物理学报 Acta Physica Sinica

硼原(离)子内壳激发高自旋态能级和辐射跃迁

钱新宇 孙言 刘冬冬 胡峰 樊秋波 苟秉聪

Energy levels and radiative transitions of the core-excited high-spin states in boron atom (ion)

Qian Xin-Yu Sun Yan Liu Dong-Dong Hu Feng Fan Qiu-Bo Gou Bing-Cong

引用信息 Citation: Acta Physica Sinica, 66, 123101 (2017) DOI: 10.7498/aps.66.123101 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.123101 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I12

您可能感兴趣的其他文章 Articles you may be interested in

 O_2 分子 $B^3\Sigma_u$ -态势能曲线的从头计算

Ab initio calculation of the potential curve of $B^3\Sigma_u$ state of O_2 物理学报.2017, 66(10): 103101 http://dx.doi.org/10.7498/aps.66.103101

基于 ab initio 计算的 CF-离子低激发态光谱性质研究

Spectroscopic properties of low-lying excited electronic states for CF anion based on ab initiocalculation 物理学报.2017, 66(2): 023101 http://dx.doi.org/10.7498/aps.66.023101

SO分子最低两个电子态振-转谱的显关联多参考组态相互作用计算

Calculations on rovibrational spectra of two lowest electronic states in sulfur monoxide molecule by explicitly correlated approach

物理学报.2016, 65(16): 163101 http://dx.doi.org/10.7498/aps.65.163101

β石墨炔衍生物结构稳定性及电子结构的密度泛函理论研究

Density functional theory study of structure stability and electronic structures of β graphyne derivatives 物理学报.2016, 65(13): 133101 http://dx.doi.org/10.7498/aps.65.133101

高温条件下Ga3PO7晶体热学及声表面波性质的理论研究

Theoretical study on thermal and acoustic surface wave properties of Ga₃PO₇ crystal at high temperature 物理学报.2016, 65(11): 113101 http://dx.doi.org/10.7498/aps.65.113101

硼原(离)子内壳激发高自旋态能级和辐射跃迁*

钱新宇1) 孙言1)† 刘冬冬1) 胡峰1) 樊秋波1) 苟秉聪2)

1)(徐州工程学院数学与物理科学学院,徐州 221018)

2)(北京理工大学物理学院,北京 100081)

(2016年11月25日收到;2017年4月18日收到修改稿)

采用 Rayleigh-Ritz 变分方法计算了 B 原子 (离子) 内壳层激发高自旋态 (^{4,5,6}L, L = S, P) 里德伯系列的 能量和精细结构劈裂, 利用截断变分方法改进非相对论能量, 并利用一阶微扰理论计算了相对论能量修正和 质量极化效应修正, 利用屏蔽的类氢公式计算了量子电动力学效应和高阶相对论效应, 从而得到了高精度的 组态能量.利用精确计算的波函数, 计算了这些高自旋态的电偶极辐射跃迁波长、振子强度和辐射跃迁概率. 通过长度规范和速度规范计算的振子强度的一致性证明了本文计算的波函数是精确的.相比其他理论计算结 果, 本文计算的高自旋态的能级及跃迁波长数据与实验数据符合得更好.对于一些高位的内壳层激发高自旋 态, 相关的能级和跃迁数据为首次报道, 本文的计算结果对相关实验光谱谱线标定具有重要意义.

关键词:高自旋态,精细结构,辐射跃迁,振子强度 PACS: 31.15.A-, 31.15.ac, 31.10.+z, 32.30.-r

1引言

硼原子(离子)内壳层激发高自旋态位于多重 离化阈之上,在狭窄的区间内具有多个能级分 布,能级态密度高,电子关联效应复杂,且硼原 子核外电子数相对较少,是研究原子内壳激发态 的理想体系,对其内壳层激发态的研究对原子分 子相关理论发展具有重要学术意义.此外,硼原 子(离子)高自旋态具有较长的能级寿命,其光谱 对高温等离子诊断、天体物理谱线鉴定、软X射 线激光[1-3]等领域都具有较高的应用价值.对 于B原子(离子)内壳层激发高自旋态,由于不能 满足俄歇跃迁的自旋和角动量守恒定则,其自离 化跃迁过程是禁戒的. 这些高自旋态通常具有 较长的寿命,在实验中能够充分积累,能够很容 易地观测到其辐射跃迁光谱线. 最早的测量实 验是Martinson等^[4]利用束箔实验技术标定了位 于1701 Å, 其来源的谱线来源于 B²⁺ 离子四重态

DOI: 10.7498/aps.66.123101

1s2s2p⁴P^o—1s2p²⁴P^e的辐射跃迁. 随着束箔实 验分辨率的提高,陆续报道了一些相关的实验数 据. 1984年, Agentoft 等^[5,6]和 Chung 等^[7]测量了 类锂 B²⁺ 离子高自旋态 $2p^3$ ⁴S^o 和 1s2*lnl* (⁴L, ²L) 的辐射跃迁光谱线. Baudinet-Robinet 等^[8,9] 测量 了 B²⁺ 离子 287—2000 Å 范围内的光谱线, 并标定 了其中的22条谱线来自于B²⁺离子内壳层激发四 重态,5条谱线来自于B²⁺离子内壳层激发二重态. 1986年, Mannervik等^[10]进一步测量并标定B²⁺ 离子四重态1s2s2p ⁴P^o—1s2p² ⁴P^e的跃迁光谱线 位于1702.1 Å, 并首次报道了1s2s3s ⁴S—1s2s3p ⁴P^o跃迁的波长.之后, Mannervik 等^[11] 进一步报 道了B⁺离子五重态1s2s2p²⁵P^o—1s2p³⁵S^o跃迁 波长((1323.92±0.07)Å)和跃迁寿命,精确度与 Martinson等^[4]的实验数据精度相比大大提高.利 用双激光产生等离子体技术, Jannitti 等^[12]和Lynam 等^[13] 分别测量了 B²⁺ 离子和 B⁺ 离子内壳层 激发二重态的吸收光谱线.最近, Rvabtsev 等^[14]

* 国家自然科学青年基金(批准号: 11604284)和国家自然科学基金(批准号: 11474020)资助的课题.

© 2017 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: suenyangu@163.com

和 Kramida 等 ^[15,16] 利用高分辨率的束箔实验技术 测量了 B 原子 (离子) 的辐射跃迁光谱, 并报道了 50 条新观测的光谱线. Fuhr 和 Wiese ^[17] 综合整理并 分类了 B 原子 (离子) 的辐射光谱跃迁数据, 涵盖了 1400 多个允许跃迁和禁戒跃迁. NIST (National Institute of Standards and Technology)数据库的 B²⁺离子内壳层激发态的相关参考数据多数来自 文献 [16, 17]. 2014 年, Müller 等 ^[18] 利用合并光 子 - 离子束技术测量了 B⁺离子的 K 壳层光电离截 面, 对应的内壳层激发态包括 $1s2s2p^{2} {}^{3}L$ (L = P, D), $1s2p^{3} {}^{1}P^{\circ}$, $1s2s^{2}np$ (n = 2-4) ${}^{1}P^{\circ}$ 和 $1s2s3p^{2} {}^{3}D$.

理论方面, Beck和Nicolaides^[19]最早使用FO-TOS (first-order theory of oscillator strengths)方 法计算了B+离子内壳层激发五重态的组态能级 和1s2s2p² ⁵P—1s2p³ ⁵S^o跃迁概率. Chung等^[7] 及Gou和Deng^[20]利用多组态的Rayleigh-Ritz变 分方法计算了B²⁺离子内壳层激发四重态的能 级和辐射跃迁波长,并对实验中的光谱线进行标 定.利用同样的理论方法, Yang 和 Chung^[21]及 Gou和Wang^[22]计算了B+离子内壳层激发五重 态1s2s2pnp ⁵P^e和1s2p²np ⁵S^o的能级、精细结构 和辐射跃迁数据.之后,一些理论工作者采用全实 加关联(FCPC)方法^[23,24]、鞍点变分方法^[25]、多 组态 Hartree-Fock (MCHF) 方法^[11]、多组态 Dirac-Fock 方法^[26] 和 Hylleraas 方法^[27] 对 B 原子 (离子) 内壳层激发高自旋态能级、精细结构、辐射跃迁概 率、辐射跃迁寿命等进行了计算,得到了与实验符 合较好的结果.目前,虽然人们对硼原子(离子)的 内壳层激发态开展了相关研究,得到了一些比较精 确的理论和实验数据. 然而, 研究主要集中在B²⁺ 离子四重态体系. 由于复杂的电子关联效应和计算 过程的不稳定性, B原子(离子)内壳层激发五重态 和六重态的相关理论数据还很少. 由于缺乏精确的 理论计算数据,也限制了相关实验的开展和实验光 谱线的标定.

本文采用多组态相互作用 Rayleigh-Ritz 变分 方法,利用截断变分方法饱和波函数空间,在考 虑了相对论修正、质量极化效应、量子电动力学 (QED)效应和高阶相对论效应的基础上,计算了硼 原子(离子)内壳层激发高自旋态里德伯系列激发 态的能级、精细结构劈裂、辐射跃迁振子强度、辐射 跃迁概率、辐射跃迁波长.相比文献中的理论数据, 本文的计算结果与实验符合得更好.本文的理论计 算结果对相关的光谱实验研究是有意义的.

2 理论方法

在*LS*表象下,具有*N*个电子的原子体系的非 相对论哈密顿算符为

$$\hat{H}_0 = \sum_{i=1}^N \left(-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right) + \sum_{\substack{i,j=1, \ i < j}}^N \frac{1}{r_{ij}}, \quad (1)$$

其中, r_i表示第*i*个电子与原子核之间的距离, r_{ij} 表示第*i*个电子和第*j*个电子之间的距离, Z为核 电荷数.

闭通道的波函数可利用径向波函数与轨道的 角动量和自旋波函数乘积作为基函数展开,波函数 形式如下:

$$\psi_{\rm b}(1,2,\cdots,N) = A \sum_{i}^{N} C_i \varphi_{n(i),l(i)}(R) Y_{l(i)}^{\rm LM}(\Omega) \chi_{ss_z}, \qquad (2)$$

其中, A为反对称算符, C_i 为线性参数, $\varphi_{n(i),l(i)}$ 代表径向波函数, $Y_{l(i)}^{\text{LM}}$ 代表轨道角动量波函数, R代表径向部分, Ω 代表轨道轨道角动量部分, χ_{ss_z} 为自旋波函数. 径向部分采用 Slater 基函数进行展开,

$$\varphi_{n(i),l(i)} = \prod_{j=1}^{N} r_j^{n_j} \exp(-\alpha_j r_j), \qquad (3)$$

其中, α_j为每个电子对应的非线性参数.

在计算中, 基于 Rayleigh-Ritz 变分方法^[28,29], 利用 (2) 式的波函数对 (1) 式哈密顿算符求期望值 的极小值, 得到组态非相对论能量的计算公式如下:

$$\delta E_{\rm b} = \delta \langle H_0 \rangle = \delta \frac{\langle \psi_{\rm b} | H_0 | \psi_{\rm b} \rangle}{\langle \psi_{\rm b} | \psi_{\rm b} \rangle}.$$
 (4)

在 (4) 式中, 利用 Rayleigh-Ritz 变分对非线性参数 集 $\{\alpha_j\}$ 及线性参数 C_i 优化能量极小, 从而得到组 态的非相对论能量 E_b .

为了进一步饱和束缚空间,获得高精度的非相 对论能量,本文采用截断变分^[18]方法对非相对论 能量进行修正.经过截断变分修正后得到的总波 函数为

$$\psi = D_0 \psi_{\rm b}(1, 2, \cdots, N) + \psi_2(1, 2, \cdots, N), \quad (5)$$

其中,

$$\psi_2(1, 2, \cdots, N) = \sum_{i=1}^{I} D_i \varphi_{n(i), l(i)}(1, 2, \cdots, N),$$
(6)

其中, D_0 , D_i 为线性参数; I为所添加的进行截断 变分的角动量-自旋分波数目. 在截断变分的计算 过程中, ψ_b 的非线性参数保持不变, 对 ψ_2 中的每个 非线性参数进行优化.

为了进一步获得更高精度的能量,还需要考虑 相对论修正和质量极化效应的影响.在本文中,利 用一阶微扰理论对相对论修正和质量极化效应进 行计算.质量极化算符为*H*mp.相对论修正算符包 括动能修正项*H*k、达尔文项*H*D、电子和电子相互 作用项*H*ee 以及轨道和轨道相互作用项*H*oo.这些 算符在文献[30]中有详细描述,这里不再赘述.

于是,相对论能量修正为

 $\Delta E_{\rm rel} = \langle \psi_{\rm b} | H_{\rm k} + H_{\rm D} + H_{\rm ee} + H_{\rm oo} | \psi_{\rm b} \rangle, \quad (7)$ 质量极化修正为

$$\Delta E_{\rm mp} = \langle \psi_{\rm b} | H_{\rm mp} | \psi_{\rm b} \rangle \,. \tag{8}$$

利用屏蔽的类氢公式^[31],本文还考虑QED效应和高阶相对论效应对组态能量的修正 ΔE_{Q+H} . 对于QED效应和高阶相对论效应的修正在文献[32]中有详细讨论,这里不再展开.

通过对非相对论能量、截断变分能量、相对论 修正、质量极化效应、QED和高阶相对论效应修正 求和,得到组态总能量为

$$E_{\text{total}} = E_{\text{b}} + \Delta E_{\text{RV}} + \Delta E_{\text{mp}} + \Delta E_{\text{rel}} + \Delta E_{\text{Q+H}}.$$
 (9)

在 Pauli-Breit 相对论近似下,精细结构的能量 微扰算符为^[33]

$$H_{\rm FS} = H_{\rm SO} + H_{\rm SOO} + H_{\rm SS},$$

其中

$$H_{\rm SO} = \frac{Z}{2c^2} \sum_{i=1}^{N} \frac{\boldsymbol{l}_i \cdot \boldsymbol{s}_i}{r_i^3}$$

(自旋与轨道相互作用), (10)

$$H_{\mathrm{SOO}}=\ -\ rac{1}{2c^2} \sum_{i,j=1,\ i
eq j}^N \left[rac{1}{r_{ij}^3}(oldsymbol{r}_i-oldsymbol{r}_j) imesoldsymbol{p}_i
ight]\cdot(oldsymbol{s}_i+2oldsymbol{s}_j)$$

$$H_{\rm SS} = -\frac{1}{c^2} \sum_{\substack{i,j=1,\\i\neq j}}^{N} \frac{1}{r_{ij}^3} \left[\boldsymbol{s}_i \cdot \boldsymbol{s}_j - \frac{3(\boldsymbol{s}_i \cdot \boldsymbol{r}_{ij})(\boldsymbol{s}_j \cdot \boldsymbol{r}_{ij})}{r_{ij}^2} \right]$$
123

(自旋与自旋相互作用), (12)

式中 l_i , s_i 分别为第i个电子的轨道和自旋角动量; p_i 为第i个电子的动量; c为光速.

3 结果与讨论

本文采用多组态 Rayleigh-Ritz 变分方法计算 了硼原子(离子)内壳层激发高自旋态的能级和精 细结构劈裂. 硼原子(离子)内壳高位激发态是一个 复杂的多电子系统,电子关联效应十分复杂,要获 得精确的理论计算数据,如何选取高精度的波函数 是关键.本文计算中采用多组态相互作用的基函数 来考虑电子关联效应,其中每个基函数采用 Slater 型径向波函数与轨道角动量和自旋角动量波函数 的乘积构成. 轨道角动量和自旋角动量关联效应通 过在试探波函数里添加适当的轨道角动量和自旋 角动量分波来考虑. 描述电子径向波函数的 Slater 型函数的非线性参数在变分过程中通过优化能量 极小获得.为了保证重要的角动量-自旋分波不被 遗漏,并且能够充分考虑组态相互作用,本文根据 能量相近、宇称相同、具有相同的L和S量子数的 组态相互作用定则来选取轨道-自旋角动量组态分 波. 例如, 对于1s2s3s ⁴S内壳层激发四重态, 重要 的轨道角动量分波 [l₁, l₂, l₃] 为 [0, l, l] (l = 1-7), [1, l, l+1] (l = 1-3), [2, 2, 2], [2, 2, 4] \oplus . \oplus 分波电子主量子数n的大小根据增大n所引起的总 能量变化来确定,当增大n时,若对总能量的贡献 小于1×10⁻⁷ a.u.则停止增加,从而保证重要的轨 道-自旋角动量组态分波的组态相互作用能够被充 分考虑. 表1列出了本文计算的B原子(离子)各内 壳层激发高自旋态重要的角动量系列分波.高自 旋态的自旋角动量波函数,只有一种耦合方式,而 轨道角动量的耦合方式则有多种,在计算过程中, 需要考虑到每一种可能的耦合方式,将轨道角动量 波函数和自旋波函数相乘组成各分波的轨道-自旋 角动量波函数.为了尽可能的提高精确度,波函数 构建时选取大的基函数,对于某些组态,轨道-自旋 角动量组态分波的数目达到78,其Slater基函数的 数目超过2500项. 在表1中, l的取值范围为0到7, l > 7时的组态分波对总能量贡献很小,利用截断 变分方法进行计算. 构建的试探波函数经过变分 优化,从而得到最佳的波函数和对应的非相对论能 量 $E_{\rm b}$.

						· ·
组态结构	1s2sns, 1s2pnp	$1s2snp, 2p^2np,$ 1s2pns, 1s2pnd	1s2s2pnp	$1s2p^2np, 1s2s2pns, 1s2s2pnd$	$\frac{1s2s2p3snp}{1s2s2p^2ns}$	$1s2s2p^2np,$ $1s2s2p^2nd$
	[0,l,l]	[0, l, l+1]	[0,0,l,l]	[0, 0, l, l+1]	$\left[0,0,0,l,l\right]$	[0, 0, 1, l+1, l+1]
	$\left[1,l+1,l+2\right]$	[1,l,l]	$\left[0,1,l,l+1\right]$	[0,1,l,l]	[0, 0, 1, l, l+1]	[0, 0, 1, l+1, l+3]
劫送鱼动兽公迹	$\left[2,l+2,l+2\right]$	[2, l+2, l+3]	[0,2,l,l]	$\left[0,2,l,l+1\right]$	$\left[0,0,2,l,l+2\right]$	[0, 1, 1, l+1, l+2]
机坦用幼星刀级			[1,1,l,l]	$\left[1,1,l,l+1\right]$	$\left[0,1,1,l,l+2\right]$	[0, 1, 1, l+1, l+4]
			$\left[1,1,l,l+2\right]$	$\left[1,2,l,l+1\right]$	$\left[0,1,2,l,l+1\right]$	[1, 1, 1, l+1, l+1]
					[1, 1, 1, l, l + 1]	$\left[1,1,2,l+1,l+2\right]$

表1 B原子 (离子)高自旋态波函数重要的轨道角动量分波 Table 1. The important orbital angular momentum partial wave for the high-spin state of B atomic (ion).

表 2 B⁺ 离子五重态 $1s2s2p^2$ ⁵Pe 的非相对论能量计算值及各轨道角动量分波的能量贡献 ΔE (单位 a.u.)

Table 2. The non-relativistic energy and the energy contributions of each angular momentum partial wave for the quintuplet state $1s2s2p^{2}$ ⁵P^e in B⁺ ion (unit a.u.).

$\left[0,0,l,l ight]$	项数	ΔE	[0, 1, l, (l+1)]	项数	ΔE	[1,1,l,l]	项数	ΔE	[0, 2, l, l], [1, 1, l, (l+2)]	项数	ΔE
[0,0,1,1]	291	-17.203991	[0,1,1,2]	239	-0.007900	$[1,\!1,\!1,\!1]$	130	-0.000643	[0,2,2,2]	59	-0.000022
$[0,\!0,\!2,\!2]$	115	-0.005601	[0,1,2,3]	147	-0.000953	$[1,\!1,\!2,\!2]$	100	-0.000072	[0,2,3,3]	33	-0.000001
$[0,\!0,\!3,\!3]$	84	-0.000425	[0, 1, 3, 4]	93	-0.000127	$[1,\!1,\!3,\!3]$	42	-0.000005	$[1,\!1,\!1,\!3]$	47	-0.000002
$[0,\!0,\!4,\!4]$	42	-0.000077	[0,1,4,5]	50	-0.000027						
[0, 0, 5, 5]	22	-0.000020	[0, 1, 5, 6]	46	-0.000008						
$[0,\!0,\!6,\!6]$	14	-0.000006									
$[0,\!0,\!7,\!7]$	14	-0.000003									
求和	582	-17.210123		575	-0.009015		272	-0.00072		139	-0.000025
总非相对	总非相对论能量: (-17.210123) + (-0.009015) + (-0.00072) + (-0.000025) = -17.219883 a.u.										
总项数 58	总项数 $582 + 575 + 272 + 139 = 1568$										

为了验证计算的能量收敛性,表2列出了B+ 离子激发态1s2s2p²⁵Pe非相对论能量计算过程中 所添加的轨道角动量分波、各分波项数及各分波 的能量贡献. 从表2可以看出, 随着电子轨道角 动量1的增加,轨道角动量分波的能量贡献越来越 小,计算的非相对论能量呈现收敛趋势.如表2中 所列的[0,0,l,l]系列, [0,0,1,1]分波的能量贡献为 -17.203991 a.u., [0,0,7,7] 分波的能量贡献仅为 -0.000003 a.u.. 通过收敛性判断, 可以保证所有重 要的轨道-自旋角动量组态分波均被加入到波函数 中. 在计算过程中, 为了饱和波函数空间, 考虑高 1的分波对能量的贡献,利用截断变分方法来计算 非相对能量改进 $\Delta E_{\rm RV}$,本文计算的 $\Delta E_{\rm RV}$ 值约为 100 μa.u.. 利用一阶微扰理论, 计算组态的质量极 化修正能量 $\Delta E_{\rm mp}$ 和相对论修正能量 $\Delta E_{\rm rel}$. 进一 步利用屏蔽的类氢公式计算各组态的QED和高阶 相对论修正 ΔE_{Q+H} ,最后求和得到组态的相对论 能量.

表3列出了本文计算的B原子(离子)高自旋 态 1s2lnl (l = s, p) ⁴S^e, $2p^2np$ ⁴S^o; 1s2s2pnp ⁵S^e, 1s2p²np ⁵S^o; 1s2s2p3snp ⁶S^e, 1s2s2p²np ⁶S^o的 能量. 表4列出了B原子(离子)高自旋态1s2pnp ${}^{4}P^{e}$, 1s2snp ${}^{4}P^{o}$; 1s2s2pnp ${}^{5}P^{e}$, 1s2s2pnl (l = s, d) ${}^{5}P^{o}$; 1s2s2p²nl (l = s, d) ${}^{6}P^{e}$, 1s2s2p²np ${}^{6}P^{o}$ 的能 量及精细结构劈裂. 表3和表4中还列出了高分 辨率束箔碰撞实验^[16]的数据、Rayleigh-Ritz变分 方法^[5,7,21,22]、FCPC^[23]方法、MCHF方法^[11]的理 论计算值.为了便于比较,图1给出了B原子(离 子)内壳层激发高自旋态能量的理论计算值与实 验值[16]的偏差. 从图1可以看出, 本文的理论计 算值与实验值的平均偏差约为6×10⁻⁴ a.u., 小 于文献中Rayleigh-Ritz^[5,7,21,22]和FCPC^[23]方法 与实验的偏差. 这主要是因为相比文献中的理 论方法,本文计算过程中考虑了QED效应和高 阶相对论效应修正 ΔE_{Q+H} .本文计算的B原子 (离子)的内壳层激发高自旋态, ΔE_{Q+H} 主要来自

于1s和2s电子.对于本文计算的1s2snl系列激发 态, $\Delta E_{\Omega+H}$ 大小约为500 µa.u.; 对于2p²np系列 激发态, ΔE_{Q+H} 很小, 约为20 µa.u.. 总体上看, FCPC方法^[23]的理论计算值要略差于Rayleigh-Ritz 变分方法^[5,7,21,22]的理论计算值, 这主要是 由于 FCPC 方法没有充分考虑原子实内电子和原 子实外电子的关联效应. 这里需要指出的是, 在 图1中,本文没有给出高自旋态2p³4S°能量的理 论计算值和实验值的对比.对于高自旋态 2p3 4S°, 本文的理论计算值为-7.12042 a.u., 比文献 [16] 的 实验数据-7.11158 a.u. 低 0.00884 a.u.. 在文献 [16] 中,该高自旋态的实验测量误差为1500 cm⁻¹(约为 0.00683 a.u.), 实验误差较大. 本文计算的 2p3 4S° 能量的略超出实验误差约0.002 a.u.. 然而,本文的 理论计算值与文献 [5] 的理论计算值 -7.12023 a.u. 符合得非常好. 对于该激发态, 目前还尚未有其他 的实验数据可对比,因此还需要进一步的实验去验 证. 在表3和表4中,本文的计算数据比Mannervik 等^[11]利用 MCHF 的计算数据略低,这主要是由于 本文采用了更大的基函数,考虑了更多的组态相互 作用.

图 1 (网刊彩色) B 原子 (离子) 内壳层激发高自旋态能 量理论值与实验数据^[16] 的偏差

Fig. 1. (color online) The deviation of theoretical and experimental energy data ^[16] for the core-excited states of B atomic (ion).

表3 B原子 (离子)高自旋态 1s2lnl (l = s, p) ⁴S^e, $2p^2np$ ⁴S^o; 1s2s2pnp ⁵S^e, $1s2p^2np$ ⁵S^o; 1s2s2p3snp ⁶S^e, $1s2s2p^2np$ ⁶S^o 的能量 (单位 a.u.)

Table 3. Energies (a.u.) of high-spin states $1s2lnl$ $(l = s, p)$	${}^{4}S^{e}, 2p^{2}np {}^{4}S^{o}; 1s2s2pnp {}^{5}S^{e}, 1s2p^{2}np {}^{5}S^{o}; 1s2s2p3snp$
${}^{6}\mathrm{S}^{\mathrm{e}}$, $1\mathrm{s}2\mathrm{s}2\mathrm{p}^{2}n\mathrm{p}~{}^{6}\mathrm{S}^{\mathrm{o}}$ of B atomic (ion).	

组态 $E_1 + \Delta E_2$		$\Delta + \Delta E_{\rm PV} = \Delta E_{\rm mp}$	ΔE_{rel}	ΔE_{O+H}	E _{total}			
50°C	$L_{\rm b} \pm \Delta L_{\rm RV}$	$\Delta E_{\rm mp}$	$\Delta D_{\rm rel}$	$\Delta L_{\rm Q+H}$	本文	文献		
1s2s3s $^4\mathrm{S^e}$	-15.38944	0.00000	-0.00514	0.00050	-15.39408	$-15.39342^{\rm a}, -15.39458^{\rm b} -15.39449^{\rm c}$		
1s2s4s $^4\mathrm{S}^\mathrm{e}$	-15.06893	-0.00001	-0.00501	0.00050	-15.07345	$-15.07289^{\rm a}, -15.07380^{\rm b}, -15.07378^{\rm c}$		
1s2p3p $^4\mathrm{S^e}$	-15.13602	-0.00007	-0.00443	0.00047	-15.14005	$-15.13944^{\rm a}, -15.13754^{\rm b}, -15.14014^{\rm c}$		
1s2p4p $^4\mathrm{S}^\mathrm{e}$	-14.88128	-0.00005	-0.00453	0.00047	-14.88539	$-14.88622^{\rm a}, -14.88637^{\rm c}$		
$2p^3 \ ^4S^o$	-7.11932	0.00002	-0.00114	0.00002	-7.12042	$-7.11158^{\rm a}, -7.12023^{\rm d}$		
$\rm 2p^2 3p \ ^4S^o$	-6.04495	0.00001	-0.00101	0.00002	-6.04593			
$2p^24p~^4S^o$	-5.77990	0.00001	-0.00098	0.00002	-5.78085			
1s2s2p3p $^5\mathrm{S}^\mathrm{e}$	-16.56187	-0.00006	-0.00500	0.00050	-16.56643			
1s2s2p4p $^5\mathrm{S}^\mathrm{e}$	-16.41955	-0.00006	-0.00499	0.00050	-16.42410			
$1s2p^3$ ⁵ S ^o	-16.87642	-0.00012	-0.00438	0.00047	-16.88045	$-16.88098^{\rm b},-16.88097^{\rm e},-16.87076^{\rm f}$		
$1s2p^23p$ $^5S^o$	-16.27476	-0.00011	-0.00437	0.00047	-16.27877	$-16.27928^{ m g}$		
$1s2p^24p$ $^5S^{o}$	-16.14531	-0.00011	-0.00436	0.00047	-16.14931	$-16.14988^{ m g}$		
1s2s2p3s3p $^6\mathrm{S}^\mathrm{e}$	-16.77774	-0.00006	-0.00506	0.00050	-16.78236			
1s2s2p3s4p $^6\mathrm{S}^\mathrm{e}$	-16.67889	-0.00006	-0.00506	0.00050	-16.68351			
$\rm 1s2s2p^23d~^6S^e$	-16.64745	-0.00006	-0.00499	0.00050	-16.65200			
$1s2s2p^3 {\ 6}S^o$	-17.68730	-0.00010	-0.00483	0.00050	-17.69173			
$\rm 1s2s2p^23p~^6S^o$	-17.30685	-0.00008	-0.00492	0.00050	-17.31135			
$\rm 1s2s2p^24p~^6S^o$	-17.25450	-0.00009	-0.00492	0.00050	-17.25901			

a, 文献 [16] 实验; b, 文献 [23] FCPC; c, 文献 [7] Rayleigh-Ritz 变分; d, 文献 [5] Rayleigh-Ritz 变分; e, 文献 [21]

Rayleigh-Ritz 变分; f, 文献 [11] MCHF; g, 文献 [22] Rayleigh-Ritz 变分.

表4 B原子 (离子)高自旋态 1s2pnp ⁴Pe, 1s2snp ⁴Po; 1s2s2pnp ⁵Pe, 1s2s2pnl (l = s, d) ⁵Po; 1s2s2p²nl (l = s, d) ⁶Pe, 1s2s2p²np ⁶Po 的能量 (单位 a.u.) 及精细结构劈裂 (单位 cm⁻¹), 其中, $\nu_{J-(J-1)}$ 和 $\nu_{(J+1)-J}$ 为对应组态的精细结构劈裂值 (单位 cm⁻¹), B²⁺ 离子四重态 J = 1.5, B⁺ 离子五重态 J = 2, B原子六重态 J = 2.5, 括号中的数代表实验误差 (单位 cm⁻¹) Table 4. Energies (a.u.) and fine structure splittings (cm⁻¹) of high-spin states 1s2pnp ⁴Pe, 1s2snp ⁴Po; 1s2s2pnp ⁵Pe, 1s2s2pnl (l = s, d) ⁵Po; 1s2s2p²nl (l = s, d) ⁶Pe, 1s2s2p²nl (l = s, d) ⁶Pe, 1s2s2p²nl (l = s, d) ⁶Pe, 1s2s2p²nl (l = s, d) ⁵Po; 1s2s2p²nl (l = s, d) ⁶Pe, 1s2s2p²np ⁶Po of B atomic (ion). $\nu_{J-(J-1)}$ and $\nu_{(J+1)-J}$ are the corresponding fine structure splitting values. For the quartet state, the quintuplet state, and the sextet state, J values are equal to 1.5, 2, and 2.5, respectively. The data in parentheses represents the experimental errors (unit cm⁻¹).

组大	E + AE		ΔE	ΔE	E_{t}	otal	$\nu_{J-(J-1)}$		$\nu_{(J+1)-J}$	
组心	$E_{\rm b} + \Delta E_{\rm RV}$	$\Delta E_{ m mp}$	$\Delta E_{\rm rel}$	$\Delta E_{\rm Q+H}$	本文	文献	本文	文献	本文	文献
$1s2p^2 \ ^4P^e$	-16.00032	-0.00010	-0.00436	0.00047	-16.00431	$-16.00370^{\rm a}$	31.1	$31.0(2.0)^{\rm a}$	7.8	$8.7(2.0)^{\rm a}$
						-16.00469^{b}				
1s2p3p $^4\mathrm{P^e}$	-15.12445	-0.00007	-0.00434	0.00047	-15.12839	$-15.12776^{\rm a}$	22.5		9.0	
						$-15.12854^{\rm b}$				
$1s2p4p^4$ P ^e	-14.87551	-0.00007	-0.00432	0.00047	-14.87943	$-14.87883^{\rm a}$	21.1		9.7	
						$-14.87955^{\rm b}$				
1s2s2p $^4\mathrm{P^o}$	-16.26759	-0.00005	-0.00499	0.00050	-16.27213	$-16.27141^{\rm a}$	-6.2	$-6.3(2.0)^{a}$	34.9	$34.8(2.0)^{a}$
	-16.26739°					$-16.27244^{\rm b}$		-6.31^{c}		34.78^{c}
						$-16.27259^{\rm d}$				
						-16.27265^{e}				
1s2s3p $^4\mathrm{P^o}$	-15.31518	-0.00002	-0.00500	0.00049	-15.31970	$-15.31907^{\rm a}$	-1.1	$-1.2(2.0)^{\rm a}$	8.4	$7.7(2.0)^{\rm a}$
	-15.31493°					$-15.31955^{\rm b}$				
						$-15.32014^{\rm e}$				
1s2s4p $^4\mathrm{P^o}$	-15.04144	-0.00001	-0.00493	0.00049	-15.04588	$-15.04526^{\rm a}$	-2.2		11.3	
1s2p3s $^4\mathrm{P^o}$	-15.19709	-0.00006	-0.00448	0.00047	-15.20116	$-15.20051^{\rm a}$	-2.8		40.6	$37.8(1.3)^{a}$
						$-15.20127^{\rm b}$				
						$-15.20144^{\rm e}$				
1s2p4s $^4\mathrm{P^o}$	-14.90239	-0.00006	-0.00438	0.00047	-14.90636	-14.90593^{a}	-2.5		41.7	
1s2p3d $^4\mathrm{P^o}$	-15.07688	-0.00005	-0.00443	0.00047	-15.08089	$-15.08031^{\rm a}$	-11.4		-10.9	
						$-15.07819^{\rm b}$				
1s2p4d $^4\mathrm{P^o}$	-14.85437	-0.00006	-0.00436	0.00047	-14.85832	$-14.85850^{\rm a}$	-10.0		-11.9	
$\rm 1s2s2p^2~^5P^e$	-17.22001	-0.00009	-0.00496	0.00050	-17.22456	$-17.22517^{\rm e}$	22.2	22.20^{e}	2.4	2.42^{e}
						$-17.22514^{ m g}$		22.40^{g}		2.30^{g}
						$17.21861^{\rm h}$				
1s2s2p3p $^5\mathrm{Pe}$	-16.55480	-0.00006	-0.00498	0.00050	-16.55934	$-16.55999^{ m f}$	16.0	15.99^{f}	4.7	4.71^{f}
1s2s2p4p $^5\mathrm{P^e}$	-16.41696	-0.00005	-0.00498	0.00050	-16.42149	$-16.42226^{\rm f}$	15.3	15.36^{f}	5.1	5.18^{f}
1s2s2p3s $^5\mathrm{P^o}$	-16.62800	-0.00006	-0.00507	0.00050	-16.63263		-2.3		30.0	
1s2s2p4s $^5\mathrm{P^o}$	-16.44241	-0.00006	-0.00502	0.00050	-16.44699		-2.1		30.6	
1s2s2p3d $^5\mathrm{P^o}$	-16.49713	-0.00006	-0.00499	0.00050	-16.50168		-9.3		-9.1	
1s2s2p4d $^5\mathrm{P^o}$	-16.39520	-0.00006	-0.00499	0.00050	-16.39975		-8.8		-8.8	
$\rm 1s2s2p^23s\ ^6P^e$	-17.35154	-0.00008	-0.00496	0.00050	-17.35608		19.7		2.0	
$\rm 1s2s2p^24s~^6P^e$	-17.27379	-0.00009	-0.00493	0.00050	-17.27831		17.1		0.6	
$1s2s2p^23d$ $^6P^e$	-17.27692	-0.00009	-0.00492	0.00050	-17.28143		-2.2		-6.1	
$\rm 1s2s2p^24d\ ^6P^e$	-17.25041	-0.00009	-0.00492	0.00050	-17.25492		-2.5		-6.1	
$\rm 1s2s2p^23p~^6P^o$	-17.31296	-0.00008	-0.00493	0.00050	-17.31747		-1.8		9.6	
$1s2s2p^24p$ ⁶ P ^o	-17.26392	-0.00008	-0.00491	0.00050	-17.26841		-2.5		9.9	

a, 文献 [16] 实验; b, 文献 [7] Rayleigh-Ritz 变分; c, 文献 [34] Rayleigh-Ritz 变分; d, 文献 [20] Rayleigh-Ritz 变分;

e, 文献 [24] FCPC; f, 文献 [22] Rayleigh-Ritz 变分; g, 文献 [21] Rayleigh-Ritz 变分; h, 文献 [11] MCHF.

考虑自旋与轨道、自旋与其他轨道和自旋 与自旋的相互作用,表4还列出了B原子(离子) 高自旋里德伯系列激发态^{2S+1}P_J (S = 1.5, 2.0, 2.5)的精细结构劈裂. 对比的参考文献数据主要 来自于束箔实验^[16]、Rayleigh-Ritz变分的理论计 算值^[20-22,24,33]和FCPC的理论计算值^[24]. 通过 对比发现,除1s2p3s⁴P^o高自旋态的 $\nu_{2.5-1.5}$ 的精 细结构劈裂值40.6 cm⁻¹略超出实验的误差范围 (37.8±1.3) cm⁻¹,其余的计算值均在误差范围 之内. 本文计算的精细结构劈裂数据与文献[21, 22, 24]的理论计算值符合得很好,最大偏差约 4%.分析表4中精细结构劈裂值,可以发现1s2pnd ⁴P°,1s2s2pnd ⁵P°,1s2s2p²nd ⁶P^e (组态结构分 别为spd, sspd, ssppd)的精细结构劈裂值均为负, 1s2pnp ⁴P^e,1s2s2pnp ⁵P^e,1s2s2p²ns ⁶P^e (组态结 构分别为spp, sspp, ssspp)的精细结构劈裂值均为 正.对于里德伯系列激发态一般具有均匀变化的精 细结构劈裂值,因此,通过精细结构劈裂的变化能 够验证里德伯系列激发态标定的组态结构.

表5 B²⁺ 离子四重态 1s2sn⁴ S^e—1s2sn['] p⁴P^o, 1s2sns ⁴S^e—1s2pn['] l⁴P^o, 1s2pn p⁴S^e—1s2sn['] p⁴P^o, 2p²np ⁴S^o—1s2s2pn['] p⁵P^o, B ⁴P^e; B⁺ 离子五重态 1s2s2pn p⁵S^e—1s2s2pn['] l⁵P^o, 1s2p²np ⁵S^o—1s2s2pn['] p⁵P^e; B 原子六重态 1s2s2p3snp ⁶S^e—1s2s2p²n['] p⁶P^o, 1s2s2p3p3d ⁶S^e—1s2s2p²n['] p⁶P^o, 1s2s2p²np ⁶S^o—1s2s2p²n' l⁶P^e ($n \leq 4; n' \leq 4; l = s, d$) 的辐射跃迁振子强度 $f_{i \to k}$ 、 辐射跃迁概率 $A_{i \to k}$ (s⁻¹)、吸收振子强度 $f_{k \to i}$ 、吸收跃迁概率 $A_{k \to i}$ (s⁻¹) 和跃迁波长 λ (nm); 方括号中的数代表 10 的幂指数 Table 5. The radiative transition oscillator strength $f_{i \to k}$, radiative transition rate $A_{i \to k}$ (s⁻¹), absorb oscillator strength $f_{k \to i}$, absorption transition rate $A_{k \to i}$ (s⁻¹), and transition wavelength λ (nm) of the 1s2sns ⁴S^e—1s2s2pn['] 4P^o, 1s2sns ⁴S^e—1s2pn' l⁴P^o, 1s2pnp ⁴S^e—1s2sn' p⁴P^o, 2p²np⁴S^o—1s2pn' p⁴P^e transitions in B²⁺ ion; the 1s2s2pn p⁵S^e—1s2s2pn' l⁵P^o, 1s2p²np ⁵S^o—1s2s2pn' p⁵P^e transitions in B⁺ ion, and the 1s2s2p3snp ⁶S^e—1s2s2p²n' p⁶P^o, 1s2s2p3p3d ⁶S^e—1s2s2p²n' p⁶P^o, 1s2s2p²np ⁶S^o—1s2s2p²n' l⁶P^e ($n \leq 4; n' \leq 4; l = s, d$) transitions in B atom. The number in square brackets represents the power of 10.

上能级	下能级	$f_{i \to k}$	$A_{i \rightarrow k}$	$f_{k \to i}$	$A_{k \to i}$	λ
		f_l/f_v	A_l/A_v	f_l/f_v	A_l/A_v	
$1s2s3s$ $^{4}S^{e}$	1s2s2p ⁴ P ^o	1.37[-1]/1.37[-1]	3.41[9]/3.41[9]	4.58[-2]/4.59[-2]	1.14[9]/1.14[9]	51.892
						$51.8955 \pm 0.005^{a}, 51.895^{c}$
						$51.895 \pm 0.005^{\mathrm{b}}, 51.90^{\mathrm{d}}$
						51.87^{e}
1s2s3p ⁴ P ^o	$1s2s3s$ $^{4}S^{e}$	1.69[-1]/1.69[-1]	3.00[7]/3.00[7]	5.08[-1]/5.08[-1]	9.01[7]/9.01[7]	612.575
						$612.646^{\rm a}, 612.645^{\rm c}$
						$611.09^{\rm d}, 612.68 \pm 0.01^{\rm f}$
1s2s4p $^4\mathrm{P^o}$	1s2s3s $^4\mathrm{S^e}$	3.83[-2]/3.85[-2]	1.49[8]/1.50[8]	1.15[-1]/1.16[-1]	4.47[8]/4.50[8]	130.854
						$130.866^{\rm a}, 130.868^{\rm c}$
1s2p3s $^4\mathrm{P^o}$	1s2s3s $^4\mathrm{S^e}$	5.31[-2]/5.31[-2]	6.31[7]/6.32[7]	1.59[-1]/1.59[-1]	1.89[8]/1.89[8]	236.177
						236.111 ± 0.005^{a}
						$236.155^{\rm c}, 235.81^{\rm d}$
1s2p3d $^4\mathrm{P^o}$	1s2s3s $^4\mathrm{S^e}$	1.12[-2]/1.13[-2]	3.53[7]/3.54[7]	3.37[-2]/3.38[-2]	1.06[8]/1.06[8]	145.482
1s2s4s $^4\mathrm{S^e}$	1s2s2p $^4\mathrm{P^o}$	9.30[-3]/9.17[-3]	4.29[8]/4.23[8]	3.10[-3]/3.06[-3]	1.43[8]/1.41[8]	38.011
						$38.014 \pm 0.005^{\rm a}$
						$38.014 \pm 0.005^{\rm g}$
						$38.0166^{\circ}, 38.014^{d}, 38.00^{e}$
1s2s4s $^4\mathrm{S^e}$	1s2s3p $^4\mathrm{P^o}$	1.79[-1]/1.79[-1]	3.49[8]/3.50[8]	5.97[-2]/5.99[-2]	1.16[8]/1.16[8]	185.029
						$185.082 \pm 0.005^{\rm a}$
						$185.08 \pm 0.02^{\rm b}$
						$185.084^{\rm c}, 185.09^{\rm d}$
1s2s4p $^4\mathrm{P^o}$	1s2s4s $^4\mathrm{Se}$	2.41[-1]/2.41[-1]	5.85[6]/5.83[6]	7.23[-1]/7.22[-1]	1.75[7]/1.75[7]	1652.643
1s2s4s $^4\mathrm{S^e}$	1s2p3s $^4\mathrm{Po}$	1.90[-2]/1.85[-2]	1.00[7]/9.72[6]	6.33[-3]/6.14[-3]	3.34[6]/3.24[6]	356.772
1s2p4s $^4\mathrm{P^o}$	1s2s4s $^4\mathrm{S^e}$	4.58[-2]/4.37[-2]	4.08[7]/3.89[7]	1.37[-1]/1.61[-1]	1.22[8]/1.17[8]	272.688
1s2p4d ${}^4\mathrm{P^o}$	1s2s4s ${}^{4}\mathrm{S}^{\mathrm{e}}$	2.67[-3]/2.54[-3]	3.94[6]/3.76[6]	8.00[-3]/7.62[-3]	1.18[7]/1.13[7]	211.795
1s2p3p $^4\mathrm{Se}$	1s2s2p $^4\mathrm{P^o}$	6.26[-2]/6.27[-2]	2.57[9]/2.58[9]	2.09[-2]/2.09[-2]	8.58[8]/8.61[8]	40.247
						$40.24^{\rm d}, 40.253 \pm 0.003^{\rm g}$
1s2p3p ${}^{4}\mathrm{S}^{\mathrm{e}}$	1s2s3p $^4\mathrm{P^o}$	1.64[-1]/1.62[-1]	1.69[8]/1.67[8]	5.46[-2]/5.41[-2]	5.63[7]/5.58[7]	253.623
						$253.580 \pm 0.005^{\rm a}, 253.580^{\rm c}$

表5(续)

上能级	下能级	$f_{i ightarrow k}$	$A_{i \to k}$	$f_{k ightarrow i}$	$A_{k \to i}$	- λ
	1 100000	f_l/f_v	A_l/A_v	f_l/f_v	A_l/A_v	
1s2p3p ${}^{4}\mathrm{S}^{\mathrm{e}}$	1s2p3s ${}^{4}\mathrm{P}^{\mathrm{o}}$	1.56[-1]/1.56[-1]	1.87[7]/1.87[7]	5.20[-2]/5.19[-2]	6.23[6]/6.21[6]	745.596
1s2p4s ${}^{4}\mathrm{P}^{\mathrm{o}}$	1s2p3p $^4\mathrm{S}^\mathrm{e}$	2.37[-2]/2.27[-2]	4.16[7]/3.99[7]	7.11[-2]/6.81[-2]	1.25[8]/1.20[8]	194.974
1s2p3d $^4\mathrm{P^o}$	1s2p3p $^4\mathrm{S^e}$	1.59[-1]/1.60[-1]	1.79[7]/1.79[7]	4.78[-1]/4.79[-1]	5.37[7]/5.38[7]	770.172
1s2p4d $^4\mathrm{P^o}$	1s2p3p $^4\mathrm{S^e}$	1.02[-1]/1.04[-1]	2.61[8]/2.65[8]	3.07[-1]/3.12[-1]	7.83[8]/7.95[8]	162.274
1s2p4p $^4\mathrm{S}^\mathrm{e}$	1s2s2p $^4\mathrm{P^o}$	1.94[-2]/1.93[-2]	1.20[9]/1.19[9]	6.47[-3]/6.42[-3]	3.99[8]/3.97[8]	32.856
						$32.895 \pm 0.005^{\rm a}, 32.8934^{\rm c}$
						$32.87^{\rm d}, 32.895 {\pm} 0.006^{\rm g}$
						$32.84{\pm}0.02^{\rm h}$
1s2p4p $^4\mathrm{S}^\mathrm{e}$	1s2s3p $^4\mathrm{P^o}$	8.94[-3]/9.44[-3]	5.41[7]/5.71[7]	2.98[-3]/3.15[-3]	1.80[7]/1.90[7]	104.91
1s2p4p $^4\mathrm{S^e}$	1s2s4p $^4\mathrm{P^o}$	3.64[-2]/3.17[-2]	3.00[8]/2.61[8]	1.21[-2]/1.06[-2]	1.00[7]/8.70[6]	283.902
1s2p4p $^4\mathrm{S^e}$	1s2p3s ${}^{4}\mathrm{P}^{\mathrm{o}}$	3.29[-2]/3.23[-2]	1.05[8]/1.05[8]	1.10[-2]/1.08[-2]	3.51[7]/3.45[7]	144.293
1s2p4p ${}^{4}\mathrm{S}^{\mathrm{e}}$	1s2p3d ${}^{4}\mathrm{P^{o}}$	1.57[-1]/1.56[-1]	1.93[8]/1.92[8]	5.24[-2]/5.19[-2]	6.44[7]/6.38[7]	233.061
						$234.689 \pm 0.005^{a}, 234.688^{c}$
$2p^3 \ ^4S^o$	$1s2p^2 \ ^4P^e$	3.24[-1]/3.24[-1]	8.21[11]/8.22[11]	1.08[-1]/1.08[-1]	2.74[11]/2.74[11]	5.129
		$3.24[-1]^{i}$	$8.21[11]^{i}$			$5.124 \pm 0.004^{\rm a}$
						$5.124^{\rm c}, 5.1287^{\rm i}$
$2p^3 {}^4S^o$	1s2p3p ⁴ P ^e	3.29[-3]/3.28[-3]	6.76[9]/6.76[9]	1.09[-3]/1.09[-3]	2.25[9]/2.25[9]	5.69
$2p^3 \ ^4S^o$	1s2p4p ⁴ P ^e	8.37[-4]/8.48[-4]	1.62[9]/1.64[9]	2.79[-4]/2.83[-4]	5.40[8]/5.46[8]	5.872
$2p^23p$ $^4S^o$	$1s2p^2 \ ^4P^e$	2.29[-3]/2.28[-3]	7.28[9]/7.22[9]	7.62[-4]/7.56[-4]	2.43[9]/2.41[9]	4.575
$2p^23p$ $^4S^o$	1s2p3p ⁴ P ^e	2.55[-1]/2.55[-1]	6.76[9]/6.76[9]	8.51[-2]/8.50[-2]	2.25[11]/2.25[11]	5.017
$2p^23p$ ⁴ S ^o	1s2p4p ⁴ P ^e	9.79[-4]/9.42[-4]	2.45[9]/2.36[9]	3.26[-4]/3.14[-4]	8.18[8]/7.87[8]	5.158
$2p^24p \ ^4S^o$	$1s2p^2 {}^4P^e$	1.68[-3]/1.67[-3]	5.63[9]/5.62[9]	5.59[-4]/5.58[-4]	1.88[9]/1.87[9]	4.457
$2p^24p$ ⁴ S ^o	1s2p3p ⁴ P ^e	4.53[-4]/4.59[-4]	1.27[9]/1.29[9]	1.51[-4]/1.53[-4]	4.24[8]/4.29[8]	4.874
$2p^24p \ ^4S^o$	1s2p4p ⁴ P ^e	2.49[-1]/2.48[-1]	6.61[11]/6.60[11]	8.29[-2]/8.27[-2]	2.20[11]/2.20[11]	5.008
1s2s2p3p ⁵ S ^e	1s2s2p3s ⁵ P ^o	2.36[-1]/2.31[-1]	3.35[7]/3.28[7]	7.87[-2]/7.70[-2]	1.12[7]/1.09[7]	688.268
1s2s2p4s ⁵ P ^o	1s2s2p3p ⁵ S ^e	1.24[-2]/1.39[-2]	5.67[6]/6.38[6]	3.71[-2]/4.17[-2]	1.70[7]/1.91[7]	381.475
1s2s2p3d ⁵ P ^o	1s2s2p3p ⁵ S ^e	2.30[-1]/2.24[-1]	3.10[7]/3.02[7]	6.91[-1]/6.73[-1]	9.31[7]/9.06[7]	703.681
1s2s2p4d ⁵ P ^o	1s2s2p3p ⁵ S ^e	2.92[-2]/2.71[-2]	2.61[7]/2.42[7]	8.77[-2]/8.13[-2]	7.83[7]/7.25[7]	273.358
$1s2s2p4p$ ${}^{5}S^{e}$	1s2s2p3s ⁵ P ^o	1.33[-2]/1.27[-2]	1.86[7]/1.78[7]	4.43[-3]/4.24[-3]	6.21[6]/5.93[6]	218.498
$1s2s2p4p$ ${}^{5}S^{e}$	1s2s2p4s ⁵ P ^o	3.83[-1]/3.29[-1]	5.91[6]/5.52[6]	1.28[-1]/1.09[-2]	1.97[6]/1.84[6]	1990.536
$1s2s2p4p$ ${}^{5}S^{e}$	1s2s2p3d ⁵ P°	2.26[-1]/2.34[-1]	4.38[7]/4.54[7]	7.53[-2]/7.80[-2]	1.46[7]/1.51[7]	587.308
1s2s2p4d ⁵ P ^o	1s2s2p4p ⁵ S ^e	3.28[-1]/3.26[-1]	7.13[6]/6.14[6]	1.13[0]/9.77[-1]	2.14[7]/1.84[7]	1871.185
$1s2s2p1d^{-1}$	$1s2s2p1p^{-5}$	4 21[-1]/4 22[-1]	1.59[9]/1.59[9]	1.10[0]/0.11[1] 1.40[-1]/1.41[-1]	5.30[8]/5.31[8]	132 409
10 - p	15=6-р 1		$1.60[9]/1.60[9]^{j}$	$1.10[-1]/1.41[-1]^{j}$	0.00[0]/0.01[0]	132392 ± 0.007 ^g 132386 ^j
$1s^2n^23n^5S^{0}$	1s2s2p ² ⁵ P ^e	8 43[-3]/8 36[-3]	2.42[8]/2.48[8]	2.81[-3]/2.88[-3]	8 06[7]/8 25[7]	48 175
$1s^2p^23p^5S^0$	$1_{2}^{2}_{2}^{2}_{2}^{2}_{2}^{2}_{3}^{2}_{3}^{5}_{2}^{1}_{2}^{6}_{2$	2.24[-1]/2.17[-1]	5.60[8]/5.42[8]	7.46[-2]/7.22[-2]	1.87[8]/1.81[8]	162 396
$1s^2p^24p^5S^0$	$1_{2}^{2}_{2}^{2}_{2}^{2}_{2}^{2}_{2}^{5}_{2}^{2}_{2}^{6}^{6}_{2}^{6$	2.24[-1]/2.11[-1] 4.35[-3]/4.40[-3]	1.61[8]/1.63[8]	1.40[-2]/1.22[-2] 1.45[-3]/1.47[-3]	5 38[7]/5 44[7]	42 375
$1s^2p^24p^5S^0$	16262p4p 5Pe	4.35[-3]/4.40[-3] 2 40[-1]/2 39[-1]	5.68[8]/5.67[8]	1.49[-3]/1.47[-3] 8.00[-2]/7.97[-2]	1.90[8]/1.89[8]	42.373
1_{2}^{2}	$1_{2}^{2}_{2}^{2}_{2}^{2}_{2}^{2}_{2}^{6}_{1}^{6}_{1}^{0}_{2$	2.40[-1]/2.39[-1]	5.06[8]/5.01[8]	3.00[-2]/1.31[-2]	1.90[8]/1.89[8]	95 149
10202p302p 6Ce	$1e^{2e^{2}n^{2}/n} = 6D^{0}$	5.50[-2]/0.45[-2] 5.19[-3]/5.26[-2]	3.00[0]/0.91[0] 3.03[7]//.05[7]	2.12[-2]/2.14[-2] 1 73[-3]/1 70[-9]	1.30[0]/1.37[0] 1.31[7]/1.25[7]	03.140
10202p2c4p 6Ce	10202p 4p · P ·	1.68[-9]/0.50[-9]	9.99[1]/4.09[1]	5.61 3]/5.56 2]	1.01[7]/1.00[7]	71 071
16262p354p ~ 5°	16262p ² 4~ 6D0	1.00[-2]/1.07[-2]	2.10[0]/2.10[8]	0.01[-3]/0.00[-3]	1.20[1]/1.10[1]	77 800
1s2s2p3s4p ~S~	1s2s2p-4p °P°	(.12[-2]/(.21[-2])	(.81[8]/(.90[8]	2.37[-2]/2.40[-2]	2.00[8]/2.03[8]	(1.899
is2s2p~3d °S°	1s2s2p-3p °P°	9.71[-2]/9.39[-2]	1.38[9]/1.34[9]	3.24[-2]/3.13[-2]	4.01[8]/4.45[8]	68.468

表 5	(续)
-----	-----

上能级	下能级	$\frac{f_{i \to k}}{f_l / f_v}$	$\frac{A_{i \to k}}{A_l / A_v}$	${f_{k ightarrow i}\over f_l/f_v}$	$\frac{A_{k \to i}}{A_l / A_v}$	λ
$1s2s2p^24p$ ⁶ P ^o	1s2s2p ² 3d 6 S ^e	3.80[-3]/3.43[-3]	4.63[7]/4.17[7]	1.27[-3]/1.14[-3]	1.54[7]/1.39[7]	73.917
$\rm 1s2s2p^23s\ ^6P^e$	$1s2s2p^3$ ⁶ S ^o	5.00[-2]/5.07[-2]	1.81[8]/1.84[8]	1.50[-1]/1.52[-1]	5.44[8]/5.51[8]	135.747
$\rm 1s2s2p^24s\ ^6P^e$	$1s2s2p^3$ ⁶ S ^o	1.09[-3]/1.08[-3]	5.99[6]/5.95[6]	3.27[-3]/3.25[-3]	1.80[7]/1.79[7]	110.211
1s2s2p^23d $^6\mathrm{P^e}$	$1s2s2p^3$ ⁶ S ^o	5.45[-2]/5.48[-2]	2.95[8]/2.96[8]	1.64[-1]/1.64[-1]	8.85[8]/8.89[8]	111.049
1s2s2p ² 4d $^6\mathrm{Pe}$	$1s2s2p^3$ ⁶ S ^o	2.28[-2]/2.26[-2]	1.40[8]/1.39[8]	6.84[-2]/6.78[-2]	4.19[8]/4.16[8]	104.309
$\rm 1s2s2p^23p~^6S^o$	$\rm 1s2s2p^23s\ ^6P^e$	4.06[-1]/5.01[-1]	2.61[7]/3.21[7]	1.35[-1]/1.67[-1]	8.69[6]/1.07[7]	1018.631
$\rm 1s2s2p^24s\ ^6P^e$	$\rm 1s2s2p^23p~^6S^o$	1.99[-1]/1.93[-1]	7.00[6]/6.77[6]	5.98[-1]/5.79[-1]	2.10[7]/2.03[7]	1379.036
$1\mathrm{s}2\mathrm{s}2\mathrm{p}^23\mathrm{d}~^6\mathrm{P^e}$	$\rm 1s2s2p^23p~^6S^o$	2.05[-1]/2.09 $[-1]$	5.90[6]/6.03[6]	6.15[-1]/6.28[-1]	1.77[7]/1.81[7]	1522.840

a, 文献 [16] 实验; b, 文献 [8] 实验; c, 文献 [16] 理论; d, 文献 [7] Rayleigh-Ritz 变分; e, 文献 [27] Hylleraas 方法; f, 文献 [10] 实验; g, 文献 [9] 实验; h, 文献 [6] 实验; i, 文献 [5] Rayleigh-Ritz 变分; j, 文献 [22] Rayleigh-Ritz 变分.

表5列出了硼原子(离子)内壳层激发高 自旋态1s2sns ⁴S^e—1s2sn'p ⁴P^o, 1s2sns ⁴S^e — $1s2pn'l {}^{4}P^{o}$, $1s2pnp {}^{4}S^{e}$ — $1s2sn'p {}^{4}P^{o}$, $2p^{2}np {}^{4}S^{o}$ - 1s2pn'p ⁴P^e; 1s2s2pnp ⁵S^e - 1s2s2pn'l ⁵P^o, $1{\rm s2p^2}n{\rm p}~{\rm ^5S^o}-1{\rm s2s2p}n'{\rm p}~{\rm ^5P^e};$ $1{\rm s2s2p3snp}~{\rm ^6S^e} 1s2s2p^2n'p$ ⁶P°, 1s2s2p3p3d ⁶S^e— $1s2s2p^2n'p$ ⁶P°, $1s2s2p^2np \ ^6S^{o} - 1s2s2p^2n'l \ ^6P^{e} \ (n \leq 4; n' \leq 4;$ l = s, d)的电偶辐射跃迁振子强度、辐射跃迁概率、 吸收振子强度、吸收跃迁概率和跃迁波长. 表6列 出了硼原子(离子)内壳层激发高自旋态1s2pnp ${}^{4}\mathrm{P^{e}} - 1\mathrm{s}2\mathrm{s}n'\mathrm{p} {}^{4}\mathrm{P^{o}}, 1\mathrm{s}2\mathrm{p}n\mathrm{p} {}^{4}\mathrm{P^{e}} - 1\mathrm{s}2\mathrm{p}n'l {}^{4}\mathrm{P^{o}};$ $1s2s2pnp {}^{5}P^{e} - 1s2s2pn' l {}^{5}P^{o}; 1s2s2p^{2}nl {}^{6}P^{e} -$ $1s2s2p^2n'p$ ⁶P^o ($n \leq 4; n' \leq 4; l = s, d$)的电偶极 辐射跃迁振子强度、辐射跃迁概率和跃迁波长.在 表5和表6中,本文给出了利用长度规范和速度规 范计算的跃迁振子强度和跃迁概率. 根据两种规范 计算结果的一致性程度,可判断计算的波函数的精 确程度.为了便于比较两种规范计算结果的一致 性,图2给出了硼原子(离子)高自旋态电偶极辐射 跃迁振子强度的两种规范 f_l 和 f_v 的对比情况.从 图2可以看出,两者比值的对数取值 $(\log_{10}(f_l/f_v))$ 均位于[-0.1,0.1]范围. 在振子强度 f1小于 0.3 的 范围,两种规范符合得非常好,大多数位于[-0.05, 0.05]范围. 在 f_l大于 0.3 的范围, 两种规范一致性 略差. 总体上, 本文计算的辐射跃迁振子强度的 两种规范的计算结果显示出良好的一致性,从而 证明了计算的波函数是比较精确的. 表5和表6还 列出了文献[5,7,22]计算的B离子高自旋态电偶 极辐射跃迁振子强度和跃迁概率,本文的计算结 果和文献 [5, 7, 22] 的理论计算结果符合得很好. 如对于B²⁺离子高自旋态2p³ 4S^o—1s2p² 4P^e的 跃迁,本文的计算振子强度和跃迁概率值分别为

0.324 和 8.21 × 10¹¹ s⁻¹, 和文献 [5] 的理论值完全 一致. 表5和表6的最后一列给出了本文计算的B 原子(离子)高自旋态电偶极辐射跃迁波长和相关 实验数据^[6,8-10,16]及其他理论计算值^[5,7,16,22,27]. 图3给出了本文计算的B原子(离子)高自旋态辐 射跃迁波长和实验数据^[6,8-10,16]的相对偏差.从 图 3 可以看出, 1s2p4p ⁴S^e—1s2p3d ⁴P^o 和 1s2p4d ⁴P°—1s2p3p ⁴P^e两个跃迁波长值与实验的相对偏 差较大(约为0.7%和0.3%),其余跃迁波长的相对 偏差均小于0.15%. 对比本文计算的波长与其他理 论计算值^[5,7,16,22,27],相对偏差均小于0.7%.因此, 整体上本文计算的B原子(离子)高自旋态电偶极 辐射跃迁的波长与实验和其他理论结果符合得较 好. 对于B原子(离子)内壳层激发五重态和六重 态, 尤其是高n的里德伯系列激发态, 相关的实验 和理论的辐射跃迁数据还很少, 需要进一步研究. 本文的理论计算结果可为将来的实验和光谱谱线 标定提供有价值的理论参考数据.

图 2 本文计算的 B 原子 (离子) 电偶极跃迁的振子强度 的长度规范 f₁ 和速度规范 f₂ 的比较

Fig. 2. Comparison of the calculated oscillator strengths in length gauge f_l and velocity gauge f_v in this work.

表 6 B²⁺ 离子四重态 1s2ppp ⁴P^e—1s2sn'p ⁴P^o, 1s2ppp ⁴P^e—1s2pn'l ⁴P^o; B⁺ 离子五重态 1s2s2ppp ⁵P^e—1s2s2pn'l ⁵P^o; B 原子六重态 1s2s2p²nl ⁶P^e—1s2s2p²n'p ⁶P^o ($n \leq 4$; $n' \leq 4$; l = s, d) 的电偶极跃迁振子强度 f_l/f_v , 跃迁概率 A_l/A_v (s⁻¹) 和跃迁波长 λ (nm); 方括号中的数代表 10 的幂指数

Table 6. The electric dipole transition oscillator strength f_l/f_v , transition rate A_l/A_v (s⁻¹), and transition wavelength λ (nm) of the 1s2pnp ⁴P^e-1s2sn'p ⁴P^o, 1s2pnp ⁴P^e-1s2pn'l ⁴P^o transitions in B²⁺ ion, the 1s2s2pnp ⁵P^e-1s2s2pn'l ⁵P^o transitions in B⁺ ion, and the 1s2s2p²nl ⁶P^e-1s2s2p²n'p ⁶P^o transitions in B atom ($n \leq 4$; $n' \leq 4$; l = s, d). The number in square brackets represents the power of 10.

1.46.677	工业加	振子强度	跃迁概率	,
上能级	下能级	f_l/f_v	A_l/A_v	λ
$1s2p^2 {}^4P^e$	1s2s2p ⁴ P ^o	1.98[-1]/1.98[-1]	4.54[8]/4.54[8]	170.127
				$170.199 \pm 0.005^{\rm a}, 170.217 \pm 0.005^{\rm b}$
				$170.199^{\circ}, 170.18^{d}$
1s2s3p ⁴ P ^o	$1s2p^2 \ ^4P^e$	1.08[-3]/1.06[-3]	1.63[7]/1.60[7]	66.554
				$66.552 \pm 0.005^{\rm a}, 66.554^{\rm c}, 66.54^{\rm d}$
1s2s4p ⁴ P ^o	$1s2p^2 {}^4P^e$	2.64[-2]/2.64[-2]	7.80[8]/7.79[8]	47.540
				$47.542 \pm 0.004^{\rm a}, 47.539^{\rm c}$
1s2p3s ⁴ P ^o	$1s2p^2 \ ^4P^e$	1.12[-1]/1.12[-1]	2.33[9]/2.33[9]	56.731
				$56.730 \pm 0.005^{\rm b}, 56.71^{\rm d}$
1s2p4s ⁴ P ^o	$1s2p^2 \ ^4P^e$	1.69[-2]/1.67[-2]	6.53[8]/6.46[8]	41.499
				$41.50 \pm 0.01^{\rm b}$
1s2p3d ⁴ P ^o	$1s2p^2 {}^4P^e$	1.98[-1]/1.98[-1]	5.42[9]/5.42[9]	49.342
				$49.340 \pm 0.003^{\rm a}, 49.342 \pm 0.05^{\rm b}$
				49.343 ^c
$1s2p4d \ ^4P^o$	$1s2p^2 \ ^4P^e$	4.80[-2]/4.86[-2]	2.02[9]/2.05[9]	39.759
-	-			$39.791 \pm 0.004^{\rm a}, 39.786^{\rm c}$
1s2p3p ⁴ P ^e	1s2s2p ⁴ P ^o	4.36[-2]/4.36[-2]	1.83[9]/1.83[9]	39.837
	-	,		$39.841 \pm 0.003^{\rm a}, 39.840^{\rm c}$
				$39.841 \pm 0.003^{ m e}$
1s2p3p ⁴ P ^e	1s2s3p ⁴ P ^o	6.92[-2]/6.89[-2]	8.09[7]/8.05[7]	238.165
	-	,		$238.086 \pm 0.005^{a}, 238.086^{c}$
				$238.14 \pm 0.02^{\rm f}, 238.2 \pm 0.1^{\rm g}$
1s2s4p ⁴ P ^o	1s2p3p ⁴ P ^e	7.93[-3]/7.97[-3]	1.75[6]/1.75[6]	552.216
1s2p3p ⁴ P ^e	1s2p3s ⁴ P ^o	2.34[-1]/2.35[-1]	3.97[7]/3.98[7]	626.128
1s2p4s ⁴ P ^o	1s2p3p ⁴ P ^e	1.51[-1]/1.51[-1]	2.40[8]/2.39[8]	205.213
1	1 1	,		$205.351 \pm 0.006^{a}, 205.340^{c}$
1s2p3d ⁴ P ^o	1s2p3p ⁴ P ^e	3.23[-2]/3.20[-2]	2.35[6]/2.33[6]	959.229
1s2p4d ⁴ P ^o	1s2p3p ⁴ P ^e	4.69[-2]/4.88[-2]	1.10[8]/1.14[8]	168.709
F			[0]/[0]	169.221 ± 0.005^{a} , 169.221^{c}
1s2p4p ⁴ P ^e	1s2s2p ⁴ P ^o	1.57[-2]/1.56[-2]	9.79[8]/9.75[8]	32.716
io-pip i	10 - 0 - p 1	$1.545[-2]^{d}$	0110[0]/0110[0]	32.721 ± 0.004^{a} , 32.7187^{c}
		1010[_]		32.71^{d} , 32.721 ± 0.004^{e}
				$32.71 \pm 0.02^{\text{g}}$
1s2p4p ⁴ P ^e	1s2s4p ⁴ P ^o	4.38[-2]/4.38[-2]	3.87[7]/3.87[7]	273.736
1s2p4p ⁴ P ^e	1s2p3s ⁴ P ^o	4.15[-2]/4.17[-2]	1.38[8]/1.39[8]	141.620
io-pip i	10-000		100[0]/ 100[0]	141.640 ± 0.009^{a} , 141.64 ± 0.02^{b}
				$141.598^{\circ}, 141.63^{\circ}$
1s2p4p ⁴ P ^e	1s2p4s ⁴ P ^o	322[-1]/321[-1]	7 38[6]/7 36[6]	1691 918
$1s^2p^4p^{-4}P^e$	$1s^2p^{13} + 4P^0$	1.81[-2]/1.84[-2]	2.36[7]/2.38[7]	226 166
1s2p4p 1 1s2s2n3s ⁵ P ⁰	1s2pou 1 $1s2s2n^2$ ⁵ P ^e	1.01[-2]/1.04[-2] 1.17[-1]/1.17[-1]	2.30[1]/2.30[1] 1 31[9]/1 31[9]	76 974
19292p35 1	16262p 1 $1e2e2p3e$ $5p^{0}$	3 12[-1]/3 16[-1]	5.49[7]/5.51[7]	621 686
1s2s2p3p 1	1s2s2p3s 1 1s2s2p3s 5P0	5.12[-1]/5.10[-1] 7 98[-3]/8 82[-3]	1.15[7]/1.26[7]	215 797
1s2s2p+p 1	1s2s2p0s 1 1s2s2p2 5De	1.30[-0]/0.02[-0] 1.48[-0]/1.48[-0]	2.87[8]/2.88[8]	58 507
10202p40 1	10202p 1	2.40[-2]/1.40[-2] 2.10[-1]/2.10[-1]	2.01[0]/2.00[0] 8.53[7]/8.59[7]	405 548
10202p48 r	10202p3p 5D0	2.10[-1]/2.10[-1]	0.00[1]/0.02[1] 0.37[6]/1.04[7]	400.040 1786 708
10202p4p r	18282p48 r 1e2e2p2 5De	4.50[-1]/4.50[-1]	$\frac{3.31[0]}{1.04[1]}$ $\frac{3.31[0]}{9.44[0]}$	63 030
19797DOA L	10404U E	1.401 = 11/1.401 = 11	4.40 01/4.4410	(1.), (1.)(1

123101-10

表6(续)
-----	----

上能级	下能级	振子强度 f_l/f_v	跃迁概率 A_l/A_v	λ	
1s2s2p3d ${}^{5}P^{o}$	1s2s2p3p ${}^{5}\mathrm{P}^{\mathrm{e}}$	8.66[-2]/8.69[-2]	9.25[6]/9.29[6]	790.207	
1s2s2p4p ${}^{5}\mathrm{P}^{\mathrm{e}}$	1s2s2p3d ${}^{5}\mathrm{P}^{\mathrm{o}}$	1.06[-2]/1.00[-2]	2.18[6]/2.07[6]	568.193	
1s2s2p4d ${}^{5}\mathrm{P}^{\mathrm{o}}$	$1s2s2p^2$ ⁵ P ^e	5.10[-2]/4.95[-2]	1.11[9]/1.08[9]	55.241	
1s2s2p4d $^5\mathrm{P^o}$	1s2s2p3p $^{5}\mathrm{P}^{\mathrm{e}}$	3.19[-2]/3.08[-2]	2.61[7]/2.52[7]	285.503	
1s2s2p4d $^5\mathrm{P^o}$	1s2s2p4p $^5\mathrm{Pe}$	1.47[-1]/1.47[-1]	2.23[6]/2.23[6]	2095.831	
$1s2s2p^23p$ ⁶ P ^o	$1s2s2p^23s$ ⁶ P ^e	3.09[-1]/2.82[-1]	1.46[7]/1.33[7]	1180.092	
$1s2s2p^24s$ ⁶ P ^e	$1s2s2p^23p$ ⁶ P ^o	3.64[-2]/3.47[-2]	1.79[6]/1.72[6]	1163.518	
$1s2s2p^24p$ ⁶ P ^o	$1s2s2p^24s$ ⁶ P ^e	2.89[-1]/2.80[-1]	1.07[6]/1.03[6]	4602.359	
$1s2s2p^23d$ ⁶ P ^e	$1s2s2p^23p$ ⁶ P ^o	3.44[-1]/3.10[-1]	1.43[7]/1.29[7]	1264.244	

a, 文献 [16] 实验; b, 文献 [8] 实验; c, 文献 [16] 理论; d, 文献 [7] Rayleigh-Ritz 变分; e, 文献 [9] 实验; f, 文献 [10] 实验; g, 文献 [6] 实验.

图 3 (网刊彩色)本文的计算 B 离子内壳层激发高自旋态 电偶极跃迁波长和实验数据 [6,8-10,16] 对比的相对偏差 Fig. 3. (color online) Relative deviation of the calculated electric dipole transition wavelength and the experimental data [6,8-10,16] for the core-excited highspin states of B ion.

4 结 论

本文采用多组态相互作用 Rayleigh-Ritz 变分 方法, 计算了 B 原子 (离子) 内壳层激发高自旋态里 德伯系列的非相对论能量和精细结构劈裂, 并利用 截断变分方法计算了高 *l* 系列分波的非相对论能量 修正.考虑了相对论修正、质量极化效应、QED 效 应和高阶相对论效应, 得到了精确的相对论能量. 利用精确计算的波函数, 对 B 原子 (离子) 高自旋态 系列电偶极辐射跃迁振子强度、跃迁概率、跃迁波 长展开计算.跃迁振子强度的长度规范和速度规范 结果总体上显示出良好的一致性, 从而证明本文计 算的波函数是比较精确的.相比文献中的理论数 据, 本文计算的 B 原子 (离子) 内壳层激发高自旋态 的能级和辐射跃迁数据与实验数据符合得更好. 对 于一些B原子和B⁺离子的高自旋激发态,相关的 能级和跃迁数据为首次报道.本文的理论计算结果 可为相关的实验光谱线的标定提供有价值的理论 参考数据.

参考文献

- Johansson S G, Litzén U, Kasten J, Kock M 1993 Astrophys. J. 403 L25
- [2] Lin B, Berry H G, Shibata T, Livingston A E, Garnir H, Bastin T, Désesquelles J 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2797
- [3] Gu M F, Beiersdorfer P, Lepson J K 2011 Astrophys. J. 732 91
- [4] Martinson I, Bickel W S, Olrne A 1970 J. Opt. Soc. Am.
 60 1213
- [5] Agentoft M, Andersen T, Chung K T 1984 J. Phys. B: At. Mol. Opt. Phys. 17 L433
- [6] Agentoft M, Andersen T, Chung K T, Davis B F 1985 *Phys. Scr.* **31** 74
- [7] Chung K T, Bruch R, Träbert E, Heckmann P H 1984 *Phys. Scr.* 29 108
- [8] Baudinet-Robinet Y, Garnir H P, Dumont P D 1986 Phys. Rev. A 34 4722
- Baudinet-Robinet Y, Dumont P D, Garnir H P, Träbert E, Heckmann P 1987 Z. Phys. D: Atoms, Molecules and Clusters 7 47
- [10] Mannervik S, Cederquist H, Martinson I 1986 Phys. Rev. A 34 231
- [11] Mannervik S, Cederquist H, Martinson I, Brage T, Fischer C F 1987 Phys. Rev. A 35 3136
- [12] Jannitti E, Nicolosi P, Tondello G 1984 Physica C 124 139
- [13] Lynam W G, Carroll P K, Costello J T, Evans D, O'Sullivant G 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3963
- [14] Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 *Phys. Scr.* **71** 489

- [15] Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544
- [16] Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301
- [17] Fuhr J R, Wiese W L 2010 J. Phys. Chem. Ref. Data 39 013101
- [18] Müller A, Schippers S, Phaneuf R A, Scully S W J, Aguilar A, Cisneros C, Gharaibeh M F, Schlachter A S, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135201
- [19] Beck D R, Nicolaides C A 1977 Phys. Lett. A 61 227
- [20]~ Gou B C, Deng W S 2000 Phys. Rev. A ${\bf 62}~032705$
- [21] Yang H Y, Chung K T 1995 Phys. Rev. A ${\bf 51}$ 3621
- [22] Gou B C, Wang F 2004 Phys. Rev. A 69 042513
- [23] Qu L H, Wang Z W, Li B W 1998 J. Phys. B: At. Mol. Opt. Phys. 31 2469
- [24] Qu L H, Wang Z W, Li B W 1998 Chin. Phys. Lett. 15 329

- [25] Sun Y, Liu D D, Mei M F, Zhang C M, Han C, Hu F, Gou B C 2015 J. Quant. Spectrosc. Radiat. Transfer 167 145
- [26] Brooks R L, Hardis J E, Berry H G, Curtis L J, Cheng K T, Ray W 1980 Phys. Rev. Lett. 45 1318
- [27] Larsson S, Crossley R 1982 Int. J. Quantum Chem. 22 837
- [28] Ritz W, Reine J 1908 Agnew. Math. 35 1
- [29] Chung K T 1979 Phys. Rev. A 20 1743
- [30] Davis B F, Chung K T 1984 Phys. Rev. A 29 1878
- [31] Drake G W F 1982 Adv. Mol. Phys. 18 399
- [32] Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Désequelles J, Savukov I 2003 Phys. Rev. A 67 062507
- [33] Sun Y, Gou B C, Zhu J J 2010 Acta Phys. Sin. 59 3878
 (in Chinese) [孙言, 苟秉聪, 朱婧晶 2010 物理学报 59 3878]
- [34] Chung K T, Bruch R 1983 Phys. Rev. A 28 1418

Energy levels and radiative transitions of the core-excited high-spin states in boron atom (ion)*

Qian Xin-Yu¹⁾ Sun Yan^{1)†} Liu Dong-Dong¹⁾ Hu Feng¹⁾ Fan Qiu-Bo¹⁾ Gou Bing-Cong²⁾

(School of Mathematic and Physical Science, Xuzhou University of Technology, Xuzhou 221018, China)
 (School of Physics, Beijing Institute of Technology, Beijing 100081, China)

(Received 25 November 2016; revised manuscript received 18 April 2017)

Abstract

Energy levels of the core-excited high-spin Rydberg states (^{4,5,6}L, L = S, P) in boron atom (ion) are calculated by the Rayleigh-Ritz variation method with using large-scale multi-configuration wave functions. The important orbital-spin angular momentum partial waves are selected based on the rule of configuration interaction. The computational convergence is discussed by the example of the contribution from each partial wave in the non-relativistic energy calculations of the high-spin state $1s2s2p^2$ ⁵P^e in B⁺ ion. To saturate the wave functional space and improve the non-relativistic energy, the restricted variational method is used to calculate the restricted variational energy. Furthermore, the mass polarization effect and relativistic energy correction are included by using a first-order perturbation theory. The quantum electrodynamic effects and higher-order relativistic contributions to the energy levels are also calculated by the screened hydrogenic formula. Then, the accurate relativistic energy levels of these high-spin states of B atom (ion) are obtained by adding the non-relativistic energy and all corrections. The fine structure splitting of these high-spin states is also calculated by the Breit-Pauli operators in the first-order perturbation theory. Compared with other theoretical results, our calculation results are in good accordance with the experimental data.

The absorption oscillator strengths, emission oscillator strengths, absorption rates, emission rates, and transition wavelengths of the electric-dipole transitions between these high-spin states of B atom (ions) are systematically calculated by using the optimized wave functions. The oscillator strengths and transition rates are obtained in both the length and velocity gauges. By comparing the two gauge results of oscillator strength, we find that there is a good consistency between them when $f_l < 0.3$, and a reasonable consistency is obtained when $f_l > 0.3$. The accordance between the length and the velocity gauge results reflects that the calculated wave functions in this work are reasonably accurate. The calculated transition data are also compared with the corresponding experimental and other theoretical data. Good agreement is obtained except the wavelengths for two transitions: 1s2p4p $^4S^e-1s2p3d$ $^4P^o$ and 1s2p4d $^4P^o-1s2p3p$ $^4P^e$. The relative differences between our theoretical results and experimental data are 0.7% and 0.3%, respectively. They need to be verified by further theoretical and experimental studies. For some core-excited high-spin states, the related energy levels and transition data are reported for the first time. Our calculation results will provide valuable data for calculating the spectral lines in the relevant experiments.

Keywords: high-spin state, fine structure splitting, radiative transition, oscillator strength **PACS:** 31.15.A–, 31.15.ac, 31.10.+z, 32.30.–r **DOI:** 10.7498/aps.66.123101

^{*} Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11604284) and the National Natural Science Foundation of China (Grant No. 11474020).

[†] Corresponding author. E-mail: suenyangu@163.com