物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

高能脉冲C⁶⁺离子束激发Ni靶的K壳层X射线

梅策香 张小安 周贤明 赵永涛 任洁茹 王兴 雷瑜 孙渊博 程锐 徐戈 曾利霞

K-shell X-ray emission from high energy pulsed C⁶⁺ ion beam impacting on Ni target Mei Ce-Xiang Zhang Xiao-An Zhou Xian-Ming Zhao Yong-Tao Ren Jie-Ru Wang Xing Lei Yu Sun Yuan-Bo Cheng Rei Xu Ge Zeng Li-Xia

引用信息 Citation: Acta Physica Sinica, 66, 143401 (2017) DOI: 10.7498/aps.66.143401 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.143401 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I14

您可能感兴趣的其他文章 Articles you may be interested in

电子垂直入射电离氦原子碰撞机理的理论研究

A theoretical study on collision mechanisms for low energy electron impact ionization of helium in the perpendicular geometry

物理学报.2017, 66(7): 073401 http://dx.doi.org/10.7498/aps.66.073401

Cd+离子5s²S_{1/2}→5p²P_{3/2}电子碰撞激发截面和退激辐射光子极化度的理论研究

Theoretical study on electron-impact excitation cross section and polarization for $5s^2S_{1/2} \rightarrow 5p^2P_{3/2}$ of Cd 物理学报.2015, 64(23): 233401 http://dx.doi.org/10.7498/aps.64.233401

共面双对称条件下电子碰撞 Ar 原子单电离的一阶扭曲波 Born 近似

First-order distorted wave Born approximation for single ionization of Ar by electron impact in a coplanar doubly symmetric geometry

物理学报.2014, 63(15): 153401 http://dx.doi.org/10.7498/aps.63.153401

共面不对称条件下低能电子碰撞电离 Ar(3p) 的三重微分截面

Triple differential cross section for the ionization of Ar(3p) by low-energy electron impact in the coplanar asymmetric geometry

物理学报.2013, 62(18): 183401 http://dx.doi.org/10.7498/aps.62.183401

屏蔽效应对氦原子(e,2e)反应中二重微分截面和单微分截面的影响

Influence of screening effect on double differential cross section and single differential cross section for (e, 2e) process of helium

物理学报.2013, 62(18): 183402 http://dx.doi.org/10.7498/aps.62.183402

高能脉冲 C^{6+} 离子束激发Ni靶的K壳层 $X射线^*$

梅策香¹⁾²⁾ 张小安^{1)3)†} 周贤明³⁾ 赵永涛²⁾³⁾ 任洁茹²⁾ 王兴²⁾ 雷瑜³⁾ 孙渊博³⁾ 程锐³⁾ 徐戈³⁾ 曾利霞¹⁾²⁾

1) (咸阳师范学院与中国科学院近代物理研究所联合共建离子束与光物理实验室,咸阳 712000)

2) (西安交通大学理学院,西安 710049)

3) (中国科学院近代物理研究所, 兰州 730000)

(2017年3月30日收到;2017年5月5日收到修改稿)

精确测量离子与原子碰撞引起的靶原子内壳层电离截面,对研究原子内壳层过程以及建立合适的理论模型具有重要的意义.现有的实验数据和理论模型大都集中在中低能区,高能区由于受到实验条件的限制,几乎没有相关实验数据的报道,哪种理论更适合描述高能重离子入射的靶原子内壳层电离截面,还需要进行深入的实验研究.采用电子冷却存储环提供能量分别为165,300,350,430 MeV/u的C⁶⁺离子束轰击Ni靶,测量Ni的K壳层X射线.分析了实验中探测到的Ni的K_β和K_α射线强度比,发现入射粒子能量的变化对该强度比影响不明显.分别应用两体碰撞近似(BEA)、平面波玻恩近似(PWBA)和ECPSSR理论对Ni的K壳层X射线的产生截面进行理论计算,并将理论结果与实验结果进行比较.

关键词: X射线,产生截面,高能脉冲束 PACS: 34.80.Dp, 32.30.Rj, 32.80.Aa

1引言

高能荷电粒子与金属固体靶相互作用过程中, 发射电子,产生次级离子并辐射X射线,是一个复 杂的多体问题,含时Schrödinger方程不能给出解 析解.这种相互作用过程中出现的一些奇异现象及 其潜在的应用价值吸引了相关科研人员的兴趣,在 理论和实验研究方面都需要做很多工作.在天体物 理和实验室天体物理领域,研究发现天体演化以及 太阳风中高电荷态重离子的电荷交换辐射的X射 线、天空中存在的X射线背景辐射以及太空中的X 射线源等,显然X射线谱是该领域重要的研究手段 之一^[1].离子轰击靶时靶原子内壳层电子电离,相 应的空穴退激时伴随发射X射线或俄歇电子^[2,3]. 精确测量离子与原子碰撞引起的靶原子内壳层电 离截面,对研究原子内壳层过程以及建立合适的理

DOI: 10.7498/aps.66.143401

论模型具有重要的意义[4-7].

随着对原子的内壳层 X 射线产生截面的研究, 近似计算方法得到了深入发展. 例如高能轻离 子与靶原子碰撞过程中,可以用平面波玻恩近似 (PWBA)^[8] 很好地解释靶原子内壳层电离截面; 描 述中低能轻离子与靶原子作用的内壳层电离截面 则需要用基于PWBA的模型加上对能量损失、库 仑偏转、束缚能增加、极化和相对论效应进行修正 后的ECPSSR模型^[9-11];对于重离子入射情况下 的内壳层电离则需要用对ECPSSR 理论进行修正 的ECUSAR 理论^[12], ECUSAR 是考虑准分子激 发的理论,在中低能区加入联合原子修正;对低速 重离子入射系统, 靶原子内壳层电离可以用半经 典近似(SCA)理论描述^[13];中低速轻离子入射的 非对称碰撞系统的内壳层电离可用两体碰撞近似 (BEA)理论描述^[14];而对于低速入射的对称或者 近似对称的碰撞系统则需要用分子轨道(MO)模型

© 2017 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金(批准号: 11605147, 11505248)和陕西省教育厅科研计划(批准号: 15JK1793)资助的课题.

[†]通信作者. E-mail: zhangxiaoan2000@126.com

来计算^[15]. 描述高速入射的高电荷态重离子与固体靶相互作用的内壳层过程比轻离子入射情况复杂得多,目前还没有合适的理论模型. 由于实验数据较少,哪种理论模型更加适合,需要进一步的实验验证.

早期的离子与固体靶的碰撞实验研究主要集 中于轻质带电粒子入射,如质子和氦离子等.目前 开展的高电荷态重离子与固体靶的碰撞实验则大 多集中于低能区^[2,5-7],主要测量碰撞过程中靶原 子辐射X射线的内壳层过程,而高能区高电荷态重 离子与固体靶的碰撞实验由于受到实验条件的限 制少有报道,要进一步分析高能区离子与固体靶碰 撞的内壳层过程需要更多的实验数据支持.

本文采用电子冷却存储环提供的能量为 165—430 MeV/u的C⁶⁺高能离子脉冲束轰击Ni 靶,测量了Ni的K壳层X射线发射谱.通过对特 征谱线的分析研究了炮弹离子以不同能量入射时 Ni发射的X射线的强度比,分别计算了X射线的产 生截面,并将BEA, PWBA和ECPSSR理论计算 值与实验值进行了比较.

2 实验装置与测量方法

实验在兰州重离子加速器国家实验室电子冷却存储环的深层治癌终端完成.高电荷态C⁶⁺离子由电子回旋共振离子源提供,引出的离子经过加速、冷却、积累等处理,最后由深层治癌实验终端引出,束流的脉冲宽度约为3 ns,强度约为10⁸离子/脉冲.实验中,到达治癌终端的束流能量分别为165,300,350,430 MeV/u.考虑到束流打靶之前要穿过厚度可调的液态水膜和空气介质,能量损失由LISE++软件^[16]计算后,得到束流打靶的实际能量为154.26,292.69,343.28,423.93 MeV/u,误差小于0.22%.

 C^{6+} 東流由终端引出后经过限束孔, 垂直入射 到靶材表面, 東斑大小通过 CsI 晶体测量得到, 约 为5 mm × 5 mm. 入射离子个数不能由终端输出 口的离子计数器直接给出, 而是由東流终端法拉第 筒的计数 (*a*) 与靶后端法拉第筒的计数 (*b*) 联合给 出; 在打靶之前, 测量束流终端的离子计数与通过 限束孔后的离子计数 (由后端法拉第筒给出), 并确 定两者的比例 (*c* = *b*/*a*); 在实验过程中, 由于靶的 存在无法得到靶后端的离子计数 (即真实的离子个 数 B),只能给出束流终端的离子计数 (A),真实的 入射离子个数 B 由比例系数 c 和束流终端的离子计 数 A 给出, $B = A \times c$.

实验中的X射线由Amptek公司生产的硅漂 移X射线探测器(SDD)进行测量,SDD的有效 探头面积为7 mm²,探头前为厚度12.5 μm的Be 隔离窗,能量分辨率约为136 eV,当增益设为 100,峰化时间设为9.6 μs时,能量探测范围约为 0.5—14.5 keV.探测器放置于空气中,探头与靶面 上束斑相距100 mm,与束流方向成135°夹角,探 测立体角约为7×10⁻⁴ sr.实验前用标准放射源 ⁵⁵Fe和²⁴¹Am 对探测器进行能量刻度,探测器的 效率由生产厂家测定并给出.实验中所用Ni靶的 厚度为0.05 mm,由称重法确定其误差小于2%,纯 度为99.99%.

3 结果与讨论

3.1 不同动能C⁶⁺离子轰击Ni 靶产生的 X射线

实验观测入射能量分别为154.26, 292.69, 343.28, 423.93 MeV/u的C⁶⁺ 离子束轰击Ni靶表 面时, Ni 受激辐射的特征 X 射线. 图1 所示为不同 入射能的 C⁶⁺ 脉冲离子束轰击 Ni 靶表面激发的靶 原子K壳层X射线谱用OriginPro8.5软件进行多 峰高斯拟合得到的结果. 图中 xc1 和 xc2 分别表示 第一个峰和第二个峰的中心位置; w1和w2分别表 示第一个峰和第二个峰值的半峰全宽. 由图可以 看出谱型的结构、谱线双峰的中心位置随炮弹能 量的增加几乎不变,峰的半峰全宽变化也不明显. 实验探测到的两个峰是靶原子Ni的K壳层电子被 C^{6+} 离子激发形成空穴, L, M, N支壳层的电子向 K 壳层跃迁辐射产生的 K_{α} 和 K_{β} 射线. Ni 的 K_{α} X射线包括 $K_{\alpha 1}(2p_{3/2}-1s)$ 和 $K_{\alpha 2}(2p_{1/2}-1s)$,能量 分别为7.478和7.461 keV, 能量差为17 eV; Ni的 K_{β} X射线包括 $K_{\beta 1}$ (3p_{3/2}-1s), $K_{\beta 3}$ (3p_{1/2}-1s) 和 $K_{\beta5}$ (3d_{5/2}3d_{3/2}-1s)^[17], 能量分别为8.266, 8.265, 8.329 keV, 能量差为36 eV. 实验中X射线探测使 用的是Si 漂移X射线探测器, 能量分辨率约为 136 eV, 而 K_α, K_β分支X射线的能量差都小于探 测器的能量分辨率,所以未能分辨出 K_α和 K_β X 射 线的组成. 实验中Ni的其他壳层的X射线均未探 测到,主要原因是空气介质的自吸收和探测器的效率在低能量端较低.

图 1 (网刊彩色) 能量为 154.26—423.93 MeV/u 的 C⁶⁺ 离 子束入射 Ni 靶激发的 X 射线谱

Fig. 1. (color online) Typical X-ray spectra of 154.26–423.93 MeV/u $\rm C^{6+}$ impacting on solid Ni targets.

图 2 为Ni的 K_α和 K_β X 射线相对强度随入射 能量的变化,相对强度为入射离子个数归一情况下 单粒子入射的 X 射线发射强度.实验发现靶原子的 两条 K 壳层 X 射线的相对强度随入射离子能量的 变化趋势基本一致,均随入射粒子能量的增加有增 强的趋势,但变化不显著.

图 2 C⁶⁺ 与 Ni 靶相互作用产生的 X 射线相对强度随入 射能量的变化

Fig. 2. Relative intensity of K-shell X-ray generated by C^{6+} impacting on Ni target versus incident energy. 对实验中探测到的Ni的 K_{β} 和 K_{α} X射线强 度比进行了分析,发现入射粒子C⁶⁺入射能量的 变化对Ni的 K_{β} 和 K_{α} X射线的强度比变化的影 响无明显规律.入射能量分别为154.26,292.69, 343.28,423.93 MeV/u时,探测到的Ni的 K_{β} 和 K_{α} X射线的相对强度比分别为0.23±0.02,0.28±0.02, 0.27±0.02,0.26±0.02.有关实验测量发现能量为 7.5—8.2 keV的质子入射Ni时该比值为0.17^[18]. 根据文献[19],其他实验测量的K壳层的β射线和 α射线的强度比,比基于单势的Hartree-Slater 理 论计算值高10%.该理论计算的 K_{β} 和 K_{α} X射 线强度比是原子序数的函数,对于Ni来说该比值 为0.14,而实验的测量值比质子入射的实验值和 Hartree-Slater 理论计算值都大,我们初步认为这 可能是由L壳层的多电离引起的.

靶原子 K 壳层空穴退激过程主要有特征 X 射 线发射和俄歇电子发射.当2p 壳层的电子被多电 离时, K-L的跃迁概率自然减小, KLL辐射概率也 由于 L 壳层上电子的减少而减小,总的退激概率应 该是常数 1,所以相应的 K-M 辐射概率就会增大, K-M 辐射对应 K_{β} X 射线发射, K-L 辐射对应 K_{α} X 射线辐射,因此实验测到的 K_{β} 和 K_{α} X 射线强度 比大于单电离原子数据^[20].

3.2 靶原子X射线产生截面

能量为154.26, 292.69, 343.28, 423.93 MeV/u 的C⁶⁺离子在厚度为0.05 mm的Ni 靶中的能量损 失^[16]分别为0.505, 0.342, 0.314, 0.284 MeV/u, 入 射离子在靶内的能量损失不大于0.33%, 可以用薄 靶公式近似估算.

一般薄靶的 X 射线产生截面 σ_X 通过测量 X 射线计数得到, 计算公式为

$$\sigma_{\rm X} = N_{\rm X} / [n N_{\rm P} \varepsilon_{\rm d} f_{\rm t} \Omega / (4\pi)], \qquad (1)$$

式中n为单位面积内的靶原子数, ε_d 为探测器效率, N_X 为X射线光子数, N_p 为入射粒子数, Ω 为探测器所张的立体角, f_t 为靶和探测器之间介质的吸收系数.

实验中所用靶材的厚度(0.05 mm)大于X射 线的自吸收长度(18.8 μm),测量X射线的计数会 受到靶厚度的影响.考虑到不同靶深处产生的X射 线到达探测器的计数与深度有关,而入射离子在靶 内的能量损失很小,尤其在自吸收长度内(能够探 测到的 X 射线发射范围) 能损^[16] 不大于 0.12%, 可 以认为在不同靶深处的单位厚度内入射离子的能 量相同, 产生的 X 射线相同, 所以我们可以从薄靶 公式出发, 推导出适合实验的截面计算公式为^[21]

$$\sigma_{\rm X} = \frac{N_{\rm X}}{nN_{\rm p}\varepsilon_{\rm d}f_{\rm t}\Omega/(4\pi)} \cdot \frac{\sqrt{2\mu L}}{1 - \exp(-\sqrt{2\mu}L)}, \quad (2)$$

式中 μ 为射线在靶中的衰减常数, L为靶的厚度. 实验结果的误差主要来源于X射线的计数统计 (原始谱线多峰高斯拟合误差小于5%)、入射离 子的计数统计(积分电量统计误差小于5%)、入射离 子的计数统计(积分电量统计误差小于10%)以及 立体角误差(束斑大小和探测距离的测量误差小 于6%),考虑误差传递处理后,产生截面的最大误 差为13%. 运用上述公式分别计算了入射能量为 154.26—423.92 MeV/u的C⁶⁺激发Ni的K壳层X 射线的实验产生截面,计算结果如图3所示. 由图 可见Ni的 K_{β} 和 K_{α} X射线实验产生截面随入射能 量增加均有增加的趋势,而且 K_{α} X射线产生截面 的数值比 K_{β} 射线的数值大两个数量级, K壳层X 射线产生总截面的数量级为10² barn.

图 3 Ni 靶 *K* 壳层 X 射线实验产生截面随入射能的变化 Fig. 3. Experimental result of Ni *K*-shell X-ray production cross sections versus incident energy.

为比较实验结果,分别应用 BEA 模型、PWBA 模型、ECPSSR 模型计算靶原子 Ni的 K 壳层 X 射 线的电离截面.两体碰撞近似理论计算电离截面的 公式为^[14]

$$\sigma^{\text{BEA}} = \left(\frac{NZ^2\sigma_0}{U^2}\right)G(V), \qquad (3)$$
$$G(V) = \left[\frac{V^2}{(1-z^2)^2}\right]^{3/2}V^{-2} \times \left[\frac{V^2}{(1-z^2)^2}\right]^{3/2}$$

$$\mathbf{f}(V) = \left[\frac{1}{(1+V^2)}\right] \quad V \quad \times \left[\frac{1}{(1+V^2)} + \frac{2}{3}(1+1/\alpha)\ln(2.7+V)\right] \\ \times (1-1/\alpha)[1-(1/\alpha)^{1+V^2}], \quad (4)$$

式中 N 为对应壳层 i 的电子个数, Z 为入射离子的 电荷态, $\sigma = \pi e^4 = 6.56 \times 10^{-14} \text{ cm}^2 \cdot \text{eV}^2$, U 为 电子束缚能, G(V) 为约化速度的函数, 约化速度 $V = v_p/v_i (v_p 是入射离子的速度, v_i 是壳层 i 电子$ 的平均速度), $\alpha = 4V^2(1 + 1/V), V < 0.206 \text{ tb}^{[22]}$ 可近似取 $G(V) = 4V^4/15$.

平面波玻恩近似理论中电离截面计算公式在 质心坐标系中的表达式为^[23]

$$\sigma_{\rm s}^{\rm PWBA} = 8\pi a_0^2 \left(\frac{Z_1^2}{Z_{2\rm s}^4}\right) \theta_{\rm s}^{-1} F_{\rm s} \left(\frac{\eta_{\rm s}}{\theta_{\rm s}^2}, \theta_{\rm s}\right), \qquad (5)$$

式中 a_0 为玻尔半径, Z_1 为入射离子的原子序数, Z_{2s} 为靶原子有效核电荷数, 对于K壳层, $Z_{2K} = Z_2 - 0.3$, θ_s 为约化电子束缚能, η_s 为约化离子能量, F_s 为约化普适截面. Benka和Kropf^[24]利用非微扰非相对论的屏蔽氢原子波函数给出了K壳层的 F_s 解析表达式.

ECPSSR理论是基于PWBA理论的修正,其 电离截面计算公式为^[10]

 σ^{ECPSSR}

$$= C_{\rm Bs}^{\rm E} \left(dq_{0{\rm s}}^B z_{\rm s} \right) \sigma_{\rm s}^{\rm PWBA} \left[\frac{m_{\rm s}^{\rm R} h_{\rm s} x_{\rm s} / z_{\rm s}}{\left(z_{\rm s} q_{\rm s} \right)^2}, z_{\rm s} q_{\rm s} \right], \quad (6)$$

式中 C_{Bs}^{E} 为库仑偏转修正, ζ_{s} 为束缚能和极化效 应修正因子, m_{s}^{R} 为相对论修正. 对于 ECPSSR 和 PWBA 理论, 利用 ISICS(ADDS-V4-0 版本)程序 分别给出了 Ni 的 K_{α} 和 K_{β} X 射线产生截面, 计算 结果如图 4 所示.

按照原子结构和光谱理论, Ni 原子 K 壳层 X 射线的电离截面和产生截面有如下关系:

$$\sigma_K^{\rm X} = \sigma_K \omega_K,\tag{7}$$

式中 ω_K 为荧光产额, σ_K 为电离截面, σ_K^X 为X射 线的产生截面. 一般而言, 在离子原子碰撞过程中, 由于L壳层的多电离, K壳层X射线的荧光产额与 原子数据相比会发生变化. 但是对于固体靶, K壳 层的荧光产额不会有太大改变, 除非L壳层电子完 全电离, 使用单电离荧光产额对X射线产生截面计 算造成的误差不会超过10%^[25]. Tawara等^[26]的 实验证明固体靶中L壳层多电离的概率很小, K壳 层荧光产额基本上是一个常数. 我们使用单电离 荧光产额来计算X射线发射截面, 对于Ni, 其值为 0.406^[18].

图4为不同动能的C⁶⁺粒子入射Ni靶激发的 靶原子K壳层X射线产生总截面的实验结果以及

分别应用两体碰撞近似模型、平面波玻恩近似模型 和ECPSSR理论模型的计算结果. 从图中可以看 出应用 BEA 模型计算的理论值与实验值变化趋势 一致, 靶原子Ni的K壳层X射线产生截面随入射 离子能量的增加而增大,但BEA模型计算的理论 值明显大于实验值. 高能离子在和靶原子碰撞的过 程中,入射离子的能量越大,传递给靶原子的能量 也越大, 靶原子外壳层电子被激发或电离的概率也 就越大,碰撞过程中X射线产生截面也越大. BEA 模型计算的结果与实验趋势一致,因为入射离子 C^{6+} 为裸核,与Ni靶的碰撞可以近似为不对称系统 的裸核碰撞,这一点与理论模型相符,但BEA模型 是建立在描述中低能区轻离子入射的碰撞电离过 程基础上的,在描述高能区重离子与原子碰撞截面 时可能会出现偏差,正如我们的分析结果,BEA模 型计算的理论值比实验值大20倍左右.因此初步 认为使用BEA模型描述高能区重离子与原子碰撞 截面时需要进行修正,模型的修正需要后续大量的 实验数据支持. 另外, 近来的研究表明, 能量较高 的离子与靶原子的相互作用过程中,由于相对论效 应的影响, 2p态电子的重整化过程延迟, 致使 L_2 和 L3支壳层的多电离效应变小^[27],导致测量到的X 射线产生截面变小. 再者, 高能 C⁶⁺ 入射固体 Ni 靶 的过程中,入射离子的核与靶核的作用以及γ射线 辐射使入射离子能量转移,导致靶原子中2p电子 被离化或激发的概率减小,也成为X射线产生截面 变小的原因之一.

图 4 Ni 靶 K 壳层 X 射线产生截面随入射离子动能的变 化曲线

Fig. 4. *K*-shell X-ray production cross section of Ni as a function of kinetic energy of incident ions.

从图4可以看出,利用ECPSSR和PWBA计算的理论值随入射离子动能增加而减小,与实

验值随入射动能变化趋势相反.据分析,入射 离子能量在1 MeV/u到几十MeV/u的能区范围 内PWBA理论可以较好地描述实验;ECPSSR则 是基于PWBA理论对入射离子的能量在较低能 区(< 1 MeV/u)提出的修正.因此要直接使用 ECPSSR和PWBA理论分析高能区的实验结果, 还需要考虑更多因素加以修正.

4 结 论

实验测量了高能区(154.26-423.92 MeV/u) 的C⁶⁺离子束入射Ni固体表面时激发的靶原子的 K_{α} 和 K_{β} 特征X射线. 发现Ni靶K壳层X射线产 生截面的数量级为10² barn, 且截面随入射离子能 量的增加而增大.对Ni的X射线产生截面的实验 值与BEA模型、PWBA模型、ECPSSR模型估算的 理论值进行比较,发现实验截面随入射能量增加 的趋势与BEA模型估算的趋势一致,但实验值明 显低于理论值,初步认为BEA模型在描述高能区 电离过程时需要修正. 另外, 高能离子与靶原子相 互作用的过程中相对论效应使2p态电子的重整化 过程延迟, 致使 L2 和 L3 支壳层的多电离效应变小, 这与高能区γ射线的辐射都是导致X射线产生截 面实验值变小的原因. PWBA 模型和 ECPSSR 模 型理论分析结果与中低能区的实验结果符合较好, 而高能脉冲离子束与固体靶的实验由于特殊实验 条件等因素的限制开展较少,几乎没有相关的实验 数据报道.因此,无论是建立新理论模型或对已有 理论模型进行修正以描述高能荷离子与靶的碰撞 过程,都需要我们在实验研究和理论推导方面做出 更大的努力.

对中国科学院近代物理研究所 CSR 上全体工作人员 的辛勤工作表示衷心感谢.并感谢陕西省科技统筹创新工 程重点实验室项目以及陕西省空间材料科学与技术重点实 验室的支持.

参考文献

- Dennerl K, Englhauser J, Trümper J 1997 Science 277 1625
- [2] Hu Z M, Han X Y, Li Y M, Kato D J, Tong X M, Nakamura N 2012 Phys. Rev. Lett. 108 073002
- [3] Zhou X M, Zhao Y T, Cheng R, Lei Y, Wang Y Y, Ren J R, Liu S D, Mei C X, Chen X M, Xiao G Q 2016 Acta

Phys. Sin. **65** 027901 (in Chinese) [周贤明, 赵永涛, 程锐, 雷瑜, 王瑜玉, 任洁茹, 刘世东, 梅策香, 陈熙萌, 肖国青 2016 物理学报 **65** 027901]

- [4] Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718
- [5] Wang X, Zhao Y T, Chen R, Zhou X M, Xu G, Sun Y B, Lei Y, Wang Y Y, Ren J R, Yu Y, Li Y F, Zhang X A, Li Y Z, Liang C H, Xiao G Q 2012 *Phys. Lett. A* 376 1197
- [6] Liang C H, Zhang X A, Li Y Z, Zhao Y T, Mei C X, Zhou X M, Xiao G Q 2013 Acta. Phys. Sin. 62 063202 (in Chinese) [梁昌慧, 张小安, 李耀宗, 赵永涛, 梅策香, 周 贤明, 肖国青 2013 物理学报 62 063202]
- [7] Mei C X, Zhao Y T, Zhang X A, Ren J R, Zhou X M, Wang X, Lei Y, Liang C H, Li Y Z, Xiao G Q 2012 Laser Part. Beams 30 665
- [8] Merzbacher E, Lewis H W 1958 Handbuch der Physik 6 166
- [9] Lapicki G, Laubert R, Brandt W 1980 Phys. Rev. A 22 1889
- [10] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717
- [11] Lapicki G, Zander A R 1981 Phys. Rev. A 23 2072
- [12] Lapicki G 2002 Nucl. Instr. Meth. B 19 8
- [13] Kocbach L, Hansteen J M, Gundersen R 1980 Nucl. Instr. Meth. B 169 281

- [14] McGuire J H, Richard P 1973 Phys. Rev. A 8 1374
- [15] Fano U, Lichten W 1965 Phys. Rev. Lett 14 627
- [16] LISE 10.0.8. http://lise.nscl.msu.edu/lise.html [2017-01-30]
- [17] Kessler J E G, Deslatts R D, Girard D, Schwitz W, Jacobs L, Renner O 1982 Phys. Rev. A 26 2696
- [18] Thompson A C, Kirz J, Attwood D T, Gullikson E M, Howells M R, Kortright J B, Robinson A L, Underwood J M 2009 X-ray Data Booklet (3rd Ed.)
- [19] Scofield J H 1974 Phys. Rev. A 9 1041
- [20] Slabkowska K, Polasik M 2003 Nucl. Instr. Meth. B 205 123
- [21] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402
- [22] Gryzinski M 1965 Phys. Rev. A 138 336
- [23] Liu Z, Cipolla S J 1996 Comp. Phys. Comm. 97 315
- [24] Benka O, Kropf A 1978 Atomic Data and Nuclear Data Tables 22 219
- [25] Krause M O 1979 J. Phys. Chem. Ref. 8 307
- [26] Tawara H, Richard P, Gray T J, Newcomb J, Jamison K A, Schmiedekamp C, Hall J M 1978 *Phys. Rev. A* 18 1373
- [27] Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M 2009 Phys. Rev. A 79 032710

K-shell X-ray emission from high energy pulsed C^{6+} ion beam impacting on Ni target^{*}

Mei Ce-Xiang¹⁾²⁾ Zhang Xiao-An^{1)3)†} Zhou Xian-Ming³⁾ Zhao Yong-Tao²⁾³⁾ Ren Jie-Ru²⁾ Wang Xing²⁾ Lei Yu³⁾ Sun Yuan-Bo³⁾ Cheng Rei³⁾ Xu Ge³⁾ Zeng Li-Xia¹⁾²⁾

 (Ion beam & Optical Physical Joint Laboratory of Xianyang Normal University and Institute of Modern Physics, Chinese Academy of Sciences, Xianyang 712000, China)

2) (School of Science, Xi'an Jiaotong University, Xi'an 710049, China)

3) (Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China)

(Received 30 March 2017; revised manuscript received 5 May 2017)

Abstract

Accurate measurement of the ionization cross section of the target atom induced by collision between ions and atoms is of great significance for studying the atomic shell process and establishing a suitable theoretical model. The experimental data and the theoretical models mostly concentrate on the cases in the low energy region at present. Only a few experimental data of high energy region are reported due to the limitation of experimental conditions. Which theory is more suitable to describe the ionization cross section of the inner shell of the target atom caused by the high energy heavy ions, is necessarily studied experimentally. The C^{6+} ions provided by the Heavy Ion Research Facility in Lanzhou Electron Cooling Storage Ring, are used to bombard the Ni target, in which the K-shell X-ray of Ni is measured. The incident energies of C^{6+} ions are 165, 300, 350 and 430 MeV/u respectively. Through analyzing the intensity ratio of K_{β}/K_{α} X-ray of Ni, it is found that the influence of incident energy on the intensity ratio of K_{β}/K_{α} X-ray is not obvious. The intensity ratios of this experiment are greater than the experimental values of incident proton and the calculated values based on the Hartree-Slater theory, which may be caused by the multiple-ionization of the L shell. The production cross sections of Ni K-shell X-ray are calculated by the binary encounter approximation (BEA) model, the plane wave Born approximation (PWBA) model and the energy-loss coulomb-repulsion perturbed-stationary-state relativistic (ECPSSR) theory respectively, which are compared with the experimental results in this paper. It is found that the experimental cross section increases with the increasing incident energy, which is consistent with the trend of BEA model estimation, but the experimental value is obviously lower than the theoretical value. We think that BEA model needs to be modified when describing the ionization process in the high energy region.

Keywords: X-ray, production cross section, high energy pulsed beam

PACS: 34.80.Dp, 32.30.Rj, 32.80.Aa

DOI: 10.7498/aps.66.143401

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11605147, 11505248) and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 15JK1793).

[†] Corresponding author. E-mail: zhangxiaoan2000@126.com