物理学报 Acta Physica Sinica

 $Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N$ 量子阱中的Rashba自旋劈裂 赵正印 王红玲 李明

Rashba spin splitting in the Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N quantum well

Zhao Zheng-Yin Wang Hong-Ling Li Ming

引用信息 Citation: Acta Physica Sinica, 65, 097101 (2016) DOI: 10.7498/aps.65.097101 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.097101 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I9

您可能感兴趣的其他文章 Articles you may be interested in

强自旋轨道耦合化合物 $Sr_{2-x}La_xIrO_4$ 的掺杂和拉曼谱学

Doping and Raman scattering of strong spin-orbit-coupling compound $Sr_{2-x}La_xIrO_4$ 物理学报.2015, 64(20): 207103 http://dx.doi.org/10.7498/aps.64.207103

金属表面 Rashba 自旋轨道耦合作用研究进展 Recent progress in Rashba spin orbit coupling on metal surface 物理学报.2015, 64(18): 187103 http://dx.doi.org/10.7498/aps.64.187103

HF⁺ 离子在旋轨耦合作用下电子态的特性 The characteristics of excited states for HF⁺ ion under spin-orbit coupling 物理学报.2014, 63(12): 127102 http://dx.doi.org/10.7498/aps.63.127102

具有 D_{4h} 对称性构型的 C^{2+}_4 分子的 Jahn-Teller 效应与能级分裂 The Jahn-Teller effect and energy-level splitting for C^{2+}_4 molecules with the D_{4h} symmetry configuration 物理学报.2011, 60(5): 057106 http://dx.doi.org/10.7498/aps.60.057106

CH₃O (X² E) 中电子-振动-自旋耦合能级的理论计算 Theoretical studies on spin-vibronic spectra of CH₃ O(X² E) 物理学报.2011, 60(2): 027106 http://dx.doi.org/10.7498/aps.60.027106

Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量子阱中的Rashba自旋劈裂^{*}

赵正印 王红玲 李明†

(许昌学院电气信息工程学院,许昌 461000)

(2015年12月19日收到;2016年2月1日收到修改稿)

正如人们所知,可以通过电场或者设计非对称的半导体异质结构来调控体系的结构反演不对称性 (SIA) 和 Rashba 自旋劈裂.本文研究了 Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量子阱中第一子带的 Rashba 系数和 Rashba 自旋劈裂随 Al_{0.3}Ga_{0.7}N 插入层 (右阱)的厚度 w_s 以及外加电场的变化关系,其中 GaN 层 (左阱)的厚度为 40- w_s Å.发现随着 w_s 的增加,第一子带的 Rashba 系数和 Rashba 自旋劈裂首先增加,然后在 $w_s > 20$ Å 时它们迅速减小,但是 $w_s > 30$ Å时 Rashba 自旋劈裂减小得更快,因为此时 k_F 也迅速减小.阱层 对 Rashba 系数的贡献最大,界面的贡献次之且随 w_s 变化不是太明显,全层的贡献相对比较小.然后,我们假 设 $w_s = 20$ Å,发现外加电场可以很大程度上调制该体系的 Rashba 系数和 Rashba 自旋劈裂,当外加电场的方向同极化电场方向相同 (相反)时,它们随着外加电场的增加而增加 (减小).当外加电场从 -1.5×10^8 V·m⁻¹ 致化时,Rashba 系数随着外加电场的改变而近似线性变化,Rashba 自旋劈裂先增加得很 快,然后近似线性增加,最后缓慢增加.研究结果表明可以通过改变 GaN 层和 Al_{0.3}Ga_{0.7}N 层的相对厚度以 及外加电场来调节 Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量子阱中的 Rashba 系数和 Rashba 自旋劈裂,这对于设计自旋电子学器件有些启示.

关键词: Rashba 自旋劈裂, 自旋轨道耦合, 自洽计算, 极化效应
 PACS: 71.70.Ej, 73.21.-b, 77.65.Ly
 DOI: 10.7498/aps.65.097101

1引言

近来,半导体低维结构中的自旋轨道耦合效应 受到广泛的关注,因为可以利用它来控制和操纵 电子的自旋自由度,从而设计新颖的自旋电子学 器件^[1-6].另外,在一定条件下,自旋轨道耦合作 用能使一些半导体材料进入拓扑绝缘相^[7-10].在 不具备空间反演对称性的半导体低维结构中,自 旋轨道耦合作用消除了电子能带的自旋简并,导 致零磁场下能带的自旋劈裂^[11].在没有外加电磁 场时,主要有两种物理机制导致自旋劈裂,一种是 晶体结构的体反演不对称性(BIA)导致的Dresselhaus 自旋劈裂^[12],另外一种是异质结的结构反演 不对称性(SIA)导致的Rashba 自旋劈裂^[13,14].其 中,Rashba 自旋劈裂受到了广泛的关注,因为在具 有非对称势的体系里,Rashba 自旋劈裂与电场强 度直接相关,因而可以通过本征极化电场^[9,10]或者 外加电场调控SIA和Rashba 自旋劈裂^[13-20].另 外也可以通过设计空间非对称的半导体异质结构 来提高体系的本征结构反演不对称性,从而增加 Rashba 自旋劈裂^[21-25].

一般地, Rashba自旋轨道耦合参数随着能带的带隙增加而减小, 所以我们预计宽带隙的Ga(Al)N材料中的Rashba自旋劈裂非常小. 然而, 对于沿着*c*轴生长的纤锌矿结构的AlGaN/GaN异

© 2016 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 61306012)、河南省高等学校青年骨干教师 (批准号: 2015GGJS-145) 和许昌学院杰出青年骨干人才计 划资助的课题.

[†]通信作者. E-mail: mingli245@163.com

质结,因为较大的导带阶跃和较强的压电和自发极 化效应,沟道中形成很强的极化电场和高浓度的二 维电子气^[26-28].因此,即使没有外加电场,极化 电场影响了量子阱结构的对称性,使该异质结构具 有本征SIA.此外,高浓度的二维电子气使费米能 级较高.因为电场和费米能级对Rashba自旋劈裂 都很重要^[4,13,14,16-20,27-29],以上因素将导致沿着 *c*轴生长的III族氮化物半导体异质结构在费米能 级处具有可观的Rashba自旋劈裂^[27-35].

Hg0 74Cd0 26Te/CdTe量子阱中的最低子 带的Rashba系数随电场近似线性增加,随 着阱层厚度增加直到饱和^[19,20]. 在非对 称的AlAs/GaAs/Al_{0.15}Ga_{0.85}As量子阱中,发现 Rashba系数随着阱层厚度先快速增加到峰值 然后减小^[16,17]. 在本文中,我们通过改变GaN 层和Alo₃Gao₇N 层的相对厚度以及分别加同 极化电场方向相同和相反的外电场来调节 Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N量子 阱中的Rashba 系数和Rashba 自旋劈裂. 该量 子阱结构是将Al_{0.3}Ga_{0.7}N层插入到Al_{0.6}Ga_{0.4}N/ GaN/Al_{0.6}Ga_{0.4}N量子阱而得到的.其中, 左、右垒 层的厚度都是30Å,阱层的总厚度是40Å,这里可 以认为有两个相连的阱层区域, 右阱 Al_{0.3}Ga_{0.7}N 插入层的厚度为ws, 左阱GaN层的厚度是40-ws. Al0.3Ga0.7N插入层将会增加该异质结构的本征 SIA, 且增加了GaN/Al_{0.3}Ga_{0.7}N 异质结界面 (中间 界面). 另外, 随着ws 的增加, 中间界面的位置、有 效阱宽、极化电场、电子的空间分布以及束缚能级 都会改变.此外,我们假设 $w_s = 20$ Å,研究了外 加电场对该量子阱中的Rashba系数和Rashba自 旋劈裂的影响. 分别考虑外加电场的方向同极化 电场的方向相同和相反的情况,外加电场在一定程 度上加强或者抵消极化电场的效应,并且将会进一 步增加该异质结构的本征SIA. 此外, 外加电场带 来了附加势,将会影响电子的空间分布和束缚能 级、费米能级,进而影响Rashba系数和Rashba自 旋劈裂.

2 理论模型和方法

在 AlGaN/GaN 异质结构中,考虑 Rashba 自 旋轨道耦合作用,描述导带电子的有效质量方程可 以写成^[27-29,32-37]:

$$\left[-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{1}{m(z)}\frac{\mathrm{d}}{\mathrm{d}z}\right) + V(z) + \frac{\hbar^2 k_t^2}{2m_t} \mp \alpha_n k_t - \varepsilon_n(k_t)\right] \Phi_{n,\pm} = 0, \quad (1)$$

m(z)是z轴 (c轴) 方向的有效质量; $m_t \ nk_t$ 是垂直 于z轴的平面内的有效质量和波矢; ± 代表电子的 自旋方向. 在方程 (1) 中, $\mp \alpha_n k_t$ 项导致第n 子带 的 Rashba 自旋劈裂: $\Delta \varepsilon_n = 2\alpha_n k_t$, 其中第n子带 的 Rashba 系数 α_n 可以表示为 ^[27-29,32-37]:

$$\begin{aligned} \alpha_n &= P_1 P_2 \left[\Phi_n (L_1)^2 (\beta_{\mathrm{II},n} - \beta_{\mathrm{I},n}) \right. \\ &+ \Phi_n (L_2)^2 (\beta_{\mathrm{III},n} - \beta_{\mathrm{II},n}) \\ &+ \Phi_n (L_3)^2 (\beta_{\mathrm{IV},n} - \beta_{\mathrm{III},n}) + \left\langle \frac{\partial \beta_n}{\partial z} \right\rangle_I \\ &+ \left\langle \frac{\partial \beta_n}{\partial z} \right\rangle_{\mathrm{II}} + \left\langle \frac{\partial \beta_n}{\partial z} \right\rangle_{\mathrm{III}} + \left\langle \frac{\partial \beta_n}{\partial z} \right\rangle_{\mathrm{IV}} \right]. \end{aligned}$$
(2)
$$\beta_n &= \frac{\Delta_3}{(E_{\mathrm{v}} - \varepsilon_n)(E_{\mathrm{v}} - \varepsilon_n + \Delta_1 - \Delta_2) - 2\Delta_3^2}, \\ B_n &= \frac{\Delta_3 [2E_g + \Delta_1 + 3\Delta_2 + 2(\varepsilon_n - V)]}{\{(E_{\mathrm{v}} - \varepsilon_n)(E_{\mathrm{v}} - \varepsilon_n + \Delta_1 - \Delta_2) - 2\Delta_3^2\}^2}. \end{aligned}$$
(3)

 $\langle \cdots \rangle$ 代表对第*n*束缚子带的包络函数 Φ_n 求平均 值, E_v 是考虑应变后 Γ 点的最高价带边;下标 I, II, III, IV分别代表左垒区域、左阱(GaN)区 域、右阱(Al_{0.3}Ga_{0.7}N)区域、右垒区域; $L_{1,2,3}$ 分别代表左、中间、右异质结界面的位置. $P_1 = P_2 = \hbar \sqrt{E/2m_0}(E = 20 \text{ eV})$ 是带间动量 矩阵元^[27,28].

方程 (1) 中 V 是导带阶跃和静电势之和. 束缚 能级和电子的空间分布由限制势 V 确定. 然而, 静 电势又取决于极化电荷以及二维电子气的空间分 布. 因而, 为了获得导带边形状和电子分布, 我 们需要自洽求解薛定谔和泊松方程得到束缚能级 ε_n 、包络函数 Φ_n 以及静电势 ^[38,39]. 因为相对于 V, Rashba 自旋劈裂能较小, 我们先忽略方程 (1) 中的 Rashba 项. 把求出的 ε_n 、包络函数 Φ_n 以及静电势 代入方程 (2) 和 (3) 中计算 Rashba 系数, 然后计算 费米能级处的 Rashba 自旋劈裂能 $\Delta \varepsilon_n$.

方程 (2) 中, Rashba 系数的表达式共包含七 项. 前三项 (Γ_{Inter}) 是异质结界面的贡献,包括左 (Γ_{InterL})、中间 (Γ_{InterM}) 和右异质结界面 (Γ_{InterR}) 的贡献,分别同相应界面处的包络函数的平方 (电 子概率密度) 成正比例. 此外, Γ_{Inter} 同界面处的导 带阶跃以及束缚能级有关.第四、七项来自左右垒 层的贡献(Γ_B),第五、六项(Γ_W)是阱层的贡献,包 括左阱(Γ_{W1})和右阱(Γ_{W2})的贡献.Γ_B和Γ_W近似 正比于它们相应区域的平均电场,它们也取决于束 缚能级和电子的空间分布.所以电子的空间分布和 束缚能级对 Rashba 系数至关重要.

对于沿着c轴生长的纤锌矿结构的Al-GaN/GaN异质结构,压电极化PPE和自发极化 PSP可以分别表示为^[40,41]:

$$P_{\rm PE} = e_{31}(\varepsilon_{xx} + \varepsilon_{yy}) + e_{33}\varepsilon_{zz}, \qquad (4)$$

$$P_{\rm SP} = -0.052x - 0.029({\rm C/m}^2), \qquad (5)$$

其中 $\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{zz}$ 为应变张量的非零对角元.

3 结果与分析

本节研究 $Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}$ Ga_{0.4}N量子阱中第一子带的 Rashba 系数 (α_1)和 Rashba 自旋劈裂随 $Al_{0.3}Ga_{0.7}N$ 插入层的厚度 (w_s)以及外加电场的变化关系,并且定量分析影 响 Rashba 系数和 Rashba 自旋劈裂的各方面因素. 表 1 给出了计算所用的有关 $Al_xGa_{1-x}N/GaN$ 量子 阱的材料参数.

表 1 Al_xGa_{1-x}N/GaN 量子阱的材料参数 Table 1. Material parameters of Al_xGa_{1-x}N/GaN QWs.

c 轴方向的有效质量 (m_0)	m(z) = 0.22 + 0.26x
导带阶跃/eV	$\Delta E_{\rm C} = 1.9 x$
静态介电常数 ε_0	$\varepsilon_{\rm r} = 10.4 - 0.3x$
晶体场劈裂能/meV	$\Delta_2 = \Delta_3 = 6.0^{[42]}$
自旋轨道劈裂能/meV	$\Delta_1 = 22 - 80x^{[43]}$
压电系数/C·m ⁻²	$e_{13} = -0.49 - 0.11x;$ $e_{33} = 0.73 + 0.73x^{[44]}$

图1给出了 w_s分别为10,20,30 Å时量子阱的 导带边形状和第一子带的包络函数.从图1可以看 出,第一子带的包络函数在左界面附近有较高的 峰.量子阱的束缚势垒和电子的空间分布都是非 对称的.这是由极化电场和Al_{0.3}Ga_{0.7}N插入层引 起的.此外,随着 w_s的增加,左阱的有效宽度减小, 包络函数的峰和中间界面的位置都向左侧移动,波 函数的扩展区间和量子阱的有效阱宽都减小.进 而对束缚能级和电场强度肯定有影响,进而会影响 Rashba 系数和 Rashba 自旋劈裂.

图 1 (网 刊 彩 色) w_s 分 别 为 10, 20, 30 Å 时 Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量 子 阱 的导带边形状和第一子带的包络函数

Fig. 1. (color online) The conduction band profile, and the envelope function for the first subband of the Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N QW with $w_{\rm s} = 10$, 20, 30 Å, respectively.

图 2 (网刊彩色) 第一子带的电子的平均位置和左界面处 的电场随着 Al_{0.3}Ga_{0.7}N 插入层的厚度 (w_s) 的变化,点 线 ($E' 和 \langle z \rangle'_1$) 和实线 ($E \pi \langle z \rangle_1$) 分别代表考虑和不考 虑插入层引起的极化效应

Fig. 2. (color online) The average position of electrons in the first subband and the electric field at the left heterointerface as a function of w_s with $(E' \text{ and } \langle z \rangle'_1$, dotted line) and without considering the polarization effect induced by the inserted layer (E and $\langle z \rangle_1$, real line).

图 2 显示第一子带的电子的平均位置 ($\langle z \rangle_1 = \int_0^L z \varphi_1^2(z) dz$, 坐标原点选在量子阱的最左端) 和 左界面附近的电场随着 Al_{0.3}Ga_{0.7}N 插入层的厚度 的变化关系, 点线 ($E' 和 \langle z \rangle'_1$) 和实线 ($E \pi \langle z \rangle_1$)分 别代表考虑和不考虑插入层所引起的极化效应. 如 前所述, 阱层总厚度是 40 Å, 左阱 GaN 层的厚度为 40 Å- w_s (左阱). 图 2 显示随着 w_s 增加, 第一子带的 电子的平均位置渐渐向量子阱左侧移动, 说明电子 的包络函数的峰向左侧移动. 当 w_s 从5 Å增加到 30 Å, 如果考虑插入层的极化效应, 左界面附近的 电场先增加, 然后在 $w_s = 30$ Å时减小. 要是不考虑插入层的极化效应, 左界面附近的电场将会更小且随 w_s 缓慢变化, 然后在 $w_s = 25$ Å时迅速减小. 这表明左界面附近的电场的增加主要是由插入层的极化效应导致的. 当 w_s 增加时, 第一子带的包络函数的峰和中间界面的位置都朝着左界面移动, 量子阱的有效阱宽减小, 所以左界面附近的电子概率密度和电场同时增加. 但是当 w_s 增加到30Å左右时, 左界面处的电场减小, 因为左界面附近的二维电子气浓度很高, 将会引起同极化电场方向相反的静电场.

图 3 显示第一子带电子的束缚能级 (E_1)、费 米能级 (E_F)以及费米波矢 (k_F)随着 w_s 的变化关 系. 当 $w_s < 25$ Å时, $E_1 和 E_F$ 随着 w_s 缓慢增加, 当 $w_s > 25$ Å 时, $E_1 和 E_F$ 随着 w_s 迅速增加, 但是 E_1 增加的稍微快点, 特别是当 $w_s > 30$ Å 时, E_1 与 E_F 的距离减小得较快.所以 k_F 先随着 w_s 的增加 缓慢变化,当 $w_s > 30$ Å 时, k_F 迅速减小.随着 w_s 的增加, GaN层的厚度减小, 且右阱 Al_{0.3}Ga_{0.7}N插 入层的势相对较高, 电子包络函数的扩展区间减 小, 电子主要分布于左阱层区域, 因而量子阱的有 效阱宽减小, 进而导致电子的束缚能级升高.

图 3 (网刊彩色) 费米能级 $(E_{\rm F})$ 、费米波矢 $(k_{\rm F})$, 以及第 一子带的电子的束缚能级 (E_1) 随着随 $w_{\rm s}$ 的变化 Fig. 3. (color online) Dependence of the Fermi level $(E_{\rm F})$, Fermi wave vector $(k_{\rm F})$, and the confined energy for the first subband (E_1) on $w_{\rm s}$.

图4显示的是第一子带的Rashba系数 α_1 以及 其各部分贡献随 w_s 的变化关系.我们可以看出 第一子带的Rashba系数随着 w_s 先增加,然后在 $w_s = 20$ Å时迅速减小.阱层的贡献最大,界面的 贡献次之但随 w_s 变化不是太明显, 垒层的贡献相 对比较小.根据方程2,阱层和垒层对 α_1 的贡献依 赖于它们相应区域的平均电场、第一子带电子的概 率密度,以及束缚能级.界面对 α_1 的贡献(Γ_{Inter}) 依赖于界面处的概率密度和束缚能级.所以第一子 带的包络函数对 α_1 的强度至关重要.

图 4 (网刊彩色) 第一子带的 Rashba 系数以及其各部分 贡献随 ws 的变化

Fig. 4. (color online) The Rashba coefficient for the first subband (α_1) and its individual contributions as a function of w_s .

图 5 (网刊彩色) 左中界面和左右阱层对第一子带的 Rashba 系数的贡献随 ws 的变化

Fig. 5. (color online) Contributions to the Rashba coefficient from the left (Γ_{InterL}) and middle (Γ_{InterM}) interfaces and the left (Γ_{W1}) and the right (Γ_{W2}) well.

图 5 显示的是左、中界面和左右阱层对第一子 带的 Rashba 系数的贡献随 w_s 的变化关系. 随着 w_s 的增加, 电子的概率密度峰和中间界面的位置都向 左移动, 左侧和中间界面处的电子概率密度增加, 所以左侧和中间界面的贡献增加. 但是中间界面 的贡献的符号是负的, 所以这两方面的贡献抵消一 部分, 从而导致界面的贡献随 w_s的变化不是太明 显. 左阱区域的平均电场随 w_s 增加而迅速增加, 尤 其是左界面的电场远远强于右界面. 此外, 当 w_s 增 加的时候, 电子概率密度峰向左界面移动, 且左阱 层的电子概率密度也增加. 所以左阱层的贡献先 随 w_s 增加. 当 w_s 增加到一定程度, 左界面附近的 电场迅速减小,因为左界面附近的电子浓度很高, 将会引起同极化电场方向相反的电场.此外,左阱 的有效阱宽减小导致电子的束缚能级升高.所以 左阱层的贡献此时又随w_s减小.右阱的贡献相当 小,因为右阱Al_{0.3}Ga_{0.7}N插入层的势比左阱GaN 层高很多,电子主要分布于左阱层.以上因素共同 导致阱层的总贡献随着w_s先增加后减小.

图 6 显示了第一子带在费米能级处的 Rashba 自旋劈裂随 w_s 的变化关系. 同 Rashba 系数类 似, Rashba 自旋劈裂首先随着 w_s 增加, 然后在 $w_s > 20$ Å时迅速减小. 因为束缚能级和费米能 级同时增加, 费米波矢 k_F 随 w_s 的减小缓慢变化. 但是 $w_s > 30$ Å时 Rashba 自旋劈裂减小得更快, 因为此时 k_F 迅速减小. 所以, 当 $w_s < 20$ Å时, Rashba 自旋劈裂首先随着 w_s 增加主要是因为阱层 区域的电场增加, 当 $w_s > 20$ Å时, Rashba 自旋劈 裂随着 w_s 减小主要是因为有效阱宽减小导致束缚 能级升高, 阱层区域的电场减小, 以及费米波矢迅 速减小.

图 6 $Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量 子阱中第一子带在费米能级处的 Rashba 自旋劈裂随 <math>w_s$ 的变化

Fig. 6. Rashba spin splitting at the Fermi level for the first subband of the Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N QW as a function of $w_{\rm s}$.

这里的情况和前面所述的 AlAs/GaAs/Al_{0.15} Ga_{0.85}As量子阱以及 Hg_{0.74}Cd_{0.26}Te/CdTe量子 阱有些不同. 这里阱层的总厚度是40 Å, Al_{0.3}Ga_{0.7}N插入层(右阱)的厚度为 w_s , GaN层 (左阱)厚度是40- w_s . 随着 w_s 的增加,有效阱宽 减小. 对于 HgCdTe/CdTe量子阱,因为束缚能 级随着阱层厚度的增加而减小,有效带隙减 小直到达到一个固定值,所以 Rashba 系数随着 阱层厚度增加直到饱和^[19,20].对于非对称的 AlAs/GaAs/Al_{0.15}Ga_{0.85}As量子阱,Rashba系数 随着阱层厚度先快速增加到峰值然后减小.随 着阱层厚度的增加,束缚能级减小将增加Rashba 自旋劈裂,而包络函数在界面处的对称性降低将减 小Rashba自旋劈裂^[16,17].

接下来研究Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/ $Al_{0.6}Ga_{0.4}N$ 量子阱($w_{s} = 20$ Å) 中第一子带的 Rashba 系数 (α_1) 和 Rashba 自旋劈裂随外加电场 的变化关系. 图7显示的是该量子阱中第一子带的 Rashba系数以及界面、阱层和垒层的贡献随外加 电场的变化关系.可以看出,当外加电场的方向沿 着z轴的正方向,也就是与极化电场方向一致时, Rashba系数随着外加电场的增加而近似线性增加, 这同前面所述的Hg0.74Cd0.26Te/CdTe量子阱的结 果基本一致^[19,20]; 当外加电场的方向沿着z轴的 负方向,也就是与极化电场方向相反时,Rashba系 数随着外加电场的增加而近似线性减小. 阱层对 Rashba系数的贡献最大,且随着外加电场增加很 快. 界面的贡献次之,并且随着电场的增加而缓慢 增加,因为电子波函数的峰向左侧界面移动.而垒 层的贡献很小,且随着电场的增加变化得很缓慢, 因为电子在垒层出现的概率很小.

图7 (网刊彩色) $Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}$ $Ga_{0.4}N$ 量子阱 ($w_s = 20$ Å) 中第一子带的 Rashba 系数 以及界面、阱层和垒层的贡献随外加电场的变化

Fig. 7. (color online) The Rashba coefficient for the first subband (α_1) and the contributions from the interfaces, well, and the barriers in the Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N QW ($w_s = 20$ Å) as a function of the external electric field.

图 8 显示了 $Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量子阱中的费米波矢 <math>(k_F)$ 和第一子 带在费米能级处的 Rashba 自旋劈裂随外加电场的

变化关系.可以看出,当外加电场的方向沿着z轴 的负方向且不断增加时, kF 先缓慢变化, 然后迅速 减小;当外加电场的方向沿着 z 轴的正方向且不断 增加的时候, k_F先缓慢变化, 然后减小. 这主要是 因为外加电场带来了附加势,进而影响电子的空间 分布和束缚能级、费米能级. 所以, 当外加电场从 -1.5×10^8 V·m⁻¹ 到 1.5×10^8 V·m⁻¹ 变化时, 尽 管 Rashba 系数随着外加电场的改变而近似线性变 化, Rashba 自旋劈裂先增加的很快, 然后近似线性 增加,最后缓慢增加.由此看出,外加电场可以很 大程度上调制该体系的Rashba系数和Rashba自 旋劈裂,当外加电场的方向同极化电场方向一致 时, Rashba 系数和 Rashba 自旋劈裂随着外加电场 的增加而增加;当外加电场的方向同极化电场方向 相反时, Rashba 系数和 Rashba 自旋劈裂随着外加 电场的增加而减小.

图 8 (网刊彩色) Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6} Ga_{0.4}N 量子阱 ($w_s = 20$ Å) 中的费米波矢 (k_F) 和第一子 带在费米能级处的 Rashba 自旋劈裂随外加电场的变化 Fig. 8. (color online) The Fermi wave vector and Rashba spin splitting at the Fermi level for the first subband of the Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/ Al_{0.6}Ga_{0.4}N QW ($w_s = 20$ Å) as a function of the external electric field.

4 结 论

本文计算了Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/ Al_{0.6}Ga_{0.4}N量子阱中第一子带的Rashba系数和 Rashba自旋劈裂.其中Al_{0.3}Ga_{0.7}N插入层的厚度 是 w_s ,GaN层厚度为40- w_s .研究发现当 $w_s < 20$ Å时,阱层区域极化电场的增加以及电子向左界面 的移动共同导致Rashba系数和Rashba自旋劈裂 首先随着 w_s 增加,然后在 $w_s > 20$ Å时因为有效 阱宽减小导致束缚能级升高,且阱层区域的电场减 小,Rashba 系数和Rashba自旋劈裂迅速减小.但 此时 k_F 迅速减小. 阱层的贡献最大, 界面的贡献次 之, 且随 ws 的变化不是太明显, 垒层的贡献相对比 较小. 然后我们假设 $w_s = 20$ Å,发现外加电场可以 很大程度上调制该体系的 Rashba 系数和 Rashba 自旋劈裂,并且在一定程度上加强或者抵消极化电 场的贡献. 因为阱层对 Rashba 系数的贡献随着外 加电场迅速改变,且外加电场带来了附加势,进而 影响电子的空间分布和束缚能级、费米能级. 当外 加电场从-1.5×10⁸ V·m⁻¹到1.5×10⁸ V·m⁻¹变化 时, Rashba系数随着外加电场的改变而近似线性 变化, Rashba 自旋劈裂先增加得很快, 然后近似线 性增加,最后缓慢增加.因为费米波矢先迅速增加, 后缓慢变化. 结果表明, 我们可以通过改变GaN 层和Alo.3Gao.7N层的相对厚度以及外加电场来 调 节 Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量子阱中的Rashba系数和Rashba自旋劈裂,研 究结果对于设计自旋电子学器件有一定启示.

参考文献

- [1] Zutic I, Fabian J, Das S S 2004 Rev. Mod. Phys. 76 323
- [2] Lo I, Gau M H, Tsai J K, Chen Y L, Chang Z J, Wang W T, Chiang J C, Aggerstam T, Lourdudoss S 2007 *Phys. Rev. B* 75 245307
- [3] He X W, Shen B Tang Y Q, Tang N, Yin C M, Xu F J, Yang Z J, Zhang G Y, Chen Y H Tang C G, Wang Z G 2007 Appl. Phys. Lett. **91** 071912
- [4] Pfeffer P, Zawadzki W 1999 Phys. Rev. B 59 R5312
- [5] Song H Z, Zhang P, Duan S Q, Zhao X G 2006 Chin. Phys. 15 3019
- [6] Yan Y Z, Hu L B 2010 Chin. Phys. B. 19 047203
- [7] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
- [8] Konig M, Wiedmann S, Bruene C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
- [9] Miao M S, Yan Q, van de Walle C G, Lou W K, Li L L, Chang K 2012 Phys. Rev. Lett. 109 186803
- [10] Zhang D, Lou W K, Miao M S, Zhang S C, Chang K 2013 Phys. Rev. Lett. **111** 156402
- [11] Ganichev S D, Bel'kov V V, Golub L E, Ivchenko E L, Schneider P, Giglberger S, Eroms J, de Boeck J, Borghs G, Wegscheider W, Weiss D, Prettl W 2004 *Phys. Rev. Lett.* 92 256601
- [12] Dresselhaus G 1955 Phys. Rev. 100 580
- [13] Bychkov Y A, Rashba E I 1984 J. Phys. C 17 6039
- $[14]\,$ Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78
- [15] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

- [16] de Andrada e Silva E A, La Rocca G C, Bassani F 1994 *Phys. Rev. B* **50** 8523
- [17] de Andrada e Silva E A, La Rocca G C, Bassani F 1997 Phys. Rev. B 55 16293
- [18] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer) pp77–86
- [19] Yang W, Chang K 2006 Phys. Rev. B 73 113303
- [20] Yang W, Chang K 2006 Phys. Rev. B 74 193314
- [21] Hao Y F 2014 J. App. Phys. 115 244308
- [22] Hao Y F 2015 J. App. Phys. 117 013911
- [23] Hao Y F 2015 Phys. Lett. A 379 2853
- [24] Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 037103
- [25] Hao Y F, Chen Y H, Hao G D, Wang Z G 2009 Chin. Phys. Lett. 26 077104
- [26] Yang P, Lü Y W, Wang X B 2015 Acta Phys. Sin. 64
 197303 (in Chinese) [杨鹏, 吕燕伍, 王鑫波 2015 物理学报
 64 197303]
- [27] Litvinov V I 2003 Phys. Rev. B 68 155314
- [28] Litvinov V I 2006 Appl. Phys. Lett. 89 222108
- [29] Li M, Zhang R, Zhang Z, Yan W S, Liu B, Fu Deyi, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2010 Superlattices Microstruct. 47 522
- [30] Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801
- [31] Schmult S, Manfra M J, Punnoose A, Sergent A M, Baldwin K W, Molnar R J 2006 Phys. Rev. B 74 033302

- [32] Li M, Lü Y H, Yang B H, Zhao Z Y, Sun G, Miao D D, Zhao C Z 2011 Solid State Communi. 151 1958
- [33] Li M 2013 Commun. Theor. Phys. 60 119
- [34] Li M, Sun G, Fan L B 2012 Chin. Phys. Lett. 29 127104
- [35] Li M, Zhang R, Liu B, Fu D Y, Zhao C Z, Xie Z L, Xiu X Q, Zheng Y D 2012 Acta Phys. Sin. 61 027103 (in Chinese) [李明, 张荣, 刘斌, 傅德彝, 赵传阵, 谢自力, 修向前, 郑有炓 2012 物理学报 61 027103]
- [36] Calsaverini R S, Bernardes E, Carlos E J, Loss D 2008 Phys. Rev. B 78 155313
- [37] Bernardes E, Schliemann J, Lee M, Carlos E J, Loss D 2007 Phys. Rev. Lett. 99 076603
- [38] Tan I H, Snider G L, Chang L D Hu E L 1990 J. Appl. Phys. 68 4071
- [39] Wang X B, Zhao Z P, Feng Z H 2014 Acta Phys. Sin.
 63 080202 (in Chinese) [王现彬, 赵正平, 冯志红 2014 物 理学报 63 080202]
- [40] Ambacher O, Foutz B, Smart J Shealy J R, Weimann N G, Chu K, Murphy M Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334
- [41] Ambacher O 1999 J. Appl. Phys 85 3222
- [42] Kumagai M, Chuang S L, Ando H 1998 Phys. Rev. B 57 15303
- [43] Suzuki M, Uenoyama T, Yanase A 1995 *Phys. Rev. B* 52 8132
- [44] Bernardini F, Fiorentini V, Vanderbilt D 1997 Phys. Rev. B 56 R10024

$\label{eq:ashba} Rashba \ spin \ splitting \ in \ the \\ Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N \ quantum \ well^*$

Zhao Zheng-Yin Wang Hong-Ling Li Ming[†]

(College of Electrical and Information Engineering, Xuchang University, Xuchang 461000, China)

(Received 19 December 2015; revised manuscript received 1 February 2016)

Abstract

As is well known, the structure inversion asymmetry (SIA) and Rashba spin splitting of semiconductor heterostructure can be modulated by either electric field or engineering asymmetric heterostructure. In this paper, we calculate the Rashba coefficient and Rashba spin splitting for the first subband of Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N QW each as a function of thickness (w_s) of the inserted Al_{0.3}Ga_{0.7}N layer (right well) and external electric field. The thickness of GaN layer (left well) is $40-w_s$ Å. With w_s increasing, the Rashba coefficient and Rashba spin splitting for the first subband increase first, because the polarized electric field in the well region increases and the electrons shift towards the left heterointerfaces, and then decrease when $w_{\rm s} > 20$ Å since the electric field in the well region decreases, and the confined energy increases as effective well thickness decreases. But when $w_{\rm s} > 30$ Å, the Rashba spin splitting decreases more rapidly, since $k_{\rm F}$ decreases rapidly. Contributions to the Rashba coefficient from the well is largest, lesser is the contribution from the interface, which varies slowly with $w_{\rm s}$, and the contribution from the barrier is relatively small. Then we assume $w_s = 20$ Å, and find that the external electric field can modulate the Rashba coefficient and Rashba spin splitting greatly because the contribution to the Rashba coefficient from the well changes rapidly with the external electric field, and the external electric field brings about additional potential and affects the spatial distribution of electrons, confined energy and Fermi level. When the direction of the external electric field is the same as (contrary to) the polarization electric field, the Rashba coefficient and Rashba spin splitting increase (decrease) with external electric field increasing. With the external electric field changing from -1.5×10^8 V·m⁻¹ to 1.5×10^8 V·m⁻¹, the Rashba coefficient approximately varies linearly, and the Rashba spin splitting first increases rapidly, then approximately increases linearly, and finally increases slowly. Because the value of $k_{\rm F}$ increases rapidly first, then increases slowly. Results show that the Rashba coefficient and the Rashba spin splitting in the Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N QW can be modulated by changing the relative thickness of GaN and $Al_{0.3}Ga_{0.7}N$ layers and the external electric field, thereby giving guidance for designing the spintronic devices.

Keywords: Rashba spin splitting, spin-orbit coupling, self-consistent calculation, polarized effectPACS: 71.70.Ej, 73.21.-b, 77.65.LyDOI: 10.7498/aps.65.097101

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61306012), the Aid Project for the Leading Young Teachers in Henan Provincial Institutions of Higher Education of China (Grant No. 2015GGJS-145), and the Aid Project for the Leading Young Talents of Xuchang University.

[†] Corresponding author. E-mail: mingli245@163.com