised manuscript received 21 January 2016)

Abstract

Using first-principles calculations based on density functional theory and projector augmented wave method, we investigate the thickness ratio dependences of the ionic relaxation, electronic structure, and magnetism of $(LaMnO_3)_n/(SrTiO_3)_m$ heterostructure. Polar and nonpolar oxide interfaces have become a hot point of research in condensed matter physics; in this system, polar discontinuity at the interface may cause charge transfer to occur at interfaces between Mott and band insulating perovskites. Here, we consider two types of interfaces, namely $h-type (LaO)^+/(TiO_2)^0$ and p-type $(MnO_2)^-/(SrO)^0$ interfaces. The results show that the different thickness ratios and interface-types lead to different degrees of ionic relaxation, inducing charges of different concentrations to transfer. The distortions of the oxygen octahedra are found to vary distinctly with the component thickness ratio (n : m), which is consistent with recent experimental results. Furthermore, both n and m are found to strongly affect the charge transfer. When the thickness of LaMnO₃ reaches a thickness of critical layers of 6 unit cells, the $Mn-e_g$ electrons are transferred to the $Ti-d_{xy}$ orbitals of $SrTiO_3$, which is caused by the interface polar discontinuity. Two-dimensional electron gas with high mobility is formed in an n-type $(LaMnO_3)_n/(SrTiO_3)_2$ interface region. Meanwhile, spin polarization of interface-layer Ti atoms becomes more obvious, which induces Ti magnetic moment to be close to $0.05\mu_{\rm B}$. We find that Mn magnetic moment of $3.9\mu_{\rm B}$ is a larger value at the n-type interface than at the p-type interface. The above studied heterostructure favours ferromagnetic spin ordering rather than the A-type antiferromagnetic spin ordering of bulk LaMnO₃. Whether n-type or p-type $(LaMnO_3)_2/(SrTiO_3)_8$ interfaces consist of ultrathin LaMnO_3 layer and thicker SrTiO_3 layer, there is no structure distortion at the side of SrTiO₃ basically, which is in agreement with experimental results. Stronger interface-layer polar distortions for p-type interface prevent the electron transfer from occurring, and spin polarization of Ti cannot occur either. In addition, it is found that the two types of interfaces possess 2 eV potential difference by comparing the average electrostatic potential, thus charge transfer is more difficult to occur in the p-type interface than in the n-type interface.

Keywords: LaMnO₃/SrTiO₃, electronic structure, heterointerface, first-principlesPACS: 73.40.-c, 73.20.-r, 75.70.Cn, 73.20.AtDOI: 10.7498/aps.65.077301

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11347022).

[†] Corresponding author. E-mail: https://www.uhang.com