物理学报 Acta Physica Sinica

硼球烯B40在外电场下的基态性质和光谱特性

李世雄 张正平 隆正文 秦水介

Ground state properties and spectral properties of borospherene B_{40} under different external electric fields

Li Shi-Xiong Zhang Zheng-Ping Long Zheng-Wen Qin Shui-Jie

引用信息 Citation: Acta Physica Sinica, 66, 103102 (2017) DOI: 10.7498/aps.66.103102 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.103102 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I10

您可能感兴趣的其他文章

Articles you may be interested in

5d 过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序 Electronic structures, magnetic properties and spin-orbital coupling effects of aluminum nitride monolayers doped by 5d transition metal atoms: possible two-dimensional long-range magnetic orders 物理学报.2017, 66(6): 063102 http://dx.doi.org/10.7498/aps.66.063102

应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究

Strain field tuning the electronic and magnetic properties of semihydrogenated two-bilayer GaN nanosheets 物理学报.2016, 65(2): 023101 http://dx.doi.org/10.7498/aps.65.023101

分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响 Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material 物理学报.2015, 64(24): 243102 http://dx.doi.org/10.7498/aps.64.243102

B_nY(n=1--11)团簇的结构和电子性质

Structural and electronic properties of the B_nY (n=1-11) clusters 物理学报.2014, 63(24): 243101 http://dx.doi.org/10.7498/aps.63.243101

TiO₂纳米管电子结构和光学性质的第一性原理研究 First-principles study of electronic structure and optical properties of TiO₂ nanotubes 物理学报.2014, 63(24): 243102 http://dx.doi.org/10.7498/aps.63.243102

硼球烯 B_{40} 在外电场下的基态性质和光谱特性 *

李世雄¹⁾²⁾ 张正平^{1)†} 隆正文³⁾ 秦水介⁴⁾

(贵州大学大数据与信息工程学院,贵阳 550025)
 (贵州师范学院物理与电子科学学院,贵阳 550018)
 (贵州大学物理学院,贵阳 550025)
 (贵州大学,贵州省光电子技术及其应用重点实验室,贵阳 550025)
 (2016年12月14日收到; 2017年3月12日收到修改稿)

以6-31G*为基组,采用密度泛函 PBE0 方法研究了不同外电场 (0—0.060 a.u.) 对硼球烯 B₄₀ 的基态几何 结构、电荷分布、能量、电偶极矩、能隙、红外及拉曼光谱特性的影响; 继而采用含时的 TD-PBE0 方法研究了 硼球烯 B₄₀ 在外电场下的电子光谱.研究结果表明:外电场的加入导致分子对称性降低,当电场从0 a.u. 变 化到 0.060 a.u. 时,偶极矩逐渐增加,体系总能量和能隙一直减小;外电场的加入将改变红外和拉曼光谱特征,如谐振频率的移动以及红外和拉曼峰的增强或减弱;外电场对硼球烯 B₄₀ 的电子光谱影响较大,当电场从 0 a.u. 变化到 0.060 a.u.时,电子光谱发生红移,同时对振子强度有很大影响,原来振子强度最强的激发态变 弱或成为禁阻跃迁,而原来振子强度很弱或禁阻的激发态变得最强.可以通过改变外电场来改变 B₄₀ 的基态 性质,以及控制 B₄₀ 的光谱特性.

关键词: B₄₀, 外电场, 基态, 光谱特性 **PACS:** 31.15.es, 33.20.-t, 36.20.Kd, 36.40.Mr

DOI: 10.7498/aps.66.103102

1引言

富勒烯C₆₀的发现成为化学与材料科学的重要里程碑^[1],并进一步促进碳纳米管和石墨烯等^[2-4]碳纳米材料的出现.硼作为碳的近邻,也受到许多研究者的重视,并进行了相关实验和理论研究^[5-9],研究表明硼团簇偏向于平面或者准平面结构.2007年,Szwacki研究组^[10]从理论上预测了与C₆₀具有相同总价电子数的全硼富勒烯B₈₀,B₈₀的提出也激起了大量研究者对全硼富勒烯B₈₀,B₈₀的提出也激起了大量研究者对全硼富勒烯B₈₀,并没从实验上获得全硼富勒烯.2014年,翟华金等^[15]通过激光蒸发获得由40个硼原子组成的全硼富勒烯B₄₀,其具有*D_{2d}*对称性,命名为硼球烯

(borospherene). 硼球烯 B_{40} 是继 C_{60} 之后第二个 从实验和理论上完全确认的无机非金属笼状团簇, 成为全硼富勒烯实验和理论研究的新开端. B_{40} 的发现引起了大量研究者的兴趣,如 B_{40} 的光谱特 性^[16,17],内嵌金属硼球烯 $M@B_{40}$ (M = Sc, Y, La, Ca, Sr)、外接金属硼球烯 $M\&B_{40}$ (M = Mg, Be)的结构与电子性质^[18,19],硼球烯分子器件的理 论研究^[20,21],内嵌金属硼球烯 Ti@B₄₀的储氢性能 等^[22]. 犹如 C_{60} 的发现一样,硼富勒烯及其化学修 饰复合物的研究有望促进具有新颖结构的一维、二 维和三维硼基纳米材料的出现,在储氢、半导体、超 导、绿色催化等领域具有重要的应用前景.

分子或团簇在外场作用下的特性受到许多研 究者的重视^[23-26],外场作用下分子或团簇的电子 结构将发生极大的改变,有望产生一些新性质或

^{*} 国家国际科技合作专项基金(批准号: 2014DFA00670)、贵州省教育厅青年科技人才成长基金(批准号: 黔教合 KY 字 [2016]217)和 贵州省教育厅特色重点实验室基金(批准号: 黔教合 KY 字 [2014]217)资助的课题.

[†]通信作者. E-mail: zpzhang@gzu.edu.cn

^{© 2017} 中国物理学会 Chinese Physical Society

新现象.对于硼球烯 B₄₀的外场效应,即在外加电 场作用下研究其分子结构及特性到目前为止还未 见报道.研究硼球烯 B₄₀的外场效应对于硼球烯新 特性的研究以及硼基纳米新材料的制备具有重大 的理论指导意义.本文首先使用 PBE0/6-31G*方 法,优化得到了硼球烯 B₄₀基态分子在无电场和外 加电场下的稳定构型然后研究了外电场对 B₄₀ 红 外与拉曼光谱特性的影响,最后使用 TD-PBE0/6-31G*方法研究了硼球烯 B₄₀ 的电子光谱与外场的 关系.

2 理论与计算方法

外电场作用下分子体系的哈密顿量*H* 为^[23-25]

$$H = H_0 + H_{\rm int},\tag{1}$$

其中, H₀为无外电场时的哈密顿量, H_{int}为外电场与分子体系的相互作用哈密顿量. 在偶极近似下, 外电场 F 与分子体系的相互作用哈密顿量可以表示为

$$H_{\rm int} = -\mu \cdot F, \qquad (2)$$

其中µ为分子电偶极矩, F为偶极电场.

硼球烯 B₄₀ 属于 D_{2d} 点群, 采用 PBE0/6-31G* 方法,沿主轴(z轴)方向加不同的偶极电场 F(0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06 a.u.) 来考察其分子结构及其红外与拉曼光谱特性. 在优化得到不同外场下硼球烯 B₄₀ 基态结构的基础上,采用 TD-PBE0/6-31G*方法研究外电场下的电子光谱(前18个激发态的激发能、激发波和振子强度). 全部计算在 Gaussian 09 软件包进行^[27].

3 结果与讨论

3.1 硼球烯 B₄₀ 基态几何结构

无电场时优化得到的 B_{40} 基态结构如图1所 示,坐标原点为笼中心,图1(a)是沿y方向观察的 结构图,图1(b)是沿z方向观察的结构图. B_{40} 具 有 D_{2d} 对称性,由4个7元环(如图1(a),y方向可 观察到7元环)和2个6元环(如图1(b),z方向可观 察到6元环)组成.无电场时,分子偶极矩为0(其中 x, y, z方向偶极矩都为零),这是因为分子的高度 对称性,正、负电荷分布也具有较高对称性,导致*x*, *y*,*z*方向偶极矩都为零.

图 1 (网刊彩色) 无外场时优化的结构 (a) 沿 y 方向观 察; (b) 沿 z 方向观察

Fig. 1. (color online) Optimized structure without electric field: (a) Structure observed along the y direction; (b) structure observed along the z direction.

3.2 外电场对 B₄₀ 基态性质的影响

利用 PBE0/6-31G*方法, 沿分子主轴(z轴)方向加不同的偶极电场(0—0.6 a.u.)来考察其分子结构及其特性.如图2显示了不同电场下优化的结构,同时图中还显示了分子的电荷分布.当电场小于0.03 a.u.时,分子结构基本上没有太大变化一些键长有少许增加,如1号和3号原子之间的键长只增加了0.003Å,一些键长有少许减小,如1号和16号原子之间的键长只减小了0.003Å;但是当电场

图 2 (网刊彩色) 外场下优化的结构与电荷分布,正向偶极电场其电场方向为 z 负方向 (a) 电场等于 0.01 a.u.; (b) 电场等 于 0.02 a.u.; (c) 电场等于 0.03 a.u.; (d) 电场等于 0.04 a.u.; (e) 电场等于 0.05 a.u.; (f) 电场等于 0.06 a.u.; (g) 电场等于 0 a.u. 时沿 z 方向观察的结构; (h) 电场等于 0.06 a.u. 时沿 z 方向观察的结构

Fig. 2. (color online) Optimized structures and charge distributions under different external electric fields: (a) Electric field is 0.01 a.u.; (b) electric field is 0.02 a.u.; (c) electric field is 0.03 a.u.; (d) electric field is 0.04 a.u.; (e) electric field is 0.05 a.u.; (f) electric field is 0.06 a.u.; (g) electric field is 0 a.u.; (h) electric field is 0.06 a.u.

加到0.03 a.u.时,分子延z方向开始拉长,随着电 场进一步增加,分子沿z方向显著拉长,在x方向 发生压缩,如16号原子和31号原子之间键长显著 减小,1号和3号原子、16号和38号原子之间的键 长显著增加; 电场到0.06 a.u. 时, 分子拉伸变形严 重如16号、31号和38号原子围成的3边形在z方 向被拉伸,沿z方向观察的2个6元环已被拉伸为 8 元环, 如图2(g)和图2(h), 无电场时, 6元环由 2, 10, 26, 27, 32 和 33 号原子围成, 电场为 0.06 a.u. 时,8元环由2,10,19,26,27,32,33和36号原子 围成;进一步加大电场(0.07 a.u.),分子构型遭到 破坏,这一电场小于C60分子构型被破坏的电场值 (0.1 a.u.)^[26], 该结果表明, 对 B₄₀ 施加电场时, 要 注意控制其大小,避免分子被破坏.图1和图2显 示,当加上外电场时,电荷分布发生较大变化,随着 电场增加, z 正方向的原子负电荷不断增加, z 负方 向的原子正电荷不断增加,这是因为随着正向偶极 电场(电场方向为z负方向)的逐渐增大,电子朝z 轴正方向一边的硼原子方向转移,导致z正方向负 电荷布居数增加, z 负方向正电荷布居数增加. 硼 球烯在外电场下的结构变化和电荷分布变化与C60 分子在外电场下的变化规律^[26]一致,都是沿电场 方向发生拉伸,正负电荷在电场作用下发生定向转 移,分子发生极化.电场作用下极化的带正、负电荷 的原子分别沿电场正、反方向移动,从而拉伸分子.

在不同电场下优化得到的总能量 E、电偶极矩 μ、电子态和对称性列于表1中. 从表1可以看出, 外加电场并没有改变有B40的电子态(¹A₁),然而 外电场的加入导致B40较高的D2d对称性降低为 C_{2v} . 随着外加电场的增加, 分子偶极矩 μ 逐渐增 加(其中z方向偶极矩不为0, x, y方向偶极矩仍为 0), 且随着电场的增加, μ 增加的数值增大(并不是 线性增加). 因为偶极矩 $\mu = R \cdot q, q$ 为电荷量, R 为正负电荷之间距离,由图2可知,随着正向偶极 电场(电场方向为z负方向)的逐渐增大,电子朝z 轴正方向一边的硼原子方向转移,破坏了整个笼型 分子电荷布居的对称性,z方向两侧的电荷布居数 增加,同时z方向的R增大,导致偶极矩µ增加.从 表1中可以看出, 当电场从0 a.u. 增加到0.6 a.u. 时,分子总能量逐渐减小,这是由于电子朝z正方 向转移, 使z 正负方向上原子周围的电荷布居数增 加,此时分子内部的库仑引力增加,从而使体系的 哈密顿量H中的势能增加(数值上),导致体系的总

能量减小.外电场下硼球烯的总能和偶极矩与C₆₀ 分子在外电场下的变化规律^[26,28]一致,都是随着 电场增加,能量降低,偶极矩增加.

表 1 不同电场 (z 方向)下 B₄₀ 的对称性、能量、偶极矩和 电子态

Table 1. The symmetries, energies (E), dipole moments (μ) and states of B₄₀ under different external electric fields.

$F/\mathrm{a.u.}$	电子态	E/Hartree	$\mu/{\rm Debye}$	对称性
0	$^{1}\mathrm{A}_{1}$	-992.5320	0	D_{2d}
0.005	$^{1}\mathrm{A}_{1}$	-992.5377	5.8772	C_{2v}
0.010	$^{1}\mathrm{A}_{1}$	-992.5551	11.7982	C_{2v}
0.015	$^{1}\mathrm{A}_{1}$	-992.5842	17.8091	C_{2v}
0.020	$^{1}\mathrm{A}_{1}$	-992.6253	23.9671	C_{2v}
0.025	$^{1}\mathrm{A}_{1}$	-992.6786	30.3250	C_{2v}
0.030	$^{1}\mathrm{A}_{1}$	-992.7447	36.9404	C_{2v}
0.040	$^{1}\mathrm{A}_{1}$	-992.9176	51.2250	C_{2v}
0.050	$^{1}\mathrm{A}_{1}$	-993.1506	67.6825	C_{2v}
0.060	$^{1}A_{1}$	-993.4569	89.8758	C_{2v}

3.3 外电场对分子能级的影响

在优化得到不同外电场下B40基态稳定 结构的基础上研究了不同外电场下B40的 分子能级, 表2给出了其最低空轨道(LUMO) 能量 $E_{\rm L}$,最高占据轨道(HOMO)能量 $E_{\rm H}$,以 及HOMO-1, HOMO-2, HOMO-3, LOMO+1, LOMO+2, LOMO+3轨道能量, 最后还计算了能 隙 E_{g} 其中 $E_{g} = E_{L} - E_{H}$. LUMO 能级在数值上 与分子的电子亲和势相当, LUMO 能级越低, 该分 子接受电子能力越强. HOMO 能级反映了分子失 去电子能力的强弱 HOMO 能级越高, 该分子就越 容易失去电子. 而能隙 Eg 的大小反映了电子从占 据轨道向空轨道发生跃迁的能力,在一定程度上代 表了分子参与化学反应的能力, 能隙越小, 化学活 性越大,分子越不稳定.从表2中可以看出无电场 时, 能隙为3.17 eV, 略大于文献 [15] 采用 PBE0/6-311+G*计算的能隙值(3.13 eV), 这一差别主要是 本文选取计算量较小的6-31G*基组导致. 随着电 场的增加, EL 一直减小, EH 一直增大. 由于能隙 $E_{\rm g} = E_{\rm L} - E_{\rm H}$,当电场从0 a.u. 变化到0.60 a.u. 时, $E_{\rm L}$ 和 $E_{\rm H}$ 的变化趋势导致能隙 $E_{\rm g}$ 一直减小.这也

意味着随着电场增加,占据轨道的电子易被激发至 空轨道,形成空穴,使得 B_{40} 容易被激发,同时也说 明随着外电场增加, B_{40} 越不稳定.另外,随着正向 电场增加, E_g 一直减小,电子光谱中最大激发波长 对应的跃迁主要来源于 HOMO 能级到 LUMO 能 级的跃迁, E_g 的大小与最大激发波长成反比关系, 所以 E_g 减小将会导致电子光谱的红移,这也在后 面的计算结果中得到验证.从表中可以得到,随着 电场的增加,相应的空轨道能级 E_L , E_{L+1} , E_{L+2} , E_{L+3} 都在降低;占据轨道能级变化较复杂,随着 电场增加,除了刚才提到的 *E*_H 一直增大外, *E*_{H-1}, *E*_{H-2}轨道能量先增加,后又减小, *E*_{H-3}轨道能量 一直降低.因为电子光谱来源于电子不同轨道能级 的跃迁,外电场下轨道能级的变化将会导致电子光 谱的变化.外电场下硼球烯的分子能级与C₆₀分子 在外电场下的变化规律^[26]并不一致,随着外电场 增加,C₆₀分子的*E*_L,*E*_H都在降低,*E*_g出现先减 小后增加的规律,说明外电场下笼型团簇表现出的 性质仍然存在差异.

表2 不同电场 (*z*方向) 下的最高占据轨道能 $E_{\rm H}$ 、最低空轨道能 $E_{\rm L}$, HOMO–1轨道能量 $E_{\rm H-1}$, HOMO–2轨道能量 $E_{\rm H-2}$, HOMO–3轨道能量 $E_{\rm H-3}$, LOMO+1轨道能量 $E_{\rm L+1}$, LOMO+2轨道能量 $E_{\rm L+2}$, LOMO+3 轨道能量 $E_{\rm L+3}$ 、能隙 $E_{\rm g}$ (轨道能量的单位是 Hartree)

Table 2. The highest occupied molecular orbital energies $(E_{\rm H})$, the lowest unoccupied molecular orbital energies $(E_{\rm L})$, energies of HOMO-1, HOMO-2, HOMO-3, LOMO+1, LOMO+2 and LOMO+3, energy gaps $(E_{\rm g})$ of B₄₀ under different external electric fields (the unit of orbital energy is Hartree).

$F/\mathrm{a.u.}$	$E_{\mathrm{H}-3}$	$E_{\mathrm{H-2}}$	$E_{\mathrm{H}-1}$	$E_{\rm H}$	$E_{\rm L}$	E_{L+1}	E_{L+2}	E_{L+3}	$E_{\rm g}/{\rm eV}$
0	-0.23306	-0.23306	-0.22913	-0.22722	-0.11048	-0.09833	-0.09833	-0.09209	3.1765
0.005	-0.23372	-0.23265	-0.22904	-0.22650	-0.11086	-0.09865	-0.09849	-0.09228	3.1466
0.010	-0.23458	-0.23246	-0.22887	-0.22475	-0.11199	-0.09960	-0.09920	-0.09296	3.1430
0.015	-0.23561	-0.23248	-0.22867	-0.22249	-0.11384	-0.10122	-0.10056	-0.09418	2.9564
0.020	-0.23684	-0.23279	-0.22849	-0.22013	-0.11642	-0.10342	-0.10245	-0.09596	2.8219
0.025	-0.23826	-0.23345	-0.22828	-0.21782	-0.11970	-0.11970	-0.10630	-0.10504	2.6698
0.030	-0.23985	-0.23448	-0.22814	-0.21575	-0.12364	-0.10973	-0.10842	-0.10157	2.5063
0.040	-0.24362	-0.23788	-0.22810	-0.21266	-0.13338	-0.11831	-0.11805	-0.11089	2.1572
0.050	-0.24839	-0.24420	-0.22837	-0.21181	-0.14597	-0.13418	-0.12720	-0.12508	1.7915
0.060	-0.25755	-0.25609	-0.22901	-0.21780	-0.16376	-0.16147	-0.14585	-0.13269	1.4704

3.4 外电场对红外与拉曼光谱特性的影响

图 3 表示 B₄₀ 基态分子的红外光谱随外电场的 变化.频率计算结果表明,有无电场时,都没有虚 频,说明外电场下分子仍然具有稳定构型.无电场 时,红外光谱与文献[29] 采用 PBE0/6-311+G*计 算结果基本一致,最强峰在1281 cm⁻¹.从图 3 中 可以看出,电场小于0.03 a.u.时,红外光谱没有太 大的变化,只是最小谐振频率随着电场增加往高频 方向有较小的移动,而最强峰往低频方向有较小的 移动.说明 B₄₀ 虽然对称性被破坏,但是结构变化 不大,在较强电场下也能保持结构稳定性.当电场 增加到 0.03 a.u.时,红外光谱开始发生变化,出现 一些增强的振动模,随着电场进一步增加,红外光 谱发生较大变化,如最小谐振频率随着电场增加往低频方向有很大的移动,同时很多振动模红外活性明显增强,在外电场为0.06 a.u.时,最强红外峰出现在中频区.这是因为,在外电场作用下,分子结构及电子结构发生变化,如前所述,当电场增加到0.03 a.u.并进一步增加,分子沿z方向拉伸,导致谐振频率发生移动以及部分振动模增强.计算结果显示,无外电场时,红外非活性模有42个,随着电场的增加,红外非活性模个数减少,外电场为0.06 a.u.时,减少为27个.

图 4 分别表示 B₄₀ 基态分子的拉曼光谱随外 电场的变化.无电场时,拉曼光谱与文献 [29] 采用 PBE0/6-311+G*计算的结果基本一致,最强峰在 1333 cm⁻¹.由图 4 中可以看出,电场小于 0.03 a.u.

图 3 红外光谱随电场的变化 (a) 电场 0 a.u.; (b) 电场 0.005 a.u.; (c) 电场 0.01 a.u.; (d) 电场 0.015 a.u.; (e) 电场 0.02 a.u.; (f) 电场 0.025 a.u.; (g) 电场 0.03 a.u.; (h) 电场 0.04 a.u.; (i) 电场 0.05 a.u.; (j) 电场 0.06 a.u. Fig. 3. Calculated infrared spectra under different external electric fields: (a) Electric field is 0 a.u.; (b) electric field is 0.005 a.u.; (c) electric field is 0.01 a.u.; (d) electric field is 0.015 a.u.; (e) electric field is 0.02 a.u.; (f) electric field is 0.025 a.u.; (g) electric field is 0.03 a.u.; (h) electric field is 0.04 a.u.; (i) electric field is 0.05 a.u.; (j) electric field is 0.06 a.u.

时, 拉曼光谱几乎没有太大的变化, 只是最强峰随 电场的增加往低频方向有较小的移动,进一步说明 B40 虽然对称性被破坏, 但是结构变化不大. 当电 场增加到0.03 a.u. 时, 拉曼光谱开始发生变化, 出 现一些增强的拉曼活性模,随着电场进一步增加, 拉曼光谱发生较大变化,很多拉曼活性模明显增 强,外电场增加到0.05 a.u.时,最强峰出现在中频 区. 计算结果显示, 无外电场时, 拉曼非活性模有 13个,随着电场的增加,拉曼非活性模个数减少,增 加到0.01 a.u.时,所有振动模为拉曼活性. 图3和 图4及计算结果表明,部分振动模是红外和拉曼活 性模,但有些振动模只是拉曼活性模,如果分子振 动导致分子偶极矩的改变,这样的振动模是红外活 性的,如果分子振动导致分子极化性的改变,这样 的振动模是拉曼活性的. 可以通过外加电场来改变 分子红外与拉曼光谱特征.

3.5 外电场对电子光谱的影响

在前面计算的基础上,采用TD-PBE0/6-31G*方法研究了无外电场和有外电场(0.005—

图4 拉曼光谱在不同电场作用下的变化情况 (a) 电场 0 a.u.; (b) 电场 0.005 a.u.; (c) 电场 0.01 a.u.; (d) 电场 0.015 a.u.; (e) 电场 0.02 a.u.; (f) 电场 0.025 a.u.; (g) 电场 0.03 a.u.; (h) 电场 0.04 a.u.; (i) 电场 0.05 a.u.; (j) 电场 0.06 a.u. Fig. 4. Calculated Raman spectra under different external electric fields: (a) Electric field is 0 a.u.; (b) electric field is 0.005 a.u.; (c) electric field is 0.01 a.u.; (d) electric field is 0.015 a.u.; (e) electric field is 0.02 a.u.; (f) electric field is 0.025 a.u.; (g) electric field is 0.03 a.u.; (h) electric field is 0.04 a.u.; (i) electric field is 0.05 a.u.; (j) electric field is 0.06 a.u.

0.060 a.u.) 时的电子光谱(前18个激发态的激发 能、波长和振子强度),如图5所示.计算结果及 图5表明, 当电场从0 a.u. 增加到0.6 a.u. 时, 同 一激发态的激发能减小,对应激发波长增加,出现 红移,且随着电场增加,红移量越大,其中第1,2, 3 激发态的激发波长变化范围很大,从可见增加到 红外. 当电场为0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06 a.u. 时, 对应的最大激发波长 (第一激发态)分别为527,533,551,579,617,666, 729, 913, 1233, 1693 nm, 第一激发态主要来源于最 高占据轨道到最低未占据轨道的电子跃迁,能隙的 大小正好反映第一激发态的激发能(激发波长),由 前面计算结果可知,随着外电场增加,能隙减小,由 能量与波长成反比,正好反映随着电场增加第一激 发态波长的增加. 电场的加入将改变能级简并度, 无电场时,前18个激发态中,第3激发态和第4激 发态能量简并、第6激发态和第7激发态能量简并、 第10激发态和第11激发态能量简并、第15激发态 和第16激发态能量简并、第17激发态和第18激发 态能量简并,而加入电场后,前18个激发态都没有 能量简并的激发态,这是因为外场的加入降低分子

对称性,导致简并的能级分裂,不再简并.从表2中 也可以看到, 无外电场时 HOMO-2, HOMO-3能 级简并, 第3激发态和第4激发态来源于HOMO-2 和HOMO-3能级到LOMO能级跃迁,所以激发能 量出现简并. 另外, 外加电场后, 从表2中可以看 到没有简并的能级. 外电场对振子强度有较大影 响, 振子强度反映了电子的跃迁能力, 即反映了吸 收峰的强度.从计算结果中可以得到,不管有无电 场,第2激发态的振子强度均为零,属于禁阻跃迁. 无电场时, 第2, 5, 8, 9, 12, 14激发态振子强度为 0,随着电场的增加,一些原来振子强度为0的激发 态振子强度不为0,而一些振子强度不为0的激发 态变为0. 外电场的加入对最强峰的位置及归属的 激发态有较大影响. 当电场为0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.04, 0.05, 0.06 a.u. 时, 前18个 激发态中对应的最强激发态分别是第10(11和10 能量简并), 11, 12, 7, 7, 6, 5, 4, 3, 4 激发态, 相应 的激发波长(最强吸收峰)分别位于452,452,456, 485, 505, 530, 566, 664, 855, 1297 nm. 从图5中 也可以看出,随着电场增加,最强吸收峰发生红移. 电子光谱来源于电子不同轨道能级间的跃迁,外电 场改变了电子结构,导致能级的变化(如表2中列 出的能级在外电场下发生变化),所以外电场的加 入导致电子光谱不同的光谱特征. 通过改变外加电 场,一方面可以改变B40的激发波长,即可以改变 电子光谱范围,另一方面,可以通过外加电场改变 激发态振子强度来控制吸收强度. 另外无外电场 时,电子吸收光子从基态跃迁到振子强度不为零的 激发态,然后从高激发态跃迁到低激发态,并发射 不同波长的光,随着所加电场增加,这些激发态的 激发能和振子强度将发生变化,可以通过外加电场 来改变发射波长及发光强度. 综上, 通过改变外加 电场,可以改变B40的激发波长来控制其吸收谱范 围和发射谱范围,也可以改变激发态振子强度来控 制吸收峰强度和发光强度.

考虑到B₄₀的D_{2d}对称性, y轴和 x 轴为相同 的对称轴,进一步在 y 轴方向加不同电偶极场 (0.01—0.05 a.u.)考虑对分子基态性质和光谱特 性的影响.计算结果表明,电场的加入使D_{2d} 对称 性降为C₁.电荷分布表明,随着电场增加,电子朝 着 y 正方向移动,导致 y 正方向负电荷增加, y 负方 向正电荷增加.另外电场加到0.05 a.u.时,分子沿 y 方向己被拉伸较严重,进一步加大电场,可能导 致分子结构被破坏. 这也进一步说明, 外加电场 时,要注意控制电场大小,避免分子被破坏.在y 方向加电场与z方向加电场的影响相似,随着y轴 方向电场的增加,能量逐渐降低,能隙减小,偶极 矩增加,其中同样大小外电场下,z方向和y方向 加电场后的能量和偶极矩几乎相等, y 方向加同样 大小电场后能隙比z方向的偏大. 当y方向电场小 于0.03 a.u.时,红外与拉曼光谱变化不大,当加到 0.03 a.u. 时, 红外与拉曼光谱发生较大变化, 这与 z 方向加电场类似. 随着 y 方向电场增加, 电子光谱 中最大激发波长发生红移,同样大小的电场下,y方 向加电场后的红移量要小于在 z 方向加外电场后的 红移量,这一结果正好证实在y方向加电场后的能 隙要比z方向加同样大小电场后的能隙要偏大.相 关研究表明^[20-21], B₄₀可作为分子器件, 其电极沿 B_{40} 分子的主轴z方向或y, x方向,外电场作用下, B40的基态性质将发生变化,将外电场作用到分子 器件的B40分子上,可能会产生有趣的现象.

图 5 电子光谱在不同电场作用下的变化情况 (a) 电场 0 a.u.; (b) 电场 0.005 a.u.; (c) 电场 0.01 a.u.; (d) 电场 0.015 a.u.; (e) 电场 0.02 a.u.; (f) 电场 0.025 a.u.; (g) 电场 0.03 a.u.; (h) 电场 0.04 a.u.; (i) 电场 0.05 a.u.; (j) 电场 0.06 a.u.

Fig. 5. Calculated electronic spectra under different external electric fields: (a) Electric field is 0 a.u.; (b) electric field is 0.005 a.u.; (c) electric field is 0.01 a.u.; (d) electric field is 0.015 a.u.; (e) electric field is 0.02 a.u.; (f) electric field is 0.025 a.u.; (g) electric field is 0.03 a.u.; (h) electric field is 0.04 a.u.; (i) electric field is 0.05 a.u.; (j) electric field is 0.06 a.u.

4 总 结

本文分别采用PBE0/6-31G*方法和含时的 TD-PBE0/6-31G*方法研究了不同外电场下B40 分子的基态性质和光谱特性,讨论了电偶极矩、能 隙、红外光谱、拉曼光谱等随外电场的变化情况以 及外电场对B₄₀分子电子光谱的影响. 研究表明: 当电场沿分子z方向从0 a.u. 增加到0.06 a.u.时, 分子在z方向被拉长,分子偶极矩μ逐渐增加,体 系总能量一直减小,能隙一直减小.外电场的加入 将导致谐振频率的移动,并改变部分振动模的红外 活性和拉曼活性,另外,外电场对B40分子的电子 光谱影响较大,当电场沿分子z方向从0 a.u.变化 到0.06 a.u.时,电子光谱发生红移,对振子强度(吸 收强度)也有很大影响,禁阻跃迁(振子强度为0)的 激发态可变为最强跃迁的激发态,而一些振子强度 较强的激发态变为禁阻的激发态.因此,可以通过 改变外电场来改变B40的基态性质和控制B40的光 谱特性. 该研究对于硼球烯 B40 的应用和硼纳米新 材料的制备具有一定的理论指导意义.

参考文献

- Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E 1985 *Nature* 318 162
- [2] Iijima S 1991 Nature **354** 56
- [3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
- [4] Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L, Tan S S 2009 *Nano Lett.* 9 3137
- [5] Zhai H J, Kiran B, Li J, Wang L S 2003 Nature Mater.
 2 827
- [6] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Nati. Acad. Sci 102 961
- [7] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811
- [8] Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503

- [9] Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J Li S D 2014 Phys. Chem. Chem. Phys. 16 18282
- [10] Szwacki N G, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804
- [11] Sheng X L, Yan Q B, Zheng Q R, Su G 2009 Phys. Chem. Chem. Phys. 11 9696
- [12] Wang L, Zhao J J, Li F Y, Chen Z F 2010 Chem. Phys. Lett. 501 16
- [13] Cheng L J 2012 J. Chem. Phys. 136 104301
- [14] Lu H G, Li S D 2013 J. Chem. Phys. 139 224307
- [15] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem.
 6 727
- [16] He R X, Zeng X C 2015 Chem. Commun. 51 3185
- [17] Li S X, Zhang Z P, Long Z W, Sun G Y, Qin S J 2016 Sci. Rep. 6 25020
- [18] Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941
- [19] Jin P, Hou Q H, Tang C C, Chen Z F 2015 Theor. Chem. Acc. 34 1
- [20] Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38
- [21] An Y P, Zhang M J, Wu D P, Fu Z M, Wang T T, Xia C X 2016 Phys. Chem. Chem. Phys. 18 12024
- [22] Dong H L, Hou T J, Lee S T, Li Y Y 2015 Sci. Rep. 5 09952
- [23] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012
 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 物理学报 61 043104]
- [24] Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin.
 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李妹丽 2014 物理学报 63 043101]
- [25] Li S X, Wu Y G, Linhu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世 雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理 学报 64 043101]
- [26] Shen H J, Shi Y J 2004 Chin. Atom Mol. Phys. 21 617 (in Chinese) [沈海军, 史友进 2004 原子与分子物理学报 21 617]
- [27] Frisch M J, Tracks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision A. 02 (Wallingford CT: Gaussian Inc.)
- [28] Tuchin A V, Bityutskaya L A, Bormontov E N 2015 Eur. Phys. J. D 69 87
- [29] Chen, Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 8160

Ground state properties and spectral properties of borospherene B_{40} under different external electric fields^{*}

Li Shi-Xiong¹⁾²⁾ Zhang Zheng-Ping^{1)†} Long Zheng-Wen³⁾ Qin Shui-Jie⁴⁾

1) (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

2) (School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China)

3) (College of Physics, Guizhou University, Guiyang 550025, China)

4) (Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025, China)

(Received 14 December 2016; revised manuscript received 12 March 2017)

Abstract

The recent discovery of borospherene B_{40} marks the onset of a new class of all-boron fullerenes. External electric field can influence the structure and property of molecule. It is necessary to understand the electrostatic field effect in the borospherene B_{40} . In this work, density functional theory method at the PBE0 level with the 6-31G^{*} basis set is used to investigate the ground state structures, mulliken atomic charges, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, electric dipole moments, infrared spectra and Raman spectra of borospherene B_{40} under the external electric field within the range of values F = 0-0.06 a.u.. The electronic spectra (the first 18 excited states contain excited energies, excited wavelengths and oscillator strengths) of borospherene B_{40} are calculated by the time-dependent density functional theory method (TD-PBE0) with the 6-31G* basis set under the same external electric field. The results show that borospherene B_{40} can be elongated in the direction of electric field and B_{40} molecule is polarized under the external electric field. Meanwhile, the addition of external electric field results in lower symmetry (C_{2v}) , however, electronic state of borospherene B₄₀ is not changed under the external electric field. Moreover, the calculated results show that the electric dipole moment is proved to be increasing with the increase of the external field intensity, but the total energy and energy gap are proved to decrease with the increase of external field intensity. The addition of external electric field can modify the infrared and Raman spectra, such as the shift of vibrational frequency and the strengthening of infrared and Raman peaks. Furthermore, the calculated results indicate that the external electric field has a significant effect on the electronic spectrum of borospherene B_{40} . The increase of the electric field intensity can lead to the redshift of electronic spectrum. With the change of the electric field intensity, the strongest excited state (with the biggest oscillator strength) can become very weak (with the small oscillator strength) or optically inactive (with the oscillator strength of zero). Meanwhile, the weak excited state can become the strongest excited state by the external field. The ground state properties and spectral properties of borospherene B_{40} can be modified by the external electric field. Our findings can provide theoretical guidance for the application of borospherene B_{40} in the future.

Keywords: B₄₀, external electric field, ground state, spectral properties PACS: 31.15.es, 33.20.-t, 36.20.Kd, 36.40.Mr DOI: 10.7498/aps.66.103102

^{*} Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA00670), the Growth Foudation for Young Scientists of Education Department of Guizhou Province, China (Grant No. QJH KY[2016]217) and the Characteristic Key Laboratory Foudation of Education Department of Guizhou Province, China (Grant No. QJH KY[2014]217).

 $[\]dagger$ Corresponding author. E-mail: zpzhang@gzu.edu.cn