物理学报 Acta Physica Sinica

晶格振动的超快光谱调控

王建立 郭亮 徐先凡 倪中华 陈云飞

Manipulation of lattice vibration by ultrafast spectroscopy

Wang Jian-Li Guo Liang Xu Xian-Fan Ni Zhong-Hua Chen Yun-Fei

引用信息 Citation: Acta Physica Sinica, 66, 014203 (2017) DOI: 10.7498/aps.66.014203 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.014203 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I1

您可能感兴趣的其他文章 Articles you may be interested in

双色圆偏振飞秒脉冲驱动CO分子不对称解离

Directional bond breaking of CO molecules by counter-rotating circularly polarized two-color laser fields 物理学报.2016, 65(22): 224209 http://dx.doi.org/10.7498/aps.65.224209

基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性

Output pulse compressibility of the chirped pulse fiber amplification based on the dissipative solitons 物理学报.2016, 65(8): 084203 http://dx.doi.org/10.7498/aps.65.084203

超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究

Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite

物理学报.2015, 64(21): 214201 http://dx.doi.org/10.7498/aps.64.214201

全啁啾镜色散补偿的亚8fs钛宝石激光器

All chirped mirrors long-term stable sub-8 fs Ti:sapphire oscillator

物理学报.2015, 64(14): 144204 http://dx.doi.org/10.7498/aps.64.144204

基于单个BBO晶体载波包络相位稳定的高效率光参量放大器

High efficient CEP-stabilized infrared optical parametric amplifier made from a BBO single crystal 物理学报.2014, 63(21): 214203 http://dx.doi.org/10.7498/aps.63.214203

晶格振动的超快光谱调控^{*}

王建立1); 郭亮2) 徐先凡2) 倪中华1) 陈云飞1)

1)(东南大学机械工程学院,江苏省微纳生物医疗器械设计与制造重点实验室,南京 211189)

2) (普渡大学机械工程学院, 西拉法叶 47907)

(2016年4月18日收到;2016年10月13日收到修改稿)

采用飞秒激光抽运脉冲激发了 Bi₂Te₃ 薄膜频率为1.856 THz 的声子相干振动,并用探测光测量得到了其 阻尼振动信号.结合 Raman 光谱,确定该振动为 A¹_{1g} 对称振动模式的相干光学声子.为了实现该模式振动的 调控,在抽运光路上安装了脉冲整形器,进而控制生成具有不同时间间隔和能量比的两束脉冲激光.研究表 明,当两束脉冲的间隔时间为相干光学声子振动半周期的奇数倍时,调整两束脉冲的能量比值,可以实现 A¹_{1g} 模式振动的完全消除.继而将两束脉冲的能量比值保持不变,得到了振幅随间隔时间的变化曲线,与理论分 析符合.结果进一步证实了用超快光谱调控特定晶格振动的可行性,从而为研究材料内部超快能量传递过程 提供了有效手段.

关键词: 飞秒激光, 晶格振动, 脉冲整形, 振动控制 PACS: 42.65.Re, 78.47.jg, 82.53.Mj

1引言

振动是自然界普遍存在的一种现象.在机械、 航天航空、土木工程、交通运输等领域,振动甚至直 接决定了项目的成败^[1,2].在微观角度上,不同原 子在其平衡位置附近振动,这种振动的频谱很宽, 可以认为是不同振动模式的叠加,这些振动模式对 应了量子化的声子^[3].如果在振动过程中,基元中 的不同原子质心一起运动,则为声学声子,如果质 心不动则为光学声子.无论在宏观还是微观范围 内,振动的有效控制都涉及材料、自控、力学等诸多 学科,一直也是国内外研究的热点.为了减少宏观 结构振动,通常可以设计相应的阻尼减振系统^[4]. 相比之下,由于晶格振动非常复杂,微观层面的振 动控制只能通过特殊手段^[5],例如激光抽运-探测 技术,激发出相干声子(特定频率振动),并对其进 行表征和调控.

利用光在界面反射以后与原光束的加频效应^[6]、激光加热后的应变特征^[7]、或者单原胞层薄膜等结构^[8]都观测到了对应的相干声学声子,其

DOI: 10.7498/aps.66.014203

频率通常为GHz. 相干光学声子的振动频率通常 为THz, 必须在超高时间分辨率(飞秒)条件下才 能观测得到.对于反铁磁材料诸如FeF2和MnF2, 低温下亦可观测到频率同样为THz 的相干磁振 子^[9,10]. 当飞秒激光照射到透明或者半透明材料 表面, Weiner 等^[11] 提出相干光学声子产生是一个 受激Raman散射过程,由于入射激光包含许多频 率对,频率差正好与声子振动频率相同,该声子将 被共振激发. Zeiger 等^[12] 提出位移激发理论来解 释飞秒激光入射不透明材料表面生成的相干光学 声子. 如果光子能量大于带隙宽度, 大量电子从价 带跃迁到导带,高能量电子将偏离离子实的平衡位 置,进而带动离子实振动.就像弹簧上的小球,突然 被拉了一下,使得小球在平衡位置来回振荡^[13].随 后研究者尝试将这两种生成机理统一到一个理论 框架下[14,15]. 虽然激发不同材料相干光学声子的 原理不尽相同,但由于存在声子-声子之间的相互 作用,晶格的相干振动都存在阻尼,振动幅度将逐 渐衰减. 晶格振动将改变材料的介电系数, 进而改 变反射率,通过测量反射率的变化可以研究晶格阻 尼振动过程,进而得到包括衰减特征时间、原子振

^{*} 国家自然科学基金(批准号: 51476033)资助的课题.

[†]通信作者. E-mail: wangjianli@seu.edu.cn

^{© 2017} 中国物理学会 Chinese Physical Society

幅等信息^[16].采用飞秒激光抽运-探测技术,已经 在Bi^[13],Sb^[13],GaAs^[17],Bi₂Te₃^[18],Bi₂Se₃^[19], Si^[20],石墨^[21],碳纳米管^[22]等材料中都观测到了 相干光学声子.

相干光学声子是一种特殊的振动形式,同样也 满足振动的基本规律.例如激光能量足够大,跃迁 电子越多,对应作用力越大,振动幅值也越大^[18]. 振动的阻尼系数与材料结构相关,如果材料存在缺 陷,阻尼系数变大,振动衰减越快^[23].如果有多束 激光照射到样品表面的相同位置(空间上重叠),将 独立产生相同频率的光学声子.随着多束激光到 达样品表面的时间不同,光学声子的相位将存在差 异,满足振动干涉条件,因此可以通过调整多束脉 冲的时间间隔来控制振动的强弱^[24].基于以上原 理,本文测量了Bi₂Te₃纳米薄膜在两束激光脉冲 照射下相干光学声子振动强弱随脉冲间隔时间的 变化,进而为操控晶格振动提供了依据. 2 实验系统

实验采用共轴双色抽运-探测飞秒激光反射系 统来实现相干光学声子的激发与控制,实验光路如 图1所示.在实验过程中,由超快激光两级放大系 统生成周期频率5kHz脉宽约为50fs的激光脉冲, 单脉冲最大能量为2mJ.脉冲功率经过衰减以后, 采用分束镜将激光分成抽运光和探测光两束激光, 其中探测光经过延迟台,从而改变与抽运光到达样 品的时间.抽运光首先经过脉冲整形器,然后采用 倍频晶体(BBO)生成400nm抽运光,并用滤波片 过滤残余的800nm抽运光,经过机械式光调变器 后(调制频率为500Hz),与探测光一起聚焦后垂直 入射到样品表面.反射光经滤光片过滤以后进入差 分光电探测器,信号经过前置放大,最终由锁相放 大器提取.

图1 (网刊彩色) 抽运-探测激光反射实验系统

Fig. 1. (color online) Schematic diagram of the femtosecond pump-probe reflectivity measurement.

图 2 (网刊彩色) 单脉冲以及间隔分别为 1617, 1752 和 1887 fs 对应的双脉冲波形

Fig. 2. (color online) Temporal profiles of single pump pulse and double pump pulses with separation times at 1614 fs, 1748 fs and 1883 fs, respectively. 为了调控不同抽运光脉冲的间隔时间和相对 强度,如图1所示,在抽运光路上引入了脉冲整形 器.脉冲整形器主要由两对衍射光栅和透镜,以及 一个空间光调制器组成.入射激光经过第一个衍射 光栅后将不同激光频率分开,然后通过透镜聚焦到 空间光调制器上.空间光调制器由程序控制,用于 调整不同频率分量的幅值和相位.调制后的频率分 量经过第二对透镜和衍射光栅重新生成所需要的 激光脉冲.图2显示通过脉冲整形器调整以后的单 束脉冲以及时间间隔分别为1617,1752和1887 fs 对应的双脉冲信号.从图中可以看出,脉冲整形器 可以准确控制脉冲序列的间隔时间和能量比,从而 为操控晶格振动提供了有效实验手段.

3 结果与讨论

在 (100) 晶 面 GaAs 基 底 上 金 属 气 相 沉 积 100 nm厚度的Bi₂Te₃单晶薄膜,测量得到的反 射信号如图3所示. 当抽运光照射到Bi2Te3薄 膜表面,由于光子能量(3.1 eV)远大于带隙宽度 (0.15 eV), 价带的大量电子将跃迁到导带. 尽管对 反射信号的物理机理的理解还存在争议,但不同材 料测量得到的反射信号都有一个共同特点,即同时 存在高频振荡和非振荡信号[13,17-29]. 高频信号对 应相干光学声子,根据位移激发理论,表示由于大 量电子跃迁导致离子实在新的平衡位置做阻尼振 荡. 非振荡部分则反映了电子浓度、电子温度、晶格 温度等物理量在时间和空间上的复杂变化过程^[25]. 在时间尺度上,存在电子-电子、电子-声子、不同 模式声子之间相互作用,以及导带电子与价带空穴 复合等因素,根据各种因素所对应的特征时间的差 异,可以在时间分辨的反射信号中定性区分这些因 素的影响^[26].在空间尺度上,电子浓度、电子温度 以及晶格温度都将从照射区向四周扩散,其中电 子浓度的双极扩散(电子-空穴对)对反射信号的影 响,目前研究还存在争议^[27].非振荡信号主要反映 了能量传递过程,尽管高频相干光学声子也参与了 部分能量传递^[28],但其影响较小且主要局限于脉 冲激发后大约10 ps以内,因此可以将两者近似独 立研究,而本文主要关注具有特定相位关系的晶格 振动(高频振荡信号)的调控.

图 3 单脉冲测量结果, 插图为相干光学声子振动部分 Fig. 3. Temporal evolution of reflectivity trace after single pump pulse illumination, the insert shows the corresponding coherent optical phonon oscillation.

相干光学声子振动见图3中的插图. 从插图中 可以看出, 振荡衰减过程可以表示为

$$\left(\frac{\Delta R}{R}\right) = A \,\mathrm{e}^{-t/t_{\mathrm{p}}} \cos\left(2\pi f t + \phi\right),\qquad(1)$$

其中 $\Delta R/R$ 为反射率的相对变化, A为幅值, $t_{\rm D}$ 为 衰减的特征时间, f为振动频率, ϕ 为初始相位. 拟 合得到 $A = 1.3 \times 10^{-3}, t_{\rm p} = 5.2 \,\mathrm{ps}, f = 1.856 \,\mathrm{THz},$ 对应振动周期T = 539 fs. 一个Bi₂Te₃原胞包含5 个原子,12个光学支中有6支具有Raman活性,分 别为沿c轴对称振动的 A_{1g}^1, A_{1g}^2 和横向振动且具有 二重简并的 $E_{g}^{1}, E_{g}^{2},$ 对应频率分别为1.88, 4.02, 1.1 和 3.09 THz^[29]. 测量得到 Bi₂Te₃ 薄膜的 Raman 光谱见图4,三个特征峰分别对应了对称振动模式 A¹_{1g}, A²_{1g} 以及非对称振动模式E²_g. 图4同时给出 了三种振动模式对应的晶格相对位移^[30].在分析 Bi薄膜相干光学声子过程中, DeCamp等^[16]认为 反射率相对变化的振幅与晶格振动幅值近似呈正 比,且反射率变化0.1%对应的离子实偏离平衡位 置约在10⁻⁴ nm 量级. 对于 Bi₂Te₃ 薄膜, 图 3 测量 得到的反射率变化幅值最大为2×10⁻³,因此也对 应了亚原子尺度的晶格振动幅值. 比对Raman光 谱结果可以确定,采用图1所示的抽运-探测系统, 测量得到的高频振荡信号为对称模式Alg对应的 相干光学声子. 采用电光采样 (EO sampling) 技术 抑制对称模式,可以观测到相对较弱的非对称振动 模式 E_a^{2[31]}.

图 4 (网刊彩色) Bi₂Te₃ 薄膜的 Raman 谱 Fig. 4. (color online) Raman spectroscopy of Bi₂Te₃ nanofilms.

选择信号较强的 A¹_{1g} 模式进行调控, 可以提高 测量的信噪比. 图 5 给出了相干光学声子的调控过 程. 利用脉冲整形器生成间隔时间为 Δ*t* 的两束脉 冲激光, 第一束激光较强, 将生成图5 黑线所示的 信号, 第二束激光相对较弱, 将独立生成红线所示 的信号, 因此第二束激光照射样品以后的信号将是 以上两组信号的叠加. 通过调整Δt, 可以改变第二 束激光达到样品表面后相干光学声子的强弱. 忽略 激光能量对振动频率 f 和特征时间 t_p 的影响, 叠加 后的信号可以表示为

$$\left(\frac{\Delta R}{R}\right) = B e^{-t/t_{\rm p}} \cos\left(2\pi f t + \phi\right) + C e^{-(t-\Delta t)/t_{\rm p}} \times \cos\left[2\pi f (t-\Delta t) + \phi\right], \qquad (2)$$

其中 B 和 C 分别表示前后两束激光照射后对应的 幅值.为了保证第二束激光达到样品以后相干光学 声子完全消除,振幅(对应双脉冲的能量比)需满足

$$C = B \,\mathrm{e}^{-\Delta t/t_{\mathrm{p}}},\tag{3}$$

此时, (2) 式可以表示为

$$\left(\frac{\Delta R}{R}\right) = 2B e^{-t/t_{\rm p}} \cos\left(\pi f \Delta t\right) \\ \times \cos\left[2\pi f\left(t - \frac{\Delta t}{2}\right) + \phi\right]. \quad (4)$$

从(4)式中可以看出,第二束激光照射样品表面后 的幅值随Δt近似呈余弦规律变化.当Δt为半周期 的奇数倍,理论上可以完全消除相干光学声子,即 原子的某个振动模式将在平衡位置上被冻结;当 Δt为半周期的偶数倍时,相干光学声子振幅最大.

图 5 (网刊彩色)两束激光照射下的反射信号 Fig. 5. (color online) Reflectivity trace induced by double pump pulses.

根据以上调控原理,实验先通过脉冲整形器, 将 Δt 设为1.887 ps(3.5T),然后不断调整两束激光 脉冲的相对强度,直到第二束激光到达样品后,相 干光学声子近似完全消除.在相对强度确定以后, 分别设 Δt 为3T,3.125T,3.25T,3.375T和3.5T,测 量得到的结果如图 6 所示. 当 $t = \Delta t$ 时, 对应的幅 值随 Δt 的变化规律见图 7. 幅值的振动衰减周期 为 2T, 与理论分析符合较好. 如图 2 所示, 两束脉 冲照射时第一束脉冲能量小于单脉冲能量, 因此拟 合得到 $B = 1.0 \times 10^{-3}$, 小于单脉冲测量得到的幅 值 A. 从图中可以明显看到第二束激光照射以后相 干光学声子强度的变化, 从而实现了对特定晶格振 动的调控. 晶格振幅的亚原子尺度调控, 将为研究 半导体材料内部超快能量传递过程 ^[28,31] 以及非热 熔相变过程 ^[32] 等提供有效的技术手段.

图 6 (网刊彩色)室温测量得到的反射信号随两束脉冲间 隔时间的变化,为了区分差别,图中不同曲线纵坐标进行 了偏移

Fig. 6. (color online) Reflectivity trace induced by double pump pulses with different separation times.

图7 (网刊彩色) 当 $t = \Delta t$ 时, 振动幅值随间隔时间的 变化

Fig. 7. (color online) Amplitude of coherent optical phonon oscillation $(t = \Delta t)$ as a function of the separation time.

4 结 论

采用飞秒激光抽运-探测技术,由一束高能抽运光照射到 Bi₂Te₃ 薄膜表面,探测光的反射信号中可以明显观测到对应周期 T = 539 fs 的 A_{1g}^1 对称

模式的相干光学声子.利用在抽运光路中装设脉冲 整形器,通过生成具有不同时间间隔和能量比的两 束抽运光脉冲,实现了第二束脉冲到达样品以后该 特定晶格振动的完全消除.进而设置间隔时间分别 为3T,3.125T,3.25T,3.375T和3.5T,测量得到的 振动幅值与间隔时间满足余弦衰减规律,与理论分 析符合.

参考文献

- [1] Binning G, Rohrer H 1983 Surf. Sci. 126 236
- [2] Tian Y, Huang L, Luo M K 2013 Acta Phys. Sin. 62 050502 (in Chinese) [田艳, 黄丽, 罗懋康 2013 物理学报 62 050502]
- Kittle C 1996 Introduction to Solid State Physics (New York: John Wiley) pp107–108
- [4] Timoshenko S, Young D H, Weaver W 1974 Vibration Problems in Engineering (New York: John Wiley) pp30–61
- [5] Zhao X H, Ma F, Wu Y S, Zhang J P, Ai X C 2008 Acta Phys. Sin. 57 298 (in Chinese) [赵晓辉, 马菲, 吴义室, 张 建平, 艾希成 2008 物理学报 57 298]
- [6] Maznev A A, Hofmann F, Jandl A, Esfarjani K, Bulsara M T, Fitzgerald E A, Chen G, Nelson K A 2013 Appl. Phys. Lett. 102 041901
- [7] Hsieh C S, Bakker H J, Piatkowski L, Bonn M 2014 J. Phys. Chem. C 118 20875
- [8] Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001
- [9] Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 *Phys. Rev. Lett.* 93 107203
- [10] Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 *Phys. Rev. B* 73 184434
- [11] Weiner A M, Leaird D E, Wiederrecht G P, Nelson K A 1990 Science 247 1317
- Zeiger H J, Vidal J, Cheng T K, Ippen E P, Dresselhaus
 G, Dresselhaus M S 1992 *Phys. Rev. B* 45 768

- [13] Cheng T K, Vidal J, Zeiger H J, Dresselhaus G, Dresselhaus M S, Ippen E P 1991 Appl. Phys. Lett. 59 1923
- [14] Stevens T E, Kuhl J, Merlin R 2002 Phys. Rev. B 65 144304
- [15] Riffe D M, Sabbah A J 2007 Phys. Rev. B 76 085207
- [16] DeCamp M F, Reis D A, Bucksbaum P H, Merlin R 2001 Phys. Rev. B 64 092301
- [17] Cho G C, Kütt W, Kurz H 1990 Phys. Rev. Lett. 65 764
- [18] Wu A Q, Xu X F, Venkatasubramanian R 2008 Appl. Phys. Lett. 92 011108
- [19] Qi J, Chen X, Yu W, Cadden-Zimansky P, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P, Wu Y, Qiao S, Jiang Z 2010 Appl. Phys. Lett. 97 182102
- [20] Hase M, Kitajima M, Constantinescu A M, Petek H 2003 Nature 426 51
- [21] Ishioka K, Hase M, Kitajima M, Wirtz L, Rubio A, Petek H 2008 Phys. Rev. B 77 121402
- [22] Lim Y S, Yee K J, Kim J H, Hároz E H, Shaver J, Junichiro K, Doorn S K, Hauge R H, Smalley R E 2006 *Nano Lett.* 6 2696
- [23] Hase M, Ishioka K, Kitajima M, Ushida K, Hishita S 2000 Appl. Phys. Lett. 76 1258
- [24] Wu A Q, Xu X 2007 Appl. Phys. Lett. 90 251111
- [25] Othonos A 1998 J. Appl. Phys. 83 1789
- [26] Wang J L, Guo L, Ling C, Song Y M, Xu X F, Ni Z H, Chen Y F 2016 *Phys. Rev. B* 93 155306
- [27] Kumar N, Ruzicka B A, Butch N P, Syers P, Kirshenbaum K, Paglione J, Zhao H 2011 Phys. Rev. B 83 235306
- [28] Wang J L, Guo L, Liu C H, Xu X F, Chen Y F 2015 Appl. Phys. Lett. 107 063107
- [29] Wang Y G, Guo L, Xu X F 2013 Phys. Rev. B 88 064307
- [30] Richter W, K?hler H, Becker C R 1977 Phys. Stat. Sol.
 (b) 84 619
- [31] Min L X, Dwayne Miller R J 1990 Appl. Phys. Lett. 56 524
- [32] Rousse A, Rischel C, Fourmaux S, Uschmann I, Sebban S, Grillon G, Balcou P, Förster E, Geindre J P, Audebert P, Gauthier J C, Hulin D 2001 Nature 410 65

Manipulation of lattice vibration by ultrafast spectroscopy^{*}

Wang Jian-Li^{1)†} Guo Liang²⁾ Xu Xian-Fan²⁾ Ni Zhong-Hua¹⁾ Chen Yun-Fei¹⁾

 (Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments, Southeast University, Nanjing 211189, China)

2) (School of Mechanical Engineering, Purdue University, West Lafayette 47907, USA)

(Received 18 April 2016; revised manuscript received 13 October 2016)

Abstract

The ultrafast pump-probe spectroscopy allows us to make movies of the dynamics of the carriers and vibrational excitations on the timescales shorter than the typical scattering time. In general, the temporal evolution of the reflectivity change is comprised of the oscillatory and the non-oscillatory components. The former corresponds to the coherent lattice vibration, while the latter is related to the complex cooling process of the hot carriers. To investigate the dynamics of the hot carrier and the lattice vibration, it is necessary to decouple the two parts in the detected signal. Comparatively, the manipulation of the coherent lattice vibration is easier in spite of its super-high frequency and subatomic vibration amplitude. In this work, the behavior of the coherent lattice vibration in Bi₂Te₃ single crystalline film with a thickness of 100 nm is studied by using the double pump-single probe ultrafast spectroscopy. Firstly, the coherent lattice vibration with the subatomic amplitude and a frequency of about 1.856 THz is simulated by a femtosecond pump pulse, and its damped oscillation signal is detected by the reflectivity change of a probe pulse. Compared with the Raman spectrum, this vibration is confirmed to be the coherent optical phonon with A_{1g}^1 symmetric vibration mode. To manipulate this lattice vibration, a pulse shaper is then installed in the pump-beam arm to generate double pump pulses with the different separation times and the intensity ratios. The resulting reflectivity change is found to be a superposition of the pulse train: the oscillation amplitude is enhanced when the separation time is matched to the period of the oscillation; if the separation time is the odd times the half-period of the oscillation, the A_{1g}^1 vibration mode can be completely cancelled out after adjusting the intensity ratio. Finally, by maintaining the same intensity ratio, the amplitudes of the oscillation signals after the second pump pulse are measured with different separation times. The results agree well with the theoretical predictions: the amplitude of the oscillation after the second pump pulse shows a cosine function of separation time with a period of about 1080 fs, which is the twice the period of the oscillation illuminated by a single pump pulse. This work suggests that the lattice vibration can be optically manipulated, thus provides an effective way to disentangle the lifetimes of the phonons and the interactions with the excited carriers in the ultrafast energy relaxation process in semiconductor, which is extremely important for a number of interesting phenomena such as the non-thermal melting and the insulator-to-metal transition.

Keywords: ultrafast laser, lattice vibration, pulse shape, vibration control

PACS: 42.65.Re, 78.47.jg, 82.53.Mj

DOI: 10.7498/aps.66.014203

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51476033).

[†] Corresponding author. E-mail: wangjianli@seu.edu.cn