

具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构研究 刘静思 李吉 刘伍明

Ground state of a rotating Bose-Einstein condensate with in-plane quadrupole field

Liu Jing-Si Li Ji Liu Wu-Ming

引用信息 Citation: Acta Physica Sinica, 66, 130305 (2017) DOI: 10.7498/aps.66.130305 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.130305 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I13

您可能感兴趣的其他文章 Articles you may be interested in

MgB₂/B/MgB₂ 约瑟夫森结的制备与直流特性

Preparation and DC characteristics of MgB₂/B/MgB₂ Josephson junctions 物理学报.2016, 65(18): 180301 http://dx.doi.org/10.7498/aps.65.180301

共心双环外势中两分量偶极玻色-爱因斯坦凝聚体的基态结构研究

Ground state of a two-component dipolar Bose-Einstein condensate confined in a coupled annular potential

物理学报.2015, 64(6): 060302 http://dx.doi.org/10.7498/aps.64.060302

简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构

Ground state of a rotating spin-orbit-coupled Bose-Einstein condensate in a harmonic plus quartic potential 物理学报.2015, 64(3): 030302 http://dx.doi.org/10.7498/aps.64.030302

空间调制作用下 Bessel 型光晶格中物质波孤立子的稳定性 Stabilization of matter-wave solitons in Bessel optical lattice by spatial modulation of the nonlinearity 物理学报.2014, 63(22): 220303 http://dx.doi.org/10.7498/aps.63.220303

线性与非线性光晶格中偶极孤立子的稳定性 Stability of dipolar soliton in crossed linear and nonlinear optical lattices 物理学报.2014, 63(15): 150302 http://dx.doi.org/10.7498/aps.63.150302

具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的 基态结构研究*

刘静思¹⁾²⁾ 李吉^{1)2)†} 刘伍明¹⁾²⁾

(中国科学院物理研究所,北京凝聚态物理国家实验室,北京 100190)
 2)(中国科学院大学物理学院,北京 100190)
 (2017年4月1日收到;2017年4月13日收到修改稿)

通过虚时演化方法研究了具有面内四极磁场的旋转玻色-爱因斯坦凝聚体的基态结构.结果发现:面内 四极磁场和旋转双重作用可导致中央 Mermin-Ho 涡旋的产生;随着磁场梯度增强, Mermin-Ho 涡旋周围环绕 的涡旋趋向对称化排布;在四极磁场下,密度相互作用和自旋交换相互作用作为体系的调控参数,可以控制 Mermin-Ho 涡旋周围的涡旋数目;该体系自旋结构中存在双曲型 meron 和 half-skyrmion 两种拓扑结构.

关键词: 旋转玻色-爱因斯坦凝聚体, 面内四极磁场, 自旋交换相互作用, 自旋结构 PACS: 03.75.Lm, 03.75.Hh, 05.45.Yv DOI: 10.7498/aps.66.130305

1引言

光阱束缚下的旋量玻色-爱因斯坦凝聚体 (BEC)^[1,2],由于内部自旋自由度的释放,为我们 提供了研究拓扑激发的理论和实验平台^[3-7].近 年来,人们广泛研究了具有旋转的旋量BEC基态 结构. 实验方面, Ketterle等^[8]借助光束搅动凝 聚体直接观察到涡旋形核. Foot 等^[9] 在旋转光晶 格中也发现了涡旋形核现象. 随后一些实验组 进一步观察到涡旋晶格的形成^[10,11].理论方面, 一些研究者详细讨论了塞曼磁场和旋转势共同 作用下旋量 BEC的基态相图和其中产生的新奇 拓扑激发^[12-15]. 例如, Kita等研究了铁磁BEC 中 Mermin-Ho 涡旋^[14]和非轴对称的涡旋态^[15], Mizushima 等^[13]系统地探讨了旋量 BEC中的涡 旋结构包括无芯涡旋和有芯涡旋晶格. 迄今为止, 在旋转条件下关于拓扑激发的大量研究都集中在 均匀寒曼场或无外磁场作用下的BEC 体系, 但在 梯度磁场下旋转 BEC 的基态结构依然不清晰.

最近,梯度磁场在BEC中的研究已经受到了 越来越多的关注.有研究者通过控制梯度磁场可以 产生人造自旋-轨道耦合,而传统方案^[16,17]则需要 依赖复杂的物质光耦合才能实现.也有研究者利用 梯度磁场方案实现了光晶格体系中的自旋-轨道耦 合和量子霍尔效应^[18,19].此外,在BEC中通过梯 度磁场方法,实验上观察到了不同的拓扑缺陷,例 如磁单极^[20,21]和量子扭结^[22].上述研究表明,梯 度磁场对于人造规范场和新奇拓扑缺陷的产生起 到了很关键的作用.

本文研究四极型面内梯度磁场对旋转BEC基态的影响.数值结果表明,面内四极磁场和旋转的 双重作用可导致中央Mermin-Ho涡旋的产生,面 内四极磁场可以保护Mermin-Ho涡旋免受铁磁相 互作用的破坏.增加磁场梯度强度,Mermin-Ho涡 旋周围的涡旋数目将逐渐减少并趋向对称化排列. 在四极磁场下,调控自旋交换相互作用与密度相互 作用比值,使其单调增大,涡旋构形将依次发生六

* 国家重点研发计划"量子调控与量子信息"重点专项(批准号: 2016YFA0301500)和国家自然科学基金(批准号: 11434015, KZ201610005011)资助的课题.

© 2017 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: liji2015@iphy.ac.cn

角、五角、四角、三角的转变.当比值很大时,体系中 仅存在 Mermin-Ho 涡旋.最后,我们还讨论了基态 的自旋结构,发现四极磁场和旋转共同作用能够诱 导双曲型 meron 和 half-skyrmion.

2 理论模型

考虑面内四极磁场和旋转作用下的二维铁磁BEC,在平均场近似下,系统哈密顿量可写为^[12,13,23-25]:

$$H = \int d^{2}\boldsymbol{r} \{ \boldsymbol{\Psi}^{+}[T + V(r) - \Omega L_{z} + g_{F}\mu_{B}\boldsymbol{B}(\boldsymbol{r}) \cdot \boldsymbol{F}]\boldsymbol{\Psi} \} + \left(\frac{c_{0}}{2}n^{2} + \frac{c_{2}}{2}[(n_{1} - n_{-1})^{2} + 2|\psi_{1}^{*}\boldsymbol{\Psi}_{0} + \boldsymbol{\Psi}_{0}^{*}\boldsymbol{\Psi}_{-1}|^{2}] \right),$$
(1)

其中, $\Psi = (\Psi_1(r) \Psi_0(r) \Psi_{-1}(r))^T$ 是满足归一化 条件 $\int d^2 r \Psi^+ \Psi = N$ 的 BEC 波函数, N 是总粒 子数; 动能项为 $T = -\hbar^2 \nabla^2 / 2m$, m为⁸⁷Rb 原子 的质量; 二维光束缚势 $V(r) = \frac{1}{2}m[\omega^2(x^2 + y^2)]$, 其中 ω 是束缚频率; Ω 为旋转频率, 规定 $\Omega > 0$ 的 正向旋转为逆时针旋转; $L_z = -i\hbar(x\partial_y - y\partial_x)$ 是z方向的轨道角动量; 外加面内四极磁场为 $B(r) = B'(xe_x - ye_y)^{[26-28]}$, 其中 B'为磁场梯度 强度的大小; 自旋矢量矩阵 $F = (F_x F_y F_z)^T$, 其 中 F_x , $F_y 和 F_z$ 是自旋1的3×3的自旋矩阵; 朗德 因子 $g_F = -1/2$, μ_B 为玻尔磁矩; 各分量粒子数密 度 $n_m = |\Psi_m|^2$, 其中 $m = 0, \pm 1$; 总粒子数密度定 义为 $n = \sum_m n_m$; 对于相互作用项, 相互作用系数 $c_0 = 4\pi\hbar^2(a_0 + 2a_2)/3m, c_2 = 4\pi\hbar^2(a_2 - a_0)/3m$, 其中 a_0, a_2 分别为总自旋为0和2的s波散射长度. 无量纲化的耦合方程如下 ^[12,13,23-25]:

$$i\frac{\partial\psi_1}{\partial t} = \left(-\frac{1}{2}\nabla^2 + V + i\Omega(x\partial_y - y\partial_x) + \lambda_0\rho + \lambda_2(\rho_1 + \rho_0 - \rho_{-1})\right)\psi_1 + B(x + iy)\psi_0 + \lambda_2\psi_{-1}^*\psi_0^2, \quad (2)$$

$$\mathbf{i} \frac{1}{\partial t} = \left(-\frac{1}{2} \nabla^2 + V + \mathbf{i} \Omega (x \partial_y - y \partial_x) + \lambda_0 \rho + \lambda_2 (\rho_1 + \rho_{-1}) \right) \psi_0 + B((x - \mathbf{i}y)\psi_1 + (x + \mathbf{i}y)\psi_{-1})$$

$$+ 2\lambda_2\psi_1\psi_{-1}\psi_0^*, \qquad (3)$$

$$i\frac{\partial\psi_{-1}}{\partial t} = \left(-\frac{1}{2}\nabla^2 + V + i\Omega(x\partial_y - y\partial_x) + \lambda_0\rho + \lambda_2(\rho_{-1} + \rho_0 - \rho_1)\right)\psi_{-1}$$

$$+ B(x - iy)\psi_0 + \lambda_2\psi_1^*\psi_0^2. \qquad (4)$$

无量纲化波函数 $\psi_j = N^{-1/2} a_h \Psi_j$,总粒子数密度 $\rho = \rho_1 + \rho_0 + \rho_{-1}$, $\rho_j = |\psi_j|^2 (j = 0, \pm 1)$.无量纲光束缚势 $V(r) = \frac{1}{2} [x^2 + y^2]$.无量纲化相互作用强度分别为 $\lambda_0 = 4\pi N(a_0 + 2a_2)/3a_h$ 和 $\lambda_2 = 4\pi N(a_2 - a_0)/3a_h$,其中 $a_2 = (100.4 \pm 0.1)a_B$ 和 $a_0 = (101.8 \pm 0.2)a_B$, a_B 是玻尔半径^[29].无量纲化旋转频率和磁场梯度强度分别为 Ω 和B.谐振势的特征长度为 $a_h = \sqrt{\hbar/m\omega}$.在数值计算时,我们分别选用 $\sqrt{\hbar/m\omega}$, ω^{-1} , $\hbar\omega$ 和 $\omega\hbar/(g_F\mu_Ba_h)$ 作为长度、时间、能量和磁场梯度强度的单位.通过虚时演化方法求解方程(2)—(4)得到基态^[30-32],空间离散采用二阶中心有限差分,时间迭代采用线性项隐式和非线性项显式.数值计算网格为300×300,对应计算体系为16×16(a_h^2),初始试探函数为复数值的随机数.

3 研究结果与讨论

首先讨论磁场梯度强度对系统基态的影响.为 了突出梯度磁场带来新的效应,我们固定粒子间 相互作用和旋转频率,只改变磁场梯度强度大小, 利用虚时演化方法数值模拟得到不同磁场梯度下 对应的基态结构. 基态粒子数密度和相位分布如 图1所示. 第1, 2, 3列分别为 $m_{\rm F} = 1, m_{\rm F} = 0$ 和 $m_{\rm F} = -1$ 分量的密度分布, 第4, 5, 6列为对应的 相位分布.相位分布图中存在许多相位割线,从 割线红色一侧到蓝色一侧相位存在从π到-π的不 连续跳变. 相位割线端点对应密度分布图中的密 度极小值点,即为涡旋核.发现体系共存在两类涡 旋, 一类为中央 Mermin-Ho 涡旋^[13,14], 其 $m_{\rm F} = 1$ $和 m_{\rm F} = 0$ 分量中央分别出现缠绕数为2和1的涡 旋, 而 $m_{\rm F} = -1$ 分量中央则出现一个亮孤子, 其 缠绕数为0,所以中心处的序参量类似于铁磁态的 (001)^T. 另一类为周围环绕排列的普通涡旋, 对应 的三个自旋态的涡旋缠绕数都是1.

当体系没有磁场作用时,如图1(a)所示,凝聚 体各个自旋组分都出现了呈带状分布的普通涡旋, 类似于之前研究工作中提到的涡旋列^[33].引入较小的磁场梯度B = 0.08,如图1(b)所示,凝聚体中心形成Mermin-Ho涡旋,普通涡旋仍然呈带状分布,但与无磁场的情况相比更趋于规则化排列.

进一步将磁场梯度增强到B = 0.6,普通涡旋数量 明显减少,并形成对称的六角形排列,如图1(c)所示.在强磁场梯度B = 3.8作用下,凝聚体内只存在Mermin-Ho涡旋,如图1(d)所示.

图 1 (网刊彩色) 不同面内四极磁场下⁸⁷Rb 凝聚体基态粒子数密度分布 (第 1, 2, 3 列) 和相位分布 (第 4, 5, 6 列) (a) B = 0; (b) B = 0.08; (c) B = 0.6; (d) B = 3.8; 其余模拟参数选为 $\lambda_0 = 7500$, $\lambda_2 = -750$, $\Omega = 0.3$ 和 $\omega = 2\pi \times 250$ Hz Fig. 1. (color online) The particle number densities (the first second and third columns) and phase distributions (the fourth fifth and sixth columns) of ground state of the spinor BEC of ⁸⁷Rb for the different in-plane quadrupole fields. The parameters are set as follows: (a) B = 0; (b) B = 0.08; (c) B = 0.6; (d) B = 3.8; the other parameters are $\lambda_0 = 7500$, $\lambda_2 = -750$, $\Omega = 0.3$ and $\omega = 2\pi \times 250$ Hz.

数值结果显示, 在旋转 BEC 中只要四极磁场 存在,凝聚体中心就会出现 Mermin-Ho 涡旋. 但随 着磁场梯度增强, Mermin-Ho 涡旋四周环绕的普通 涡旋数目将逐渐减少,最终普通涡旋都会消失. 涡 旋数目的减少是由面内磁场对磁矩的翻转作用造 成的. 由下文自旋结构的讨论可知, 普通涡旋总是 关联着自旋的剧烈翻转和起伏, 这使得自旋偏离面 内. 而面内四极磁场又会对磁矩施加一个力矩, 使 自旋偏向面内与磁场平行的方向. 因此, 面内磁场 对涡旋的产生起抑制作用, 而旋转又促进涡旋的产 生, 两种作用相互竞争. 磁场梯度很强时, 抑制作 用占主导地位, 所以普通涡旋数目变少. 此外,随着磁场梯度增强,普通涡旋趋于规则 化排列,形成对称的涡旋构型,这是由涡旋间彼此 实现受力平衡的难易程度决定的.一方面,由于受 到旋转的离心力作用,原子有向凝聚体边缘运动的 趋势,相反,涡旋在旋转作用下有向中心靠拢的趋 势,相当于受到一个向心的拉力.另一方面,因为同 向旋转(缠绕数同号)的涡旋彼此排斥,Mermin-Ho 涡旋将对普通涡旋施加离心斥力,同时普通涡旋彼 此间也存在排斥.因此,旋转频率不是很大的情况 下,较多的涡旋数目很难达到平衡的构型.而当涡 旋数目变少时,涡旋则更容易选择一种对称排布的 平衡构型. 接下来,我们固定粒子间相互作用和磁场梯度,研究旋转频率对体系结构的影响. 当不考虑旋转,只有凝聚体中央会出现涡旋结构. 该结构 $m_{\rm F} = 1$ 分量为缠绕数为1的涡旋, $m_{\rm F} = 0$ 分量为一个亮孤子, $m_{\rm F} = -1$ 分量为缠绕数为-1的涡旋. 此结构就是polar-core涡旋^[34],如图2(a)所示. 当旋转频率 $\Omega = 0.3$ 时,体系中央原有的polar-core涡旋会转化为Mermin-Ho涡旋,如图2(b)所示. 当旋转频率增大到 $\Omega = 0.6$ 和 $\Omega = 0.9$ 时,如图2(c)和图2(d)所示,体系内涡旋数目逐渐增多,并逐渐形成三角格子,类似于只有旋转没有四极磁场的结果^[35]. 据之前研究可知,在旋转势中,三角涡旋格子能量最低也最稳定^[35].

下面我们通过对比无旋转和有旋转时中央涡旋的差别,来解释 polar-core 涡旋向 Mermin-Ho涡旋的转变.当不存在旋转时,中央形成 polar-core 涡旋,由密度图可知, $m_{\rm F} = 1$ 和 $m_{\rm F} = -1$ 两个分

量中心密度取极小值, 是涡旋核, 而 $m_{\rm F} = 0$ 分量 的中心密度却正好为极大值,形成一个亮孤子,中 心处序参量类似于极化态的序参量(111)^T.这 是由四极磁场具有特殊的鞍点结构且自旋在这种 特殊的磁场中发生面内磁化造成的,后面讨论自 旋结构时将详细论述. 当引入旋转时,随着旋转 频率增大,中央涡旋周围的普通涡旋逐渐增多.正 向旋转势的作用之一就是在各分量都产生缠绕数 为1的涡旋. 中央Mermin-Ho涡旋正是无旋转时 的 polar-core 涡旋与旋转造成的涡旋相互叠加的结 果. 涡旋的叠加是将缠绕数相加, polar-core 涡旋 $m_{\rm F} = 1, m_{\rm F} = 0$ 和 $m_{\rm F} = -1$ 三个分量的缠绕数(1, 0, -1)分别与旋转造成的涡旋三个分量的缠绕数 (1, 1, 1)相加,即得到了 Mermin-Ho 涡旋三分量的 缠绕数(2,1,0). 因此, polar-core 涡旋向 Mermin-Ho涡旋的转变是面内四极磁场和旋转势共同作用 的结果.

图 2 (网刊彩色) 不同旋转频率对应的 ⁸⁷Rb 凝聚体基态的粒子数密度分布 (第 1, 2, 3 列) 和相位分布 (第 4, 5, 6 列) (a) $\Omega = 0$; (b) $\Omega = 0.3$; (c) $\Omega = 0.6$; (d) $\Omega = 0.9$; 其余模拟参数选为 $\lambda_0 = 7500$, $\lambda_2 = -750$, $B = 3.8 \ \pi \omega = 2\pi \times 250 \ \text{Hz}$ Fig. 2. (color online) The particle number densities (the first second and third columns) and phase distributions (the fourth fifth and sixth columns) of ground state of the spinor BEC of ⁸⁷Rb for the different rotation frequencies. The parameters are set as follows: (a) $\Omega = 0$; (b) $\Omega = 0.3$; (c) $\Omega = 0.6$; (d) $\Omega = 0.9$; the other parameters are $\lambda_0 = 7500$, $\lambda_2 = -750$, B = 3.8 and $\omega = 2\pi \times 250 \ \text{Hz}$.

下面我们固定四极磁场梯度和旋转频率, 通过 调节相互作用 λ_2 和 λ_0 的比值 $\lambda = \lambda_2/\lambda_0$, 研究铁磁 系统 ($\lambda_2 < 0$)中相互作用对基态的影响.如图**3**所 示, 当 λ 很小时,中央 Mermin-Ho 涡旋周围的普通 涡旋构成六角形的对称排列.随着 λ 增大,普通涡 旋数目随之减少, 依次排成正五角形、四角形和三 角形.当 λ 足够大时,普通涡旋消失, 只剩下中央 Mermin-Ho 涡旋.这是由铁磁自旋相互作用与密 度相互作用之间相互竞争造成的.为了使自旋交换 相互作用项能量最小, 铁磁自旋交换相互作用倾向

于让体系自旋偏向于同一方向.但由于四极磁场介 入,铁磁相互作用使得所有自旋偏向同一方向很难 实现,只能使局部自旋变化趋于缓和,而普通涡旋 必然联系到其涡旋核附近自旋的剧烈翻转.因此, 铁磁自旋交换相互作用是抑制普通涡旋的产生.当 λ很大时,铁磁自旋交换相互作用占主导地位,体 系内的普通涡旋被抑制.但是,即便增强铁磁相互 作用,中央Mermin-Ho涡旋也不会受到太大影响. 下文将看到,这是由Mermin-Ho涡旋的尺寸和其 特殊的自旋结构决定的.

图 3 (网刊彩色) 自旋交换相互作用与密度相互作用的比值 λ 对基态的影响 (第 1, 2, 3 列表示 ⁸⁷Rb 凝聚体粒子数密度分布, 第 4, 5, 6 列表示相位分布) (a) $\lambda = 0.0625$; (b) $\lambda = 0.0667$; (c) $\lambda = 0.125$; (d) $\lambda = 0.1333$; (e) $\lambda = 0.3333$; 其余模拟参数选为 $B = 0.6, \Omega = 0.3$ 和 $\omega = 2\pi \times 250$ Hz

Fig. 3. (color online) The effect of the ratio of both spin exchange interaction and density-density interaction on the ground state (the first, second and third columns show the particle number densities of ground state of the spinor BEC of ⁸⁷Rb, and the fourth, fifth and sixth columns show phase distributions): (a) $\lambda = 0.0625$; (b) $\lambda = 0.0667$; (c) $\lambda = 0.125$; (d) $\lambda = 0.1333$; (e) $\lambda = 0.3333$; the other parameters are $\lambda_2 = -750$, B = 0.6, $\Omega = 0.3$ and $\omega = 2\pi \times 250$ Hz.

定义自旋矢量函数为

$$\boldsymbol{S}_{\alpha}(r) = \sum_{m,n=0,\pm 1} \boldsymbol{\Psi}_{m}^{*}(F_{\alpha})_{mn} \boldsymbol{\Psi}_{n} / |\boldsymbol{\Psi}|^{2}$$

 $(\alpha = x, y, z)$ ^[36,37],能够用来描述BEC的自旋结构. 图4(a) 是对应于图1(a)的自旋结构,此时不考虑外磁场,体系中出现了许多双曲型meron和环绕型meron组成的meron对^[38],这种meron对属于一种skyrmion^[38].图4(b)是对应于图2(a)的自旋结构,此时不考虑旋转,自旋被完全磁化到平面内,自旋排列类似于四极磁场的构型. 四极磁场中心点为一个鞍点,磁场强度为0,不具有磁化作

用.但由于波函数的连续性导致自旋函数S(r)在中心点处必须连续.如果S(0)有一定的量值,必然指向某个方向,但由于体系对称性,S(0)无论选择哪个方向都会破坏中心点处S(r)的连续性.所以S(0)只能取0才能满足连续性条件.因此,中心处BEC的序参量呈现极化态 $(010)^{T}$ 的形式, $m_{F} = 1$ 和 $m_{F} = -1$ 分量中心密度接近0,形成涡旋核.在不加旋转的情况下,为了满足角动量守恒, $m_{F} = 1$ 和 $m_{F} = -1$ 分量中心处两个涡旋必然反向旋转,所以具有相反的缠绕数,正如前文所述,这便是中央polar-core涡旋的成因.

图 4 (网刊彩色) ⁸⁷Rb 凝聚体自旋结构 (a) 对应图 1 (a) 的自旋结构; (b) 对应图 2 (a) 的自旋结构; (c) 对应 1(c) 的自旋 结构; (d) 对应 1(c) 的拓扑荷密度

Fig. 4. (color online) The spin texture of the spinor BEC of ${}^{87}\text{Rb:}$ (a) The spin texture corresponding to the Fig. 1 (a); (b) the spin texture corresponding to the Fig. 2 (a); (c) the spin texture corresponding to the Fig. 1 (c); (d) the topological charge density corresponding to the Fig. 1 (c).

图 4 (c) 是对应于图 1 (c) 的自旋结构,此时加入旋转势,旋转带来的扰动将使自旋偏离面内极化. 中心区域的自旋结构组成一个双曲型 meron^[38],其在 *x-y* 平面内的投影与图 4 (b) 中的面内自旋构型 相似,但获得了 –*z*方向的分量.为了使 *S*(*r*) 在中 心点处连续, *S*(0) 在 *x-y* 平面的投影也必须是 0,所 以中心点处 BEC 的序参量如前文所述呈铁磁态 (0 0 1)^T 的形式,其对应的涡旋即为 Mermin-Ho涡 旋.前文提到铁磁相互作用倾向于让自旋趋于同一 方向,铁磁相互作用变强会迫使中央区域自旋整体 倒向某个方向,必然导致整个自旋矢量*S*(*r*)的不 连续,这是被禁止的.而且中央双曲型meron尺寸 较大,在整个区域自旋变化相对缓慢且都偏向-*z* 方向,作为一种权宜这样的自旋构型已经相对降低 了铁磁相互作用能.所以四极磁场的特殊形式保 护了中央区域自旋构型免受铁磁相互作用的破坏. 从图 4 (c) 还可看出, 双曲型 meron 四周环绕了六个 half-skyrmion 结构 ^[36,37]. 这样的 half-skyrmion 结构在五角形、四角形、三角形的涡旋排列中也是普遍存在的.由于四极磁场的磁化方向不同, 图 4 (c) 中的圆圈和方框里的两个 half-skyrmion 自旋绕行方向相反, 但通过计算拓扑荷, 发现其本质是一样的. 定义单位自旋矢量 s = S/|S|, 每一个s 对应单位球面 S^2 上的一个点.这样, 单位矢量场 s(r) 即为一个 $R^2 \mapsto S^2$ 的映射.如果 R^2 中的一个区域通过该映射能覆盖整个 S^2 , 我们就认为该区域包含的拓扑荷为1. 拓扑荷即为映射所覆盖的单位球面的个数, 其计算公式为

$$Q = \frac{1}{4\pi} \iint \boldsymbol{s} \cdot \left(\frac{\partial \boldsymbol{s}}{\partial x} \times \frac{\partial \boldsymbol{s}}{\partial y}\right) \mathrm{d}x \mathrm{d}y.$$

其中的积分核

$$\rho = \frac{\boldsymbol{s}}{4\pi} \cdot \left(\frac{\partial \boldsymbol{s}}{\partial x} \times \frac{\partial \boldsymbol{s}}{\partial y}\right)$$

为拓扑荷密度^[36,37].图4(d)即为图4(c)对应的拓 扑荷密度分布.通过对选定区域的积分,算得中央 区域的拓扑荷为-0.5,与双曲型meron的拓扑荷符 合.圆圈和方形区域内拓扑荷也都是-0.5,这也和 half-skyrmion的拓扑荷符合.这进一步印证了我 们通过自旋排列的形状对自旋结构的种类做出的 判断.

后续工作可以考虑引入规范场的相关研究,例如自旋-轨道耦合效应^[39,40]和偶极相互作用^[41]的影响,此时系统将展现出更多迷人的特性.进一步,可以考虑更高自旋的旋量凝聚体,更复杂的自旋相互作用可以诱导更丰富的量子相和各种奇特的自旋纹理.

4 结 论

本文研究了面内梯度磁场和旋转频率对铁磁 玻色-爱因斯坦凝聚体的基态的影响.利用虚时 演化方法得到了不同参数下的基态结构.研究发 现:中央Mermin-Ho涡旋的产生是面内四极磁场 和旋转双重作用的结果,面内四极磁场可以保护 Mermin-Ho涡旋免受铁磁相互作用的破坏;增强磁 场梯度强度,可以控制Mermin-Ho涡旋周围的涡 旋数目并使其趋向对称化排列;在四极磁场下,调 控自旋交换相互作用与密度相互作用的比值,可以 得到丰富奇异的基态相,能够控制不同基态相之间 的转化.最后,我们还讨论了基态的自旋结构.

参考文献

- Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 *Nature* 396 345
- [2] Ho T L 1998 Phys. Rev. Lett. 81 742
- [3] Görlitz A, Gustavson T L, Leanhardt A E, Löw R, Chikkatur A P, Gupta S, Inouye S, Pritchard D E, Ketterle W 2003 *Phys. Rev. Lett.* **90** 090401
- [4] Klausen N N, Bohn J L, Greene C H 2001 *Phys. Rev. A* 64 053602
- [5] Isoshima T, Machida K, Ohmi T 2001 J. Phys. Soc. Jpn. 70 1604
- [6] Kasamatsu K, Tsubota M, Ueda M 2005 Int. J. Mod. Phys. B 19 1835
- [7] Tuchiya S, Kurihara S 2001 J. Phys. Soc. Jpn. 70 1182
- [8] Raman C, Abo-Shaeer J R, Vogels J M, Xu K, Ketterle W 2001 *Phys. Rev. Lett.* 87 210402
- [9] Williams R A, Al-Assam S, Foot C J 2010 Phys. Rev. Lett. 104 050404
- Schweikhard V, Coddington I, Engels P, Tung S, Cornell
 E A 2004 Phys. Rev. Lett. 93 210403
- [11] Chevy F, Madison K W, Dalibard J 2000 Phys. Rev. Lett. 85 2223
- [12] Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66 053604
- [13] Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70 043613
- [14] Mizushima T, Machida K, Kita T 2002 *Phys. Rev. Lett.* 89 030401
- [15] Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66 053610
- [16] Anderson B M, Spielman I B, Juzeliūnas G 2013 Phys. Rev. Lett. 111 125301
- [17] Xu Z F, You L, Ueda M 2013 Phys. Rev. A 87 063634
- [18] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, Bloch I 2013 Phys. Rev. Lett. 111 185301
- [19] Kennedy J C, Siviloglou G A, Miyake H, Burton W C, Ketterle W 2013 Phys. Rev. Lett. 111 225301
- [20] Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657
- [21] Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348 544
- [22] Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, Möttönen M 2015 Nature Phys. 12 478
- [23] Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101 010402
- [24] Bulgakov E N, Sadreev A F 2003 Phys. Rev. Lett. 90 200401
- [25] Lovegrove J, Borgh M O, Ruostekoski J 2012 Phys. Rev. A 86 013613
- [26] Pritchard D E 1983 Phys. Rev. Lett. **51** 1336
- [27] Leanhardt A E, Shin Y, Kielpinski D, Pritchard D E, Ketterle W 2003 Phys. Rev. Lett. 90 140403

- [28] Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E, Ketterle W 2002 *Phys. Rev. Lett.* 89 190403
- [29] Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191
- [30] Dalfovo F, Stringari S 1996 Phys. Rev. A 53 2477
- [31] Zhang X F, Dong R F, Liu T, Liu W M, Zhang S G 2012 Phys. Rev. A 86 063628
- [32] Bao W Z, Du Q 2004 SIAM J. Sci. Comput. 25 1674
- [33] Kasamatsu K, Tsubota M 2009 Phys. Rev. A 79 023606
- [34] Sadler L E, Higbie J M, Leslie S R, Vengalattore M, Stamper-Kurn D M 2006 Nature 443 312
- [35] Fetter A L 2009 Rev. Mod. Phys. 81 647

- [36] Su S W, Hsueh C H, Liu I K, Horng T L, Tsai Y C, Gou S C, Liu W M 2011 Phys. Rev. A 84 023601
- [37] Liu C F, Liu W M 2012 Phys. Rev. A 86 033602
- [38] Volovik G E 2003 The Universe in a Helium Droplet (Oxford: Oxford University Press)
- [39] Liu C F, Wan W J, Zhang G Y 2013 Acta Phys. Sin. 62
 200306 (in Chinese) [刘超飞, 万文娟, 张赣源 2013 物理学 报 62 200306]
- [40] Song S W, Sun R, Zhao H, Wang X, Han B Z 2016 Chin. Phys. B 25 040305
- [41] Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302 (in Chinese)
 [张晓斐,张培,陈光平,董彪,谭仁兵,张首刚 2015 物理学 报 64 060302]

Ground state of a rotating Bose-Einstein condensate with in-plane quadrupole field^{*}

Liu Jing-Si¹⁾²⁾ Li Ji^{1)2)†} Liu Wu-Ming¹⁾²⁾

 (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

2) (School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China)

(Received 1 April 2017; revised manuscript received 13 April 2017)

Abstract

Compared with the scalar Bose-Einstein condensate, the spinor Bose-Einstein condensate, in which internal degrees of freedom are essentially free, has aroused the great interest in the study of topological excitations. In particular, the spinor Bose-Einstein condensate with rotation provides a new opportunity for studying novel quantum states including a coreless vortex and vortex lattice. To date, in the presence of rotation, a great many of studies on the topological excitations have focused on the Bose-Einstein condensate system with the uniform Zeeman field or without external magnetic field. However, the ground state structure of a rotating Bose-Einstein condensate in the presence of in-plane gradient-magnetic-field remains an open question. In this work, by using the imaginary-time propagation method, we study the ground state structure of a rotating Bose-Einstein condensate with in-plane quadrupole field. We first examine the effect of in-plane quadrupole field on trapped spinor Bose-Einstein condensate. The numerical results show that Mermin-Ho vortex can be induced only by the cooperation between quadrupole field and rotation. When magnetic field gradient is increased, the vortices around Mermin-Ho vortex display the symmetrical arrangement. For an even larger magnetic field gradient strength, the system only presents the Mermin-Ho vortex because the in-plane quadrupole field can prevent the vortices around Mermin-Ho vortex from occurring. Next, we examine the effect of the rotation on trapped spinor Bose-Einstein condensate. A phase transition from a polar-core vortex to a Mermin-Ho vortex is found through applying a rotational potential, which is caused by the cooperation between the in-plane quadrupole field and the rotation. We further study the combined effects of spin exchange interaction and density-density interaction. The results confirm that in the presence of the quadrupole field both spin exchange interaction and density-density interaction, acting as controllable parameters, can control the number of the vortices around Mermin-Ho vortex. The corresponding number of the vortices shows step behavior with increasing the ratio between spin exchange interaction and density-density interaction, which behaves as hexagon, pentagon, square and triangle. It is found that two types of topology structures, i.e., the hyperbolic meron and half-skyrmion, can occur in the present system. These vortex structures can be realized via time-of-flight absorption imaging technique. Our results not only provide an opportunity to investigate the exotic vortex structures and the corresponding phase transitions in a controlled platform, but also lay the foundation for the study of topological defect subjected to gauge field and dipolar interaction in future.

Keywords: rotating Bose-Einstein condensate, in-plane quadrupole field, spin-exchange interaction, spin texture

PACS: 03.75.Lm, 03.75.Hh, 05.45.Yv

DOI: 10.7498/aps.66.130305

^{*} Project supported by the NKRDP (Grant No. 2016YFA0301500), and the National Natural Science Foundation of China (Grant Nos. 1143401, KZ201610005011).

[†] Corresponding author. E-mail: liji2015@iphy.ac.cn