物理学报 Acta Physica Sinica

808 nm半导体激光芯片电光转换效率的温度特性机理研究

宋云菲 王贞福 李特 杨国文

Efficiency analysis of 808 nm laser diode array under different operating temperatures

Song Yun-Fei Wang Zhen-Fu Li Te Yang Guo-Wen

引用信息 Citation: Acta Physica Sinica, 66, 104202 (2017) DOI: 10.7498/aps.66.104202 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.104202 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I10

您可能感兴趣的其他文章 Articles you may be interested in

低阈值单横模852 nm半导体激光器

A low threshold single transverse mode 852 nm semiconductor laser diode 物理学报.2017, 66(8): 084205 http://dx.doi.org/10.7498/aps.66.084205

1550 nm-VCSELs 在偏振保持光反馈和正交光注入下的偏振转换特性 Polarization switching characteristics of polarization maintaining optical feedback and orthogonal optical injection of 1550 nm-VCSEL 物理学报.2016, 65(21): 214206 http://dx.doi.org/10.7498/aps.65.214206

外光注入半导体环形激光器同时产生两路宽带混沌信号

Two broadband chaotic signals generated simultaneously by semiconductor ring laser with parallel chaotic injection m理论指 2016 65(20): 204202 http://dv/doi.org/10.7408/ppp.65.204202

物理学报.2016, 65(20): 204203 http://dx.doi.org/10.7498/aps.65.204203

基于偏振旋转耦合 1550 nm 垂直腔面发射激光器环形系统产生多路高质量混沌信号 Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers 物理学报.2016, 65(19): 194207 http://dx.doi.org/10.7498/aps.65.194207

高功率、高效率808nm半导体激光器阵列

High-power, high-efficiency 808 nm laser diode array 物理学报.2016, 65(16): 164203 http://dx.doi.org/10.7498/aps.65.164203

808 nm半导体激光芯片电光转换效率的 温度特性机理研究*

宋云菲¹⁾²⁾ 王贞福¹⁾ 李特¹⁾ 杨国文^{1)3)†}

1)(中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安 710119)

2) (中国科学院大学, 北京 100049)

3) (西安立芯光电科技有限公司, 西安 710077)

(2016年12月1日收到; 2017年3月8日收到修改稿)

提高 808 nm 大功率半导体激光器电光转换效率具有重要的学术意义和商业价值, 是实现器件小型化、轻量化、高可靠性的必要前提.本文以腔长 1.5 mm 的传导冷却封装 808 nm 半导体激光阵列为研究对象, 在热沉温度 -40—25 °C范围内对其进行光电特性测试, 对不同温度下电光转换效率的影响因子进行了实验研究和理论分析.结果表明:在-40 °C环境温度下, 最高电光转换效率从室温 25 °C时的 56.7% 提高至 66.8%, 内量子效率高达 96.3%, 载流子泄漏损耗的占比贡献由 16.6% 下降至 3.1%.该研究对实现 808 nm 高效率半导体激光芯片的自主研发具有重要意义.

关键词:半导体激光芯片,电光转换效率,温度 PACS: 42.55.Px

DOI: 10.7498/aps.66.104202

1引言

高功率半导体激光器具有体积小、重量轻、效率高、寿命长等优点,在工业加工^[1]、医疗美容^[2]、航空航天^[3]、激光抽运和光纤激光等^[4]领域应用极其广泛^[5,6].其中,808 nm高功率半导体激光器是固体激光器(Nd:YAG)最理想的抽运源^[7],高电光转换效率的抽运源一方面可以减少发热从而降低系统的散热成本,同时可以有效降低结温和工作电流,从而有效提高器件的可靠性和稳定性;另一方面,在相同工作电流下,可以实现更高的输出功率^[8].因此,高电光转换效率半导体激光芯片是实现器件高功率、高可靠性、小型化、轻量化的前提和基础.

808 nm高效率半导体激光芯片是国内外研究的热点领域之一^[9,10], nLight在2007年报道的

808 nm 传导冷却型封装半导体激光器阵列,填 充因子24%,在15°C工作温度条件下,输出功率 达到55 W, 最高电光转换效率71.5%^[7], 这是目 前国际上报道的最高水平; 2008年, FBH报道了 808 nm 传导冷却型激光阵列, 填充因子 20%, 在 15°C工作温度条件下,输出功率81W,电光转换 效率 67.7%^[11]; 2016年, Coherent 报道了 808 nm 传导冷却型激光阵列,填充因子18%,在25°C温 度下,输出功率60 W时寿命大于5万小时,电光 转换效率为63%^[12].国内相关单位在该领域的研 究水平较国外存在一定的差距,但差距在逐年减 小. 2008年, 刘素平等^[13] 报道了 808 nm 激光阵列, 填充因子50%, 室温准连续条件下最高功率达到 259 W, 输出功率100 W时电光转换效率为52%; 2014年,海特光电公司徐小红等^[14]报道了808 nm 激光阵列采用微通道冷却型封装方式,在25°C温 度下,连续工作电流为230 A 时获得204 W 的输出

* 国家自然科学基金 (批准号: 61504167) 和中国科学院百人计划 (批准号: Y429941233) 资助的课题.

© 2017 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: yangguowen@opt.ac.cn

功率,最大电光转换效率为55.7%;2016年8月,我 们研究组通过深入的研究开发出808 nm 微通道冷 却型激光阵列,填充因子50%,在25°C温度下,实 现了连续输出功率大于150 W,最高电光转换效率 达到65.5%^[15],这也是当时国内报道的最高水平.

获得更高电光转换效率的途径之一是降低热 沉温度,2006年,nLight报道了温度低至78 K的 975 nm 半导体激光器特性,工作温度为-50 °C 时电光转换效率高达85%^[16].然而,半导体激光 芯片在低温条件下的电光转换效率机理分析在 国内外却鲜见报道.本文主要研究热沉温度变化 (-40—25 °C)对808 nm半导体激光芯片的电光转 换效率的影响.从理论上分析焦耳热、界面电压损 失、阈值以下自发辐射、载流子泄漏、腔内光吸收和 腔面损耗等各影响因子的作用机理,并对各种能量 损耗路径占比贡献随温度的变化进行分析,为进一 步提高半导体激光阵列的电光转换效率提供了有 效的理论与实验基础.

2 理论分析

电光转换效率定义为输出光功率与输入电功 率之比,可表示为^[17]

$$\eta_{\rm c} = \frac{P_{\rm out}}{P_{\rm input}} = \eta_{\rm d} \frac{h\nu(I - I_{\rm th})}{e(IV_0 + I^2R_{\rm s})},\tag{1}$$

其中, η_c 为电光转换效率, η_d 代表外微分量子效率, I_{th} 代表阈值电流, V_0 为开启电压, R_s 为串联电阻. 其中, 外微分量子效率 η_d 与腔面损耗 α_m 可表示为

$$\eta_{\rm d} = \eta_{\rm i} \times \frac{\alpha_{\rm m}}{\alpha_{\rm i} + \alpha_{\rm m}},\tag{2}$$

$$\alpha_{\rm m} = \frac{1}{2L} \ln\left(\frac{1}{R_1 R_2}\right),\tag{3}$$

 η_i 代表内量子效率; α_i 为内损耗; L为腔长; R_1 , R_2 分别为器件前后腔面反射率. 电光转换效率 η_c 随着电流的增大逐渐到最大, 进一步增大工作电流, η_c 反而下降. 将(1)式左右两端分别对电流求导, 得到最高电光转换效率为^[17]

$$\eta_{c}^{\text{peak}} = \eta_{d} \frac{h\nu}{e} \frac{1}{I_{\text{th}}R_{\text{s}}} \frac{1}{\left(1 + \sqrt{1 + \frac{V_{0}}{I_{\text{th}}R_{\text{s}}}}\right)^{2}}.$$
 (4)

从 (4) 式可以看出, 影响 η_c^{peak} 的因素有 η_i , I_{th} , V_0 , R_s 等, 提高 η_c^{peak} , 需要提高电子有效注入和光 子转换效率, 降低腔内吸收和腔面损耗, 即要求高 的内量子效率,低阈值电流、低开启电压以及低串 联电阻.而这就需要在外延设计和器件结构设计两 方面进行综合考虑^[18].进一步分析制约提高电光 转换效率的因素,就需要对半导体激光器的能量损 耗途径进行分析,尤其是从输入电功率到输出光功 率间的能量损耗路径的角度进行挖掘^[19].通常,输 入电功率可表示为

$$P_{\rm input} = IV = I^2 R_{\rm s} + IV_0.$$
 (5)

从(5)式也可以看出,在工作状态下,降低器件串联电阻 R_s 和开启电压 V_0 ,可以降低同等电流下器件的工作电压 V,最终提高器件电光转换效率 η_c .其中, V_0 由准费米能级差(V_F)和能带不匹配带来的界面电压(V_{hj})两部分组成,

$$V_0 = V_{hj} + V_{\rm F}.$$
 (6)

将(6)式代入(5)式中,可以得到以下表达式:

$$P_{\text{input}} = I^2 R_{\text{s}} + I V_{hj} + \eta_{\text{i}} I_{\text{th}} V_{\text{F}} + I V_{\text{F}} (1 - \eta_{\text{i}})$$
$$+ \eta_{\text{i}} (I - I_{\text{th}}) V_{\text{F}}. \tag{7}$$

(7) 式表明从输入电功率到输出光功率, 能量损耗的路径可以分为五部分^[19], I^2R_s 为串联电阻引起的功率损失, IV_{hj} 是能带不匹配带来的界面损失, $\eta_i I_{th}V_F$ 为阈值以下自发辐射, $IV_F(1 - \eta_i)$ 源自载流子泄漏, $\eta_i(I - I_{th})V_F$ 为理论输出光功率, 包含实际输出光功率、腔内光吸收和腔面损耗等部分. 由于低温条件工作时, 器件的电光转换效率会提高, 意味着以上五种能量损耗路径随着温度变化呈非均匀, 进而需要详细分析能量损耗路径对效率的占比贡献.

3 实验系统及测量结果

实验对象为自主设计研制的808 nm半导体 激光芯片,在n-GaAs衬底上采用金属有机化学气 相沉积(MOCVD)工艺进行外延材料生长,外延 采用非对称波导结构,其中有源区材料选用In-AlGaAs/AlGaAs,其厚度为8 nm,光限制因子为 1.24%;波导层采用低Al组分的AlGaAs,该结构 能够大幅降低P波导层光吸收损耗^[15],从而提 高电光转换效率.器件采用传导冷却型封装方 式,如图1所示.芯片腔长为1.5 nm,发光区宽度 100 μm,发光点数为47,填充因子为50%.

图 1 (网刊彩色) 传导冷却封装半导体激光阵列芯片及器件 Fig. 1. (color online) 1 cm-chips and bars mounted junction down on passively cooled heatsinks.

器件热沉温度范围-40—25°C条件下,整体 实验装置完全置于ESL-10高低温箱中,温度的控 制及反馈采用T1000型精密测温仪完成.图2所示 为电光转换效率和输出功率随热沉温度的变化.可 以看出,随着温度降低,最高电光转换效率不断增 加;器件在同等工作电流下的功率输出显著增加, 且斜率效率不断增大.其中,在功率-电流关系曲线 中,阈值以上线性部分的斜率即为斜率效率,单位 为W/A.

表1是从图1提取的不同温度条件下的最高电 光转换效率对应的工作电流值.

图 2 (网刊彩色) 在 -40-25°C 范围内电光转换效率和 L-I 测试曲线

Fig. 2. (color online) Power conversion efficiency and L-I curves at -40-25 °C respectively.

表1 不同温度下最高电光转换效率及对应的电流值 Table 1. Power conversion efficiency under different heatsink temperatures.

$T_{\rm HS}/^{\rm o}{\rm C}$	Efficiency	I/A	$T_{\rm HS}/^{\rm o}{\rm C}$	Efficiency	I/A
25	56.71%	90	-10	63.84%	105
10	60.22%	90	-20	65.22%	105
0	62.03%	100	-30	67.78%	110
			-40	66.81%	110

对比25°C与-40°C条件下器件输出特性曲线,最高电光转换效率对应的工作电流值从90 A 升高至110 A,最高电光转换效率分别为56.71% 与66.81%,电光转换效率提升幅度达到了绝对值 10%.

4 结果讨论

对比不同温度条件下效率变化,需要对(7)式 中能量损耗路径进行分析计算.依据测试数据可 以分析得到斜率效率 η_{slop} , I_{th} , $R_s 和 V_0$ 与温度的 关系.在-40—25°C范围内半导体激光芯片参数 η_{slop} 和 I_{th} 变化趋势如表2所列.

表 2 不同温度对应的阈值电流 $I_{\rm th}$ 和斜率效率 $\eta_{\rm slop}$ 参数对比

Table 2. Threshold current and slop efficiency values at various temperatures.

$T_{\rm HS}/^{\circ}{\rm C}$	$C~I_{ m th}/{ m A}~\eta$	$_{\rm slop}/{\rm W}\cdot{\rm A}^{-1}$	$T_{\rm HS}/^{\circ}{\rm C}$	$E~I_{ m th}/{ m A}~\eta$	$\sigma_{\rm slop}/W \cdot A^{-1}$
25	15.81	1.183	-10	13.62	1.326
10	14.72	1.258	-20	13.07	1.360
0	14.09	1.294	-30	12.62	1.384
			-40	12.21	1.387

由表2可以看出,随着温度不断降低,η_{slop} 不断增大. 器件在相同工作电流100 A条 件下,25°C条件下输出功率95.89 W,η_{slop}为 1.183 W/A,而-40°C时功率高达122 W,η_{slop} 增大至1.387 W/A. 说明低温下载流子泄漏减小, 越过势垒的载流子降低,内量子效率增加. 同时, 通过*L-I*曲线拟合得到*I*_{th},表2中反映出*I*_{th}随着 温度降低不断减小,由于准费米能级和注入载流子 能量分布随着温度升高不断展宽,最终导致透明载 流子浓度和阈值电流与温度呈正相关.半导体激光 器阈值电流密度*J*_{th}对应特征温度为*T*₀,*J*_{th}与温 度关系为

$$J_{\rm th}(T) = J_{\rm th}(T_{\rm r}) \exp\left(\frac{T - T_{\rm r}}{T_0}\right).$$
(8)

由于 T_0 并非是与温度无关的常量,高特征温度说 明 $I_{\rm th}$ 随温度变化的敏感性较弱,反映器件良好 的温度特性.经过数据拟合,我们得到热沉温度 在0—25°C范围内特征温度 T_0 为217.39 K,而在 -40—-10°C范围内 T_0 高达277.78 K.

Table 5. Turn-on voltage and series resistance values at various temperatures.								
$T_{\rm HS}/^{\circ}{\rm C}$	25	10	0	-10	-20	-30	-40	
V_0/V	1.586	1.596	1.607	1.617	1.630	1.639	1.655	
$R_{ m s}/{ m m}\Omega$	1.70	1.94	2.00	2.14	2.28	2.42	2.5	

表 3 不同温度对应的 V_0 和 R_s 参数对比 Table 3. Turn-on voltage and series resistance values at various temperatures.

从表3可以得到低温工作条件下开启电压与 串联电阻的变化趋势,低温下V₀和R_s数值均呈增 长趋势,最终导致串联电阻和电压损失增加.究其 原因,是由于有源区带隙宽度变大,准费米能级差 值变大,进而导致V₀升高.V₀与准费米能级差的关 系密切,由于异质结能带不匹配,界面电压的存在 导致V₀略大于hγ/e,该部分电压造成的损失为电 压损失,低电压损失能够有效提高电光转化效率; 工作电压主要组成分两部分,一是开启电压V₀,二 是R_s引起的压降.R_s可理解为各层电阻的叠加, R_s可表示为

$$R_{\rm s} = \sum \frac{\rho_{\rm i} d_{\rm i}}{WL} = \sum \frac{d_{\rm i}}{WL} \frac{1}{(n_{\rm i} q \mu_{ei} + p_{\rm i} q \mu_{hi})}, \qquad (9)$$

 $R_{\rm s}$ 与载流子迁移率 μ 、载流子浓度、各层厚度L成反比.由于P波导层掺杂浓度显著低于包层,且空穴迁移率仅为电子迁移率1/3,因为各层电阻中, P型波导层是串联电阻主要组成^[10]. μ_e 和 μ_h 随着温度降低而减小,导致低温下, $R_{\rm s}$ 增加.

依据上述分析,我们针对五种能量损耗路径进行了量化计算,表4是详细的计算结果.

图 3 是表 4 的二维呈现,可以看到,当热沉温 度从 25 °C 降低至 -40 °C,电光转换效率从 56.7% 逐步提高至 66.8%. 其中,由于串联电阻随温度 不断增大,其对应的损耗占比贡献从 7.8% 上升至 10.3%,在 -40 °C 低温工作时高的串联电阻是制约 效率提高的主要因素;另外,由于内量子效率随温度的降低逐渐增大,理论上会加剧阈值以下的自发辐射效应,但阈值电流随温度降低大幅减小,最终使得阈值以下自发辐射损失随温度小幅度减少;同时,因低温下内量子效率逐渐增大,载流子泄漏损失占比贡献从16.6%降低至3.1%,这也是低温工作时效率提高的主导因素,也反映出室温下需要针对载流子泄漏这一因素对器件外延结构进行优化设计;对比-30°C和-40°C两种不同的工作温度,温度降低10°C,载流子泄漏占比贡献变化仅为0.1%,说明低温工作条件下由于载流子泄漏导致效率降低的因素可忽略,从另一方面也反映了电光转换效率存在极限值.

图 3 (网刊彩色) 在 -40-25 °C 范围内能量损耗分布趋 势对比

Fig. 3. (color online) Energy loss analysis results at various temperatures.

表 4 不同温度对应能量损耗分布对比 Table 4. Energy loss analysis results at various temperatures.

$T_{\rm HS}/^{\circ}{\rm C}$	25	10	0	-10	-20	-30	-40
P_{out}	56.17%	60.22%	62.03%	63.84%	65.22%	66.78%	66.81%
焦耳热	7.8%	8.4%	9.1%	9.5%	9.8%	10.2%	10.3%
电压损失	3.0%	3.5%	4.1%	4.6%	5.3%	5.7%	6.5%
阈值以下自发辐射	12.8%	12.6%	11.0%	10.3%	10%	9.3%	8.9%
载流子泄漏	16.6%	11.1%	8.8%	6.8%	4.7%	3.2%	3.1%
腔内与腔面损耗	3.7%	4.2%	5.0%	5.0%	5.0%	4.8%	4.4%

5 结 论

本文通过研究在-40—25°C温度范围内 808 nm半导体激光芯片电压、功率和电光转换 效率等输出特性参数,理论分析了不同温度下制约 效率提升的主要瓶颈因素.在热沉温度为-40°C 极端工作条件下,器件内量子效率高达96.3%;载 流子损耗占比仅为3.1%,较室温条件降低13.5%, 最终实现最高电光转换效率升高10%.器件在不 同温度条件下电光转换效率的能量损耗途径的分 析研究对高效率芯片的外延设计工作提供了重要 参考.

参考文献

- [1] Bachmann F 2003 Appl. Surf. Sci. 208 125
- [2] Lepselter J, Elman M 2004 J. Dermatolog Treat. 15 72
- [3] Li M Y, He J 2015 Semiconductor Technology 321 (in Chinese) [李明月,何君 2015 半导体技术 321]
- [4] Skidmore J, Peters M, Rossin V, Guo J, Xiao Y, Cheng J, Shieh A, Srinivasan R, Singh J, Wei C, Duesterberg R, Morehead J J, Zucker E 2016 Proc. SPIE 9733 97330B
- [5] Diehl, R (Ed) 2003 High-Power Diode Lasers: Fundamentals, Technology, Applications (Vol. 78) (Springer Science & Business Media Preface)
- [6] Wang L J, Ning Y Q, Qi L, Tong C Z, Chen Y Y 2015 *Chinese J. Luminescence* 36 19 (in Chinese) [王立军, 宁永强, 秦莉, 佟存柱, 陈泳屹 2015 发光学报 36 19]

- [7] Crump P, Dong W, Grimshaw M, Wang J, Patterson S, Wise D, DeFranza M, Elim S, Zhang S, Bougher M, Patterson J, Das S, Bell J, Farmer J, DeVito M, Martinsen R 2007 Proc. SPIE. 6456 64560M
- [8] Crump P, Erbert G, Wenzel H, Frevert C, Schultz C M, Hasler K H, Staske R, Sumpf B, Maassdorf A, Bugge F, Knigge S, Trankle G 2013 *IEEE J. Sel. Topics Quantum Electron.* **19** 1501211
- [9] Stickley C M, Hach E E 2006 Proc. SPIE. 6104 610405
- [10] Peters M, Rossin V, Everett M, Zucker E 2007 Proc. SPIE. 6456 64560G
- [11] Crump P, Wenzel H, Erbert G, Ressel P, Zorn M, Bugge F, Einfeldt S, Staske R, Zeimer U, Pietrzak A, Trankle G 2008 *IEEE Photon. Technol. Lett.* 20 1378
- [12] Morales J, Lehkonen S, Liu G, Schleuning D, Acklin B 2016 Proc. SPIE. 9733 97330T
- [13] Liu, S P, Zhong L, Zhang H Y, Wang C L, Feng X M, Ma X Y 2008 J. Semiconductors 29 2335 (in Chinese)
 [刘素平, 仲莉, 张海燕, 王翠鸾, 冯小明, 马骁宇 2008 半导 体学报 29 2335]
- [14] Xu X H, Liu Y Y, Wang X W, Ma X Y 2014 Semiconductor Technology 56 (in Chinese) [徐小红, 刘媛媛, 王晓 薇, 马骁字 2014 半导体技术 56]
- [15] Wang Z F, Yang G W, Wu J Y, Song K C, Li X S, Song Y F 2016 Acta Phys. Sin. 65 164203 (in Chinese) [王贞 福,杨国文,吴建耀,宋克昌,李秀山,宋云菲 2016 物理学 报 65 164203]
- [16] Crump P, Grimshaw M, Wan J, Dong W, Zhan S, Das S, Farmer J, DeVito M 2006 Proc. CLEO/QELS JWB24
- [17] Bour D P, Rosen A 1989 J. Appl. Phys. 66 2813
- [18] Rinner F, Rogg J, Friedmann P, Mikulla M, Weimann G, Poprawe R 2002 Appl. Phys. Lett. 80 19
- [19] Mermelstein C, Kanskar M, Earles T, Goodnough T, Stiers E, Botez D, Mawst L J, Bour D P 2005 Proc. SPIE 5738 47

Efficiency analysis of 808 nm laser diode array under different operating temperatures^{*}

Song Yun-Fei¹⁾²⁾ Wang Zhen-Fu¹⁾ Li Te¹⁾ Yang Guo-Wen^{1)3)†}

 (State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

3) (Xi'an Lumcore Optoelectronics Technologies Co., Ltd, Xi'an 710077, China)

(Received 1 December 2016; revised manuscript received 8 March 2017)

Abstract

The 808 nm high-efficiency laser diodes have many advantages, such as high output power, high reliabilities, compact sizes, which are widely used in many areas, such as industry, communication, science, medicine and biology. In order to improve the power conversion efficiencies of 808 nm laser diodes, the following requirements must be considered, such as loss of joule heating, loss by the carrier leakage, spontaneous radiation loss below the threshold current, loss by interface voltage defect, internal losses including free-carrier absorption loss and scattering loss. These losses above are closely related to the operating temperature of laser diode. In this paper, power conversion efficiency analysis is demonstrated from the aspects of the output power, threshold current, slope efficiency, voltage, and series resistance at different temperatures. This is the first time that the detailed study has been carried out under various temperatures (up to the lowest temperature of -40 °C). And the detailed study above can be of benefit to designing the wafer epitaxial structure.

High-power 808 nm laser diode arrays are mounted on conduction cooled heatsinks. And the laser chips have 47 emitters with 50% in fill factor, 100 μ m stripe in width and 1.5 mm in cavity length. The asymmetric broad waveguide epitaxial structure with lower absorption loss in p-type waveguide and cladding layer is designed in order to reduce the internal losses. The device performances are measured under operating temperatures ranging from -40 °C to 25 °C including the output power, threshold current, slope efficiency, series resistance, voltage, etc. Then the power conversion efficiency of 808 nm laser diode arrays are demonstrated from the output characteristics at different operating temperatures.

With temperature decreasing, the series resistance gradually increases. The loss of joule heating ratio rises from 7.8% to 10.3%. In that case, the high series resistance is the major factor to prevent the efficiency from further improving at a low temperature of -40 °C. As temperature decreases from 25 °C to -40 °C, the carrier leakage ratio is reduced from 16.6% to 3.1%, the carrier leakage is the dominant factor for increasing efficiency, which means that it is necessary to optimize the epitaxial structure in order to reduce the carrier leakage at the room temperature. Comparing the two different work temperatures from -30 °C to -40 °C, the carrier leakage ratio only changes 0.1%, which implies that the carrier leakage could be ignored under the low temperature. Meanwhile, as temperature decreases from 25 °C to -40 °C, the power conversion efficiency increases from 56.7% to 66.8%.

Keywords: laser chip, power conversion efficiency, temperature

PACS: 42.55.Px

DOI: 10.7498/aps.66.104202

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 61504167) and the "100 Talents Project" of Chinese Academy of Sciences, China (Grant No. Y429941233).

[†] Corresponding author. E-mail: yangguowen@opt.ac.cn