物理学报 Acta Physica Sinica

Ga掺杂对Cu₃SbSe₄热电性能的影响 陈萝娜 刘叶烽 张继业 杨炯 邢娟娟 骆军 张文清

Effect of Ga doping on the thermoelectric performance of Cu₃SbSe₄

Chen Luo-Na Liu Ye-Feng Zhang Ji-Ye Yang Jiong Xing Juan-Juan Luo Jun Zhang Wen-Qing

引用信息 Citation: Acta Physica Sinica, 66, 167201 (2017) DOI: 10.7498/aps.66.167201 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.167201 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I16

您可能感兴趣的其他文章 Articles you may be interested in

基于变温霍尔效应方法的一类 n-GaN 位错密度的测量

Determination of dislocation density of a class of n-GaN based on the variable temperature Hall-effect method

物理学报.2017, 66(6): 067201 http://dx.doi.org/10.7498/aps.66.067201

一种测量纤锌矿 n-GaN 位错密度的新方法

A new method to determine the dislocation density in wurtzite n-GaN 物理学报.2016, 65(16): 167201 http://dx.doi.org/10.7498/aps.65.167201

PbSe-MnSe 纳米复合热电材料的微结构和电热输运性能Microstructures and thermoelectric transports in PbSe-MnSe nano-composites物理学报.2016, 65(10): 107201http://dx.doi.org/10.7498/aps.65.107201

Ba/Ag 双掺杂对 Ca₃Co₄O₉ 基热电氧化物热传输性能的影响 Effect of double substitution of Ba and Ag on thermal transport of Ca₃Co₄O₉-based thermoelectric oxide 物理学报.2013, 62(18): 187201 http://dx.doi.org/10.7498/aps.62.187201

Sr 掺杂钙钛矿型氧化物 $Y_{1-x}Sr_xCoO_3$ 的溶胶 -凝胶制备及电阻率温度关系研究 Temperature dependence of electrical resistivity for Sr-doped perovskite-type oxide $Y_{1-x}Sr_xCoO_3$ prepared by sol-gel process 物理学报.2013, 62(4): 047202 http://dx.doi.org/10.7498/aps.62.047202

$Ga掺杂对Cu_3SbSe_4热电性能的影响^*$

陈萝娜 刘叶烽 张继业 杨炯 邢娟娟 骆军 张文清*

(上海大学材料科学与工程学院,上海 200444)

(2017年4月20日收到; 2017年6月9日收到修改稿)

采用熔融-淬火方法制备了 Cu_{2.95}Ga_xSb_{1-x}Se₄ ($x = 0, 0.01, 0.02 \approx 0.04$) 样品,系统地研究了 Ga 在 Sb 位掺杂对 Cu₃SbSe₄ 热电性能的影响.研究结果表明,少量的 Ga 掺杂 (x = 0.01) 可以有效提高空穴浓度,抑制本征激发,改善样品的电输运性能.掺 Ga 样品在 625 K时功率因子达到最大值 10 μ W/cm·K²,比未掺 Ga 的 Cu_{2.95}SbSe₄ 样品提高了约一倍.但是随着 Ga 掺杂浓度的进一步提高,缺陷对载流子的散射增强,同时载流子有效质量增大,导致载流子迁移率急剧下降.因此 Ga 含量增加反而使样品的电性能恶化.在热输运方面,Ga 掺杂可以有效降低双极扩散对热导率的贡献,同时掺杂引入的点缺陷对高频声子有较强的散射作用,因此高温区的热导率明显降低.最终该体系在 664 K时获得最大 ZT 值 0.53,比未掺 Ga 的样品提高了近 50%.

关键词: Ga掺杂, Cu₃SbSe₄, 热电性能 PACS: 72.20.Pa, 72.10.Fk, 61.72.U-, 65.40.-b

1引言

热电材料是一种通过固体内部载流子运动实现电-热相互转换的清洁能源材料.利用热电材料的Seebeck效应和Peltier效应,可以分别实现热电装置的发电和制冷功能.与传统的发电和制冷装置相比,热电装置具有体积小、质量轻、无污染、无噪音、使用寿命长等优点^[1-3].通常,材料的热电性能采用无量纲热电优值*ZT*来衡量,

$$ZT = \sigma S^2 T / \kappa, \tag{1}$$

式中 σ 、S和 κ 分别为电导率、Seebeck 系数和热导率. 但是,以上三个参数并不是相互独立的,它们都与材料的电子结构和载流子输运特性相关,因此ZT值的提高需要协同调控这些相互关联的参数^[4].目前调控热电性能的方法主要有两种:一是通过能带工程^[5],或者引入共振能级^[6,7]、量子限域效应^[8]以及能量过滤效应等^[9]来增大材料的Seebeck 系数,提高其功率因子 PF(σS^2);二是通过

DOI: 10.7498/aps.66.167201

引入不同尺度的晶体缺陷来增强声子散射 (包括纳 米析出相、晶界、位错、点缺陷等),降低材料的晶格 热导率 (κ_{lattice})^[10,11].

近年来,类金刚石结构的Cu基三元化合 物 (如 Cu₂GeSe₃, Cu₂SnSe₃, CuGaTe₂, CuInTe₂, Cu₂ZnGeSe₄和Cu₃SbS₄等),因具有较好的热电性 能受到了广泛的关注^[12-18].其中, Cu₃SbSe₄是 一种带隙较小(0.29 eV)的p型半导体材料^[19],该 材料在650 K左右时ZT值达到最大(约为0.25). 相对于性能优异的传统中温区热电材料 PbTe^[20] 而言, Cu₃SbSe₄具有无有害元素且成本较低的优 点. 但是未掺杂的Cu₃SbSe₄化合物由于载流子浓 度低, 电导率较小, 因而对其热电性能的优化主 要集中于通过掺杂提高其载流子浓度. Do和Mahanti^[21]基于第一性原理计算,对Cu₃SbSe₄各个 位置的杂质形成能进行了研究.结果表明,这种材 料易形成含Cu空位的p型半导体,同时其Sb位的 杂质形成能较低,是最容易掺杂的位置.目前的实 验研究与上述理论计算结果一致,较为有效的掺杂

^{*} 国家自然科学基金 (批准号: 51371194, 51172276, 51632005) 资助的课题.

[†]通信作者. E-mail: junluo@shu.edu.cn

[‡]通信作者. E-mail: wqzhang@shu.edu.cn

^{© 2017} 中国物理学会 Chinese Physical Society

大部分是在Sb位进行的受主掺杂.

Yang 等^[22] 发现通过在 Sb 位掺杂 Sn 可以有效 提高Cu₃SbSe₄的电导率,其ZT值在673K时可达 约0.75,相比未掺杂的Cu₃SbSe₄提高了2倍.Wei 等^[19] 发现 Cu₃SbSe₄ 价带顶并非之前理论计算所 预测的三重简并态,因此通过掺杂提高体系的空 穴浓度会同步提高空穴的有效质量,为该体系电 输运性能的优化提供了指导. Qin 等^[23] 对 Sb 位掺 杂Bi进行了研究,体系的ZT值在600K时达到了 0.7 左右. Li 等^[24] 进一步对 Sn 掺杂 Cu₃SbSe₄ 的微 结构进行了优化,把ZT值提高到1.05左右.最近, Liu 等^[25] 通过在Cu₃SbSe₄的Sb位进行Sn和Bi共 掺杂,在673 K时获得了高达1.26的热电优值,是 目前报道的p型Cu₃SbSe₄材料的最高ZT值.此 外, Li 等^[26] 和 Zhang 等^[27] 分别在 Sb 位掺杂了第 三主族元素 Al 和 In, 获得的最大 ZT 值分别为 0.58 和 0.5.

在本文的工作中,我们考虑到Ga³⁺和Sb⁵⁺离 子半径相近(都约为0.62 Å),因此Ga³⁺可能较容 易取代Sb5+,从而有效提高Cu₃SbSe₄的空穴浓度 和电导率(缺陷反应如(2)式). 另外, Wei等^[19,28] 指出,在Cu₃SbSe₄中引入适当的Cu空位有助于补 偿高温烧结过程中Se元素的挥发,同时Cu空位的 引入也可以进一步增加样品的空穴浓度(缺陷反 应如(3)式),从而获得更好的热电性能.因此,本 文采用熔融-淬火方法制备了 $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 和 0.04)样品,并系统研究了Ga 替代Sb对Cu₃SbSe₄电、热输运性能的影响.

$$Ga^{3+} \xrightarrow{Cu_3SbSe_4} 3Cu_{Cu} + Ga_{Sb}'' + 4Se_{Se} + 2h^{\bullet},$$
(2)
$$0 \rightarrow V_{Cu}' + h^{\cdot}.$$
(3)

$$0 \to V'_{\rm Cu} + {\rm h}^{\cdot}. \tag{3}$$

实验方法 2

2.1 样品制备

在Ar气氛的保护下,按照化学计量比 $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 和 0.04) 配 制Cu粉(99.9%), Sb粒(99.99%), Se粉(99.99%)和 Ga块(99.9999%),并置于石墨坩埚中,随后将石墨 坩埚真空密封于石英管中. 然后将石英管放入立 式管式炉中,缓慢升温到1173 K (升温时间30 h), 并在此温度下保温10 h,随后缓慢降温到773 K, 并退火5d以保证样品的均匀性,最后淬火得到块 状样品.利用研钵将样品磨成粉后,在400°C和 45 MPa压力下热压烧结成圆片状样品,进一步切 割成合适的形状后用于后续的热电性能测试.

2.2 样品表征

利用粉末X射线衍射(XRD)进行物相分析, 设备为日本理学公司 D/max-2200X (Cu K_{α}) 衍射 仪. 利用ULVAC-RIKO ZEM-3测试样品的电导 率 (σ)和 Seebeck 系数 (S). 样品的热扩散系数 (α) 利用 Netzsch LFA 457 (cowan+脉冲修正)激光热 导仪测试,比热(CP)利用差示扫描量热法(DSC, Netzsch DSC214) 进行表征. 样品的密度(D) 由阿 基米德排水法测量. 样品的总热导率(κ_{tot})根据公 式 $\kappa_{tot} = D \times C_P \times \alpha$ 计算得到. 利用场发射扫描 电子显微镜 (SEM, Zeiss Gemini 300, Germany)进 行微结构表征. 样品的实际成分由能量色散 X 射线 谱 (energy-dispersive X-ray spectroscopy, EDXS) 确定.

3 实验结果与讨论

图1为样品Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01,0.02, 0.04) 的室温 XRD 图谱. XRD 分析结果表明

图 1 (网刊彩色) 样品 Cu_{2.95}Ga_xSb_{1-x}Se₄(x = 0, 0.01, 0.02 和 0.04) 的 (a) XRD 图谱以及 (b) (112) 衍射 峰和(c)(332)衍射峰的放大图

Fig. 1. (color online) (a) XRD patterns for $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 and 0.04) samples and magnified peaks for (b) (112) and (c) (332) diffraction.

表1 Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02和 0.04) 名义成分和实际成分的原子比 Table 1. Nominal and actual atomic contents for Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02 and 0.04) detected by EDXS.

样品	Cu:Sb:Se (名义成分)	Cu:Sb:Se (实际成分)	
$Cu_{2.95}SbSe_4$	2.95:1.00:4.00	2.87:1.00:4.175	
$Cu_{2.95}Ga_{0.01}Sb_{0.99}Se_4$	2.95:0.99:4.00	3.01: 0.99: 3.96	
$\rm Cu_{2.95}Ga_{0.02}Sb_{0.98}Se_4$	2.95:0.98:4.00	3.00:0.98:3.95	
$Cu_{2.95}Ga_{0.04}Sb_{0.96}Se_{4}$	2.95: 0.96: 4.00	2.95: 0.96: 3.95	

所有样品的晶体结构均为四方相的脆硫锑铜 矿结构(PDF#085-0003),空间群为I42m. 随着 Ga掺杂量的增多XRD图谱中并未发现有杂相 峰的存在,同时各衍射峰的位置也没有发生 明显的移动(见图1(b)及图1(c)中(112)及(332) 衍射峰的放大图). 由于Ga³⁺和Sb⁵⁺的离子 半径相同,因此Ga掺入后化合物的晶格常数 基本没有变化. 图2(a)和图2(b)分别为样品 Cu_{2.95}Ga_{0.02}Sb_{0.98}Se₄和Cu_{2.95}Ga_{0.04}Sb_{0.96}Se₄的 背散射电子图像,可以确认在Ga掺杂量较多时,样 品成分仍然比较均匀,并没有产生第二相. EDXS 测量的样品各成分原子比与其名义成分的原子比 列于表1,结果表明Cu,Sb和Se的实际成分与名 义成分接近,高温反应后的各元素成分并无太大变 化,同时对Se元素的挥发控制也较好.

图 2 (a) 样品 Cu_{2.95}Ga_{0.02}Sb_{0.98}Se₄和 (b) 样品 Cu_{2.95}Ga_{0.04}Sb_{0.96}Se₄的背散射电子图像

Fig. 2. BSE images of the samples (a) $Cu_{2.95}Ga_{0.02}$ -Sb_{0.98}Se₄ and (b) $Cu_{2.95}Ga_{0.04}Sb_{0.96}Se_4$.

图 **3**(a) 为样品 Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02, 0.04) 的电导率 (σ) 随温度的变化规律.

图 3 (网刊彩色) 样品 Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02 和 0.04)(a) 电导率 (σ) 和 (b) Seebeck 系数 (S) 随温度 (T) 的变化

Fig. 3. (color online) Temperature dependence of (a) electrical conductivities (σ) and (b) Seebeck coefficients (S) for Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02 and 0.04) samples.

很明显,虽然样品中存在一些Cu空位,能够提供 少量的空穴载流子,但未掺杂Ga的Cu_{2.95}SbSe₄样 品的电导率仍然较小,室温下约为5500 S/m,其 电导率随温度的变化规律呈现非简并半导体行为. 当x = 0.01时,样品在室温下的电导率提高到了 12800 S/m. 然而,当掺入更多Ga时,电导率随Ga 掺杂浓度的增加反而减小.样品的载流子浓度如 表2所列,样品的载流子浓度随Ga含量的增加而 增大,说明Ga³⁺取代Sb⁵⁺有效地提高了样品的载 流子浓度.另一方面,样品的空穴迁移率随Ga掺杂 浓度的升高而急剧降低.当x = 0.01时,样品的迁 移率已经降到20 cm²·V⁻¹·s⁻¹以下,这与文献[27] 报道中In掺杂的情况类似.因此,x > 0.01样品的 电导率降低与载流子迁移率的降低有关.我们利用 测量得到的载流子浓度和 Seebeck 系数(见图3)计 算了价带顶的有效质量. 假设价带为单带抛物线型 并且其中的主导散射机制为声学声子散射,可由以 下两个公式估算有效质量 m*^[23,29]:

$$S = \frac{k_{\rm B}}{e} \left\{ \frac{2F_1(\eta)}{F_0(\eta)} - \eta \right\},\tag{4}$$

$$m^* = \frac{h^2}{2k_{\rm B}T} \left(n/4\pi F_{1/2}(\eta) \right)^{2/3},\tag{5}$$

式中 $k_{\rm B}$, h, n, η 分别为玻尔兹曼常数、普朗克 常量、载流子浓度和约化费米能级(费米能除以 kT); $F_{\rm m}(\eta)$ 为m阶 Fermi-Dirac 积分. 计算结果如 表 2 所列, x = 0.01样品的空穴有效质量是未掺 Ga 样品的 1.7 倍. 随着 Ga 含量的增加, 空穴有效质量 进一步增大. 说明迁移率的减小除了与 Ga 掺杂引 入的缺陷有关之外, 还与有效质量增大有关. 另外, Cu_{2.95}SbSe₄ 样品的带隙($E_{\rm g}$)可以通过(6)式^[30]进 行粗略估计,

$$E_{\rm g} = 2eS_{\rm max}T_{S_{\rm max}},\tag{6}$$

式中 S_{max} , $T_{S_{\text{max}}}$ 分别为最大Seebeck系数和与之 相对应的温度, e为电子电荷量. 计算得到的带隙 值约为0.28 eV, 与文献[19]报道的0.29 eV相一致.

另一方面,由图3(b)可知,未掺杂Ga的样品 其Seebeck系数随温度的升高先增大后减小,呈现 非简并半导体行为.而当掺入了Ga之后,Seebeck 系数随着温度升高而增大,转变成为简并半导体行 为.根据Mott关系^[6,31,32],Seebeck系数近似和载 流子浓度成反比,随着Ga掺入量的增多,样品的 载流子浓度逐渐增大,Seebeck系数依次减小.然 而,由于Ga掺杂后空穴的有效质量显著增加,导 致Seebeck系数并没有随载流子浓度的增大而迅 速下降,因此室温下所有样品的Seebeck系数均维 持在200 μV·K⁻¹以上.另外载流子浓度的增大还 抑制了本征激发, $Cu_{2.95}SbSe_4$ 的本征激发温度约为430 K, x = 0.01的样品本征激发温度升高到约550 K, 而 Ga 含量更高的样品在测试温度范围内未出现明显的本征激发.

图4为样品功率因子*PF*随温度的变化关系. 由于具有较合适的电导率和Seebeck系数,相比于 其他样品, x = 0.01的样品在整个测试温度范围 内具有最大的功率因子,并在625 K时达到了约 10 μ W/cm·K²,比未掺杂Ga的Cu_{2.95}SbSe₄样品 提高了接近一倍.而载流子浓度更大的x = 0.02和 0.04的两个样品,由于迁移率较小,导致其功率因 子小于x = 0.01的样品,最大分别为9 μ W/cm·K² 和8 μ W/cm·K²,但都大于未掺Ga的样品.

图 5 (a) 为样品总热导率随温度变化的曲线. 图 5 (b) 为晶格热导率随温度变化的曲线. 晶格热导率由总热导率(κ_{tot}) 扣除电子热导率($\kappa_{e} = L\sigma T$)得到,即 $\kappa_{lattice} = \kappa_{tot} - L\sigma T$,其中 L为洛伦兹常数.利用单带模型,洛伦兹常数L可 以简化为^[33]

图4 (网刊彩色) 样品 Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02 和 0.04) 的 PF

Fig. 4. (color online) Temperature dependence of power factors for $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 and 0.04) samples.

表 2 室温下样品 Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02 和 0.04) 的载流子浓度 (n)、迁移率 (μ)、电导率 (σ) 以 及有效质量 (m^*)

Table 2. Room temperature carrier concentrations (n), Hall mobilities (μ) , electrical conductivities (σ) and effective masses for Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02 and 0.04) samples.

样品	载流子浓度 n/cm^{-3}	迁移率 $\mu/cm^2 \cdot V^{-1} \cdot s^{-1}$	电导率 σ/Sm^{-1}	m^*/m_0
$Cu_{2.95}SbSe_4$	6.8×10^{18}	75	$5.54{ imes}10^3$	1.09
$\rm Cu_{2.95}Ga_{0.01}Sb_{0.99}Se_4$	3.9×10^{19}	19.7	$1.26{\times}10^4$	1.7
$\rm Cu_{2.95}Ga_{0.02}Sb_{0.98}Se_4$	$4.2{\times}10^{19}$	17.4	$1.18{ imes}10^4$	1.77
$\rm Cu_{2.95}Ga_{0.04}Sb_{0.96}Se_4$	$5.6{\times}10^{19}$	13	$1.16{\times}10^4$	1.83

图 5 (网刊彩色) 样品 Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02, 0.04) 的 (a) 总热导率 (κ_{tot}) 和 (b) 晶格热导率 ($\kappa_{lattice}$), 图 (b) 中红色虚线为 T^{-1} 关系,黑色虚线为 Cahill 模型计算得到的理论最低晶格热导率

Fig. 5. (color online) Temperature dependence of (a) total thermal conductivity and (b) lattice thermal conductivity for $\text{Cu}_{2.95}\text{Ga}_x\text{Sb}_{1-x}\text{Se}_4$ (x = 0, 0.01, 0.02 and 0.04) samples. In Fig. (b), the red dashed line represents the relationship of lattice thermal conductivity and T^{-1} , and the black dashed line is the calculated lowest thermal conductivity with the Cahill model.

$$L = \left(\frac{k_{\rm B}}{e}\right)^2 \frac{3F_0(\eta)F_2(\eta) - 4F_1(\eta)^2}{F_0(\eta)^2}, \qquad (7)$$

式中 $k_{\rm B}$, $e \, \pi \eta \, \beta$ 别为玻尔兹曼常数、电子电荷量以 及约化费米能级 (费米能除以 $k_{\rm B}T$). $F_m(\eta)$ 为m阶 Fermi-Dirac 积分. 我们的计算采用Kim 等^[34]进一 步拟合得到的结果:

$$L(10^{-8} \ \mu W \ \cdot K^{-2}) = 1.5 + \exp\left(-\frac{|S|}{116}\right), \quad (8)$$

其中S为Seebeck 系数. 从晶格热导率随温度的变 化趋势来看, 基本上符合 T^{-1} 变化规律, 说明主要 的声子散射机制为Umklapp过程. 但是在高温下, 未掺Ga以及x = 0.01样品的晶格热导率对 T^{-1} 规 律有较大偏离, 这是由样品的双极扩散导致. 随着 掺Ga浓度的进一步增大, 载流子的双极扩散得到 有效抑制, 因此x > 0.01样品高温下的晶格热导率 与 T^{-1} 规律符合较好. 此外, 如图5所示, Ga的掺 入对热导率的影响不大, 这与文献 [26] 报道的 Al 掺 杂的情况类似. 但是在高温区, Ga 掺杂引入的点缺 陷对高频声子有较强的散射作用, 导致掺Ga 样品 的高温晶格热导率有所降低. 但是所有样品的晶格 热导率仍然明显高于 Zhang 等 ^[35] 通过 Cahill 模型 计算得到的理论最低晶格热导率 0.5 W·m⁻¹·K⁻¹. 因此 Cu₃SbSe₄ 化合物的晶格热导率还有进一步降 低的空间.图6为样品的断面 SEM 形貌图.对比发 现,未掺 Ga 样品的晶粒大小较为均匀,约为15 µm 左右 (如图6 (a) 所示).当掺入 Ga 之后,样品的晶 粒尺寸变得不均匀,在较大晶粒之间出现5 µm 以 下的较小晶粒.但是,所有样品的孔洞数量并未出 现较大变化,因此样品的相对密度大致相同,均为 97% 左右 (如表 3 所列).所以,样品的微结构对其 热电性能没有明显影响.

图 7 为样品的 ZT 值, 掺 Ga 样品的 ZT 值均大 于未掺 Ga 样品, 其中 x = 0.02 样品由于高温热导 率降低较大,因此其 ZT 最大, 664 K时约为0.53. 而功率因子最大的 x = 0.01 样品,由于热导率相对 较大,最终其高温区的热电性能与 x = 0.02 的样品 相当,664 K时的 ZT 值约为0.52,比未掺 Ga 的样 品提高了约50%.图7中我们也给出了部分文献报 道的结果,通过对比发现,Sn 掺杂^[22] 对 Cu₃SbSe₄ 热电性能的提升作用较为显著,其 ZT 在 675 K时 达到了约0.75.而第三主族元素 (Al, Ga, In)的掺 杂虽然能优化材料的电输运性能,但对热导率没有 明显影响,因此样品 ZT 值的提高有限.

表 3 样品 $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 和 0.04)的相对密度 Table 3. Relative densities for $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 and 0.04) samples.

样品 ($Cu_{2.95}Ga_xSb_{1-x}Se_4$)	x = 0	x = 0.01	x = 0.02	x = 0.04
相对密度/%	96.9	97.1	97	96.8

图 6 样品 $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02, 0.04)的断面 SEM 形貌图 Fig. 6. SEM images of fracture surfaces for $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 and 0.04) samples.

图 7 (网刊彩色)样品 Cu_{2.95}Ga_xSb_{1-x}Se₄ (x = 0, 0.01, 0.02和0.04)的 ZT 值与 Cu₃Sb_{0.975}Sn_{0.025}Se₄ ^[22], Cu₃Sb_{0.97}Al_{0.03}Se₄ ^[26]及 Cu₃Sb_{0.997}In_{0.003}Se₄ ^[27]化合物的比较,图中 ZT 值测量误差均为10%

Fig. 7. (color online) Temperature dependence of ZT for $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 and 0.04) samples compared with $Cu_3Sb_{0.975}Sn_{0.025}Se_4$ ^[22], $Cu_3Sb_{0.97}Al_{0.03}Se_4$ ^[26] and $Cu_3Sb_{0.997}In_{0.003}Se_4$ ^[27] compounds. The measurement error is 10% for ZT (error bar).

4 结 论

我 们 运 用 熔 融-淬 火 方 法 制 备 了 $Cu_{2.95}Ga_xSb_{1-x}Se_4$ ($x = 0, 0.01, 0.02 \approx 0.04$) 样品, Ga掺杂有效地增大了样品的载流子浓度, 并 且抑制了本征激发. x = 0.01时, 样品的电导率达

到最大, 625 K时的功率因子达到10 μW/cm·K². 但是随着载流子浓度的增大,样品的载流子迁移率 急剧下降,导致具有更大载流子浓度的样品的电导 率并未得到进一步提升. 从热导率的变化结果来 看,高温下,Ga掺杂可以有效降低双极扩散对热导 率的贡献,同时引入的点缺陷对高频声子有一定 的散射作用,因此可以降低样品高温区的热导率. 最终该体系的在664 K 时达到最大 ZT 值 0.53, 比 未掺Ga样品提高了近50%.基于本文研究结果及 文献 [26, 27] 报道, 可以得知第三主族元素 Al, Ga 和In的掺杂对Cu₃SbSe₄的热电性能具有相似的 作用, 三种元素对 Sb 的替位掺杂均可以作为调控 Cu₃SbSe₄载流子浓度的有效手段. 但是这三种元 素的掺杂对材料的热导率没有明显影响,样品 ZT 值的提高有限,因此还需要引入双元素掺杂或者微 结构调控等手段进一步降低样品的热导率.

参考文献

- [1] Bell L E 2008 Science **321** 1457
- [2] DiSalvo F J 1999 Science **285** 703
- [3]~ Liu W, Jie Q, Kim H S, Ren Z 2015 Acta Mater. 87 357
- [4] Chen G, Dresselhaus M S, Dresselhaus G, Fleurial J P, Caillat T 2013 Inter. Mater. Rev. 48 45
- [5] Pei Y, Shi X, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 473 66

- [6] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder G J 2008 Science 321 554
- [7] Zhang Q, Wang H, Liu W, Wang H, Yu B, Zhang Q, Tian Z, Ni G, Lee S, Esfarjani K, Chen G, Ren Z 2012 *Energy Environ. Sci.* 5 5246
- [8] Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229
- [9] Heremans J P, Thrush C M, Morelli D T 2004 Phys. Rev. B 70 115334
- [10] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus M S, Chen G, Ren Z 2008 Science 320 634
- [11] Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818
- [12] Cho J Y, Shi X, Salvador J R, Yang J, Wang H 2010 J. Appl. Phys. 108 073713
- [13] Skoug E J, Cain J D, Morelli D T 2010 J. Alloys Compd.
 506 18
- [14] Shi X, Xi L, Fan J, Zhang W, Chen L 2010 Chem. Mater.
 22 6029
- [15] Cui J, Li Y, Du Z, Meng Q, Zhou H 2013 J. Mater. Chem. A 1 677
- [16] Liu R, Xi L, Liu H, Shi X, Zhang W, Chen L 2012 Chem. Commun. 48 3818
- [17] Zeier W G, Pei Y, Pomrehn G, Day T, Heinz N, Heinrich C P, Snyder G J, Tremel W 2013 J. Am. Chem. Soc. 135 726
- [18] Suzumura A, Watanabe M, Nagasako N, Asahi R 2014 J. Electron. Mater. 43 2356
- [19] Wei T R, Wang H, Gibbs Z M, Wu C F, Snyder G J, Li J F 2014 J. Mater. Chem. A 2 13527
- [20] Pei Y, Tan G, Feng D, Zheng L, Tan Q, Xie X, Gong S, Chen Y, Li J F, He J, Kanatzidis M G, Zhao L D 2017 Adv. Energy Mater. 7 1601450

- [21] Do D T, Mahanti S D 2015 J. Alloys Compd. 625 346
- [22] Yang C, Huang F, Wu L, Xu K 2011 J. Phys. D: Appl. Phys. 44 295404
- [23] Li X Y, Li D, Xin H X, Zhang J, Song C J, Qin X Y 2013 J. Alloys Compd. 561 105
- [24] Li D, Li R, Qin X Y, Song C J, Xin H X, Wang L, Zhang J, Guo G L, Zou T H, Liu Y F, Zhu X G 2014 Dalton Trans. 43 1888
- [25] Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu J, Ibáñez M, Xi L, de Roo J, López A M, Martí-Sánchez S, Cabezas I, Mata M D L, Luo Z, Dun C, Dobrozhan O, Carroll D L, Zhang W, Martins J, Kovalenko M V, Arbiol J, Noriega G, Song J, Wahnón P, Cabot A 2017 J. Mater. Chem. A 5 2592
- [26] Li Y, Qin X, Li D, Li X, Liu Y, Zhang J, Song C, Xin H 2015 RSC Adv. 5 31399
- [27] Zhang D, Yang J, Jiang Q, Fu L, Xiao Y, Luo Y, Zhou Z 2016 Mater. Design 98 150
- [28] Wei T R, Li F, Li J F 2014 J. Electron. Mater. 43 2229
- [29] Kumar A, Dhama P, Saini D S, Banerji P 2016 RSC Adv. 6 5528
- [30] Goldsmid H J, Sharp J W 1999 J. Electron. Mater. 28 869
- [31] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105
- [32] Pichanusakorn P, Bandaru P 2010 Mat. Sci. Eng. R 67 19
- [33] May A F, Toberer E S, Saramat A, Snyder G J 2009 *Phys. Rev. B* 80 125205
- [34] Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G J 2015 APL Mater. 3 041506
- [35] Zhang Y, Skoug E, Cain J, Ozoliņš V, Morelli D, Wolverton C 2012 Phys. Rev. B 85 054306

Effect of Ga doping on the thermoelectric performance of $Cu_3SbSe_4^*$

Chen Luo-Na Liu Ye-Feng Zhang Ji-Ye Yang Jiong Xing Juan-Juan Luo Jun[†] Zhang Wen-Qing[‡]

(School of Material Science and Engineering, Shanghai University, Shanghai 200444, China)
 (Received 20 April 2017; revised manuscript received 9 June 2017)

Abstract

The Cu₃SbSe₄ compound is an environmentally friendly and low-cost medium-temperature thermoelectric material, which is featured by its low thermal conductivity. The disadvantage of this compound lies in its intrinsic poor electrical transport property. In order to improve the electrical conductivity of Cu_3SbSe_4 , in this work we are to increase its carrier concentration by one to two orders of magnitude though elemental doping. The sample composition of $Cu_{2.95}Ga_xSb_{1-x}Se_4$ is designed to increase the hole carrier concentration by introducing Cu vacancies and substituting Ga^{3+} for Sb^{5+} . The $Cu_{2.95}Ga_xSb_{1-x}Se_4$ (x = 0, 0.01, 0.02 and 0.04) samples are prepared by melting-quench method. The X-ray diffraction analysis indicates that the obtained samples are of single-phase with the tetragonal famatinite structure, and the energy-dispersive X-ray spectroscopy results show that the actual compositions of the samples are very close to their nominal compositions. The effect of Ga doping on the thermoelectric performance of Cu_3SbSe_4 compound is investigated systematically by electrical and thermal transport property measurements. According to our experimental results, the hole concentration of the sample is efficiently increased by substituting Sb with a small amount of Ga (x = 0.01), which can not only substantially improve the electrical conductivity but also suppress the intrinsic excitation of the sample. The maximum power factor reaches 10 μ W/cm·K² at 625 K for the Ga doped sample with x = 0.01, which is nearly twice as much as that of the sample free of Ga. Although the carrier concentration further increases with increasing Ga content, the hole mobility decreases dramatically with the Ga content increasing due to the increased hole effective mass and point defect scattering. Thus, the electrical transport properties of the samples deteriorate at higher Ga content, and the maximum power factors for the samples with x = 0.02 and 0.04 reach 9 and $8 \,\mu W/cm \cdot K^2$ at 625 K, respectively. The lattice thermal conductivities of the samples basically comply with the T^{-1} relationship, suggesting the phonon U-process is the dominant scattering mechanism in our samples. For the samples with x = 0 and 0.01, the lattice thermal conductivities at high temperature deviate slightly from the T^{-1} curve due to the presence of intrinsic excitation. However, these deviations are eliminated for the samples with x = 0.02 and 0.04because the bipolar effect is effectively suppressed with the increasing of Ga content. Thus, Ga doping can reduce the bipolar thermal conductivity at high temperature by increasing the hole carrier concentration. Furthermore, the point defects introduced by Ga doping can also enhance the scattering of high-frequency phonons, leading to slightly reduced lattice thermal conductivities of Ga-doped samples at higher temperature. Finally, a maximum ZT value of 0.53 at 664 K is achieved in Ga-doped sample, which is 50% higher than that of the sample free of Ga.

Keywords: Ga doping, Cu₃SbSe₄, thermoelectric performance

PACS: 72.20.Pa, 72.10.Fk, 61.72.U-, 65.40.-b

DOI: 10.7498/aps.66.167201

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51371194, 51172276, 51632005).

[†] Corresponding author. E-mail: junluo@shu.edu.cn

[‡] Corresponding author. E-mail: wqzhang@shu.edu.cn