物理学报 Acta Physica Sinica

欠匹配型磁绝缘感应电压叠加器次级阻抗优化方法

魏浩 孙凤举 呼义翔 邱爱慈

Method of optimizing secondary impedances for magnetically-insulated induction voltage adders with impedance under-matched loads

Wei Hao Sun Feng-Ju Hu Yi-Xiang Qiu Ai-Ci

引用信息 Citation: Acta Physica Sinica, 66, 208401 (2017) DOI: 10.7498/aps.66.208401 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.208401 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I20

您可能感兴趣的其他文章 Articles you may be interested in

Er^{3+}/Yb^{3+} 共掺 NaYF₄/LiYF₄ 微米晶体的上转换荧光特性

Upconversion flourescence characteristics of Er³⁺/Yb³⁺ codoped NaYF₄ and LiYF₄ microcrystals 物理学报.2016, 65(8): 084205 http://dx.doi.org/10.7498/aps.65.084205

纳米ZnO-SiO2自清洁增透薄膜的制备及其性能

Preparation and characterization of self-cleaning and anti-reflection ZnO-SiO₂ nanometric films 物理学报.2016, 65(6): 064206 http://dx.doi.org/10.7498/aps.65.064206

C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究

Electronic structure and optical properties of C doped rutile TiO₂: the first-principles calculations 物理学报.2015, 64(22): 224218 http://dx.doi.org/10.7498/aps.64.224218

Nd³⁺ 掺杂 GdTaO₄ 的吸收光谱分析和晶场计算

Absorption spectrum analysis and crystal-field calculation of Nd³⁺ doped in GdTaO₄ crystal 物理学报.2015, 64(12): 124209 http://dx.doi.org/10.7498/aps.64.124209

高浓度 Er³⁺ 掺杂 Y₃Sc₂Ga₃O₁₂ 晶体的吸收光谱与晶体场模型研究 Absorption spectra and crystal-field modeling of Er³⁺ doped in Y₃Sc₂Ga₃O₁₂ crystal 物理学报.2014, 63(14): 144205 http://dx.doi.org/10.7498/aps.63.144205

欠匹配型磁绝缘感应电压叠加器 次级阻抗优化方法*

魏浩1)2) , 孙凤举2) 呼义翔2) 邱爱慈1)2)

(西安交通大学,电力设备电气绝缘国家重点实验室,西安 710049)
 (西北核技术研究所,强脉冲辐射环境模拟与效应国家重点实验室,西安 710024)

(2017年3月10日收到;2017年7月3日收到修改稿)

磁绝缘感应电压叠加器 (MIVA) 次级阻抗对脉冲功率驱动源和负载之间的功率耦合具有重要影响.基于 稳态磁绝缘 Creedon 层流理论和鞘层电子流再俘获 (re-trapping) 理论, 建立了负载欠匹配型 MIVA 电路分析 方法, 数值分析获得了 MIVA 输出参数 (输出电压、阴/阳极电流和电功率) 随负载欠匹配程度的变化规律.考 虑阴极传导电流作为闪光 X 射线照相二极管的有效电流, 建立了以 MIVA 末端 X 射线剂量率最大为目标的次 级阻抗优化方法.获得了欠匹配型 MIVA 次级优化阻抗 Z_{op} 的变化规律:随着 X 射线剂量率对电压依赖程度 提高, 欠匹配型 MIVA 次级优化阻抗 Z_{op} 呈指数降低; 负载阻抗越大, Z_{op} 越大.

关键词: 磁绝缘感应电压叠加器, 次级阻抗, 磁绝缘最小电流, 鞘层电子流再俘获 PACS: 84.70.+p, 52.59.-f, 02.60.Pn, 84.30.Ng DOI: 10.7498/aps.66.208401

1引言

磁 绝 缘 感 应 电 压 叠 加 器 (magneticallyinsulated induction voltage adder, MIVA)可产生 电压数十兆伏、电流数百千安的高功率电脉冲^[1-5]. MIVA 作为强流脉冲功率加速器的驱动源,在闪 光X射线照相、强脉冲辐射环境模拟等领域具有 重要应用^[3-9]. MIVA通常由多级兆伏级感应腔 串联组成,次级采用磁绝缘传输线(magneticallyinsulated transmission line, MITL)^[10,11]实现电功 率叠加和传输. MIVA次级MITL阻抗(包括阻抗 大小和变换形式)对MIVA输出参数以及驱动源和 负载之间的功率耦合具有重要影响^[12,13].

对于十数级感应腔串联 MIVA 装置, 在次级 电脉冲到达负载前, 脉冲前沿损失部分电子在阳 极上, 为后续脉冲建立磁绝缘提供所需磁场, 次 级 MITL运行在磁绝缘最小电流或自限制流工作 点^[14-16].当电脉冲传输至负载时,若负载阻抗大 于或等于 MITL运行阻抗,磁绝缘特性完全由传输 线本身确定,与负载无关,该类型 MIVA 为负载匹 配型.若负载阻抗小于 MITL运行阻抗,反射波由 负载向 MIVA 传输, MIVA 末端电压降低, 阴、阳极 电流增大,该类型 MIVA 为负载欠匹配型^[16-18].

MIVA次级电流由阴极传导电流和鞘层电子 流两部分组成.对于一些高功率负载(例如用于产 生高能脉冲X射线的闪光照相二极管),只有阴极 传导电流才能作为负载有效电流,鞘层电子流对 负载X射线剂量率无贡献^[1,3,19].对于负载匹配型 MIVA,随着 MIVA 输出电压提高,阴极电流占总电 流比例 *I*_c/*I*_a 降低.当MIVA 输出电压大于10 MV 时,*I*_c/*I*_a 小于40%^[1,12],大部分电流以鞘层电子流 形式存在,这极大地降低了 MIVA 装置的电流和功 率利用效率.近年来国际上提出 MIVA 末端采用低 阻抗照相二极管(相对于150—350 Ω的傍轴和浸磁 等高阻抗二极管,自磁箍缩或负极性杆箍缩二极管

^{*} 国家自然科学基金(批准号: 11505138, 51577156)资助的课题.

[†]通信作者. E-mail: weihao@nint.ac.cn

^{© 2017} 中国物理学会 Chinese Physical Society

的阻抗较低, 一般约 30—50 Ω), 使 MIVA 工作在负载欠匹配模式, 通过鞘层电子流再俘获, 来减小鞘 层电子流, 增大阴极传导电流^[20-24].

文献 [25] 给出了负载匹配型 MIVA 次级阻抗 优化方法.由于欠匹配型 MIVA 输出参数同时受次 级阻抗和负载阻抗影响,其电路分析方法和次级阻 抗优化方法与负载匹配型 MIVA 不同.本文基于磁 绝缘 Creedon 层流理论和鞘层电子流再俘获理论, 建立了欠匹配型 MIVA 电路分析方法;以闪光照相 二极管 X 射线剂量率最大为优化目标,考虑阴极传 导电流作为负载有效电流,建立了欠匹配型 MIVA 次级阻抗优化方法.需要指出的是,本文中次级阻 抗优化主要针对 MIVA 输出端 (最末级感应腔对应 次级 MITL) 次级阻抗数值,假定 MIVA 各级感应腔 对应次级 MITL运行阻抗线性增大.

2 负载欠匹配型 MIVA 电路分析方法

2.1 磁绝缘鞘层电子流再俘获理论

图1给出了磁绝缘鞘层电子流再俘获示意图. 在磁绝缘前行波到达负载前,前行波经过区域运行 在磁绝缘最小电流工作点(U_0 , I_0),前行波传输特 征阻抗为MITL运行阻抗 Z_{op} .当前行波抵达负载 时,由于负载欠匹配,反射波由负载向MIVA反向 传输,反射波经过区域MITL线电压由 U_0 降低至 U_d ,阳极电流由最小电流 I_0 增大为 I_d ,鞘层电子流 中部分空间电子被重新俘获至阴极,阴极传导电流 I_c 增加,鞘层电子流 I_f 减小,鞘层变薄(图1中反射 波经过区域电子鞘层紧贴阴极表面),反射波传输 特征阻抗接近MITL真空阻抗 Z_v ^[13,21].反射波传

输速度 v_{ref} 取决于负载 Z_d 和次级运行阻抗 Z_{op} 之间阻抗失配程度,两者不匹配程度越高, v_{ref} 越大, v_{ref} 通常约为0.3—0.6倍光速^[13].

2.2 负载欠匹配型 MIVA 电路分析方法

图 2 给 出 了 负 载 欠 匹 配 型 MIVA 工 作 曲 线. 图 中实线为前行 波 工 作 曲 线,负载 匹 配 型 MIVA $(Z_d \ge Z_{op})$ 磁绝缘运行 在 该 曲 线 上. 虚线 是 由 负 载 Z_d 确 定 的 工 作 曲 线,与负载大小密 切 相 关 (如 图 2 中 A, B, C).当 MIVA 由 前 行 波 工 作 点 $O(U_0, I_0)$ 调整 至 负载限定工 作 点 $A(U_d, I_d)$ 时,需经过反 射 波 工 作 曲 线 (图 2 中 虚 线),曲线 斜 率 为 MITL 真 空 阻抗 Z_v .反射 波 和 负载限 定 工 作 曲 线 的 电 路 方 程 分 别 为

$$\begin{cases} Z_{\rm v} = -\frac{U_0 - U_{\rm d}}{I_0 - I_{\rm d}}, \\ U_{\rm d} = I_{\rm d} Z_{\rm d}, \end{cases}$$
(1)

其中,磁绝缘前行波的线电压U0和阳极电流I0为

$$\begin{cases} U_0 = \frac{V_{\rm s} Z_{\rm op}}{Z_{\rm s} + Z_{\rm op}}, \\ I_0 = \frac{U_0}{Z_{\rm op}}, \end{cases}$$
(2)

其中, V_s, Z_s分别为 MIVA 前级脉冲源的等效馈入 电压和等效驱动阻抗,可由负载匹配型 MIVA 电路 分析获得^[25,26].

图 2 磁绝缘鞘层电子流再俘获时 MIVA 运行曲线 Fig. 2. Operating cures of MIVA when the sheath electron flow is re-trapped.

联合(1)和(2)式推导得到鞘层电子流俘获后 MITL电压U_d和阳极电流I_d分别为

$$\begin{cases} U_{\rm d} = U_0 \cdot \frac{1 + \frac{Z_{\rm v}}{Z_{\rm op}}}{1 + \frac{Z_{\rm v}}{Z_{\rm d}}}, \\ I_{\rm d} = \frac{U_{\rm d}}{Z_{\rm d}}. \end{cases}$$
(3)

(3) 式表明欠匹配型 MIVA 输出电压 U_d 取决于次级阻抗 Z_{op} 和负载阻抗 Z_d.

由稳态磁绝缘 Creedon 层流理论^[18,27], MIVA 输出端阴极传导电流 *I*_c 为

$$I_{\rm c} = \frac{I_{\rm a}}{\gamma_{\rm m}} = \frac{I_{\rm d}}{\gamma_{\rm m}},\tag{4}$$

其中, $\gamma_{\rm m}$ 为磁绝缘电子鞘层边界的相对论因子, $\gamma_{\rm m}$ 为磁绝缘线电压 $U_{\rm d}$ 、阳极电流 $I_{\rm d}$ 和MITL几何阻 抗因子g的隐性函数^[18,27],

$$\gamma_{\rm m} \left[\ln(\gamma_{\rm m} + \sqrt{\gamma_{\rm m}^2 - 1}) + \frac{\gamma_{00} - \gamma_{\rm m}}{\sqrt{\gamma_{\rm m}^2 - 1}} \right] = \frac{I_{\rm d}}{gI_{\rm av}}, \quad (5)$$

其中, I_{av} 为阿尔芬电流常数, $I_{av} \approx 8500 \text{ A}^{[18,27]}$. 阳极相对论因子 γ_{00} 和几何因子g分别为 $^{[18,27]}$

$$\begin{cases} \gamma_{00} = 1 + \frac{eU_{\rm d}}{mc^2}, \\ g = \ln\left(\frac{r_{\rm a}}{r_{\rm c}}\right) = \frac{60}{Z_{\rm v}}. \end{cases}$$
(6)

由 (3)—(6) 式推导得到, 阴极电流 I_c 可表征为次级 阻抗 Z_{op} 和负载阻抗 Z_d 的隐性函数,

$$I_{\rm c} = G(Z_{\rm op}, Z_{\rm d}). \tag{7}$$

虽然无法给出(7)式的解析表达式,但可以通过数 值方法求解.

2.3 MIVA 输出参数随负载欠匹配程度的 变化规律

假定 10级感应腔串联 MIVA 输出端磁绝缘最 小电流工作点为: $U_0 = 14$ MV, $I_0 = 133$ kA, $Z_{op} = 105$ Ω. MIVA 输出参数 (输出电压、阴/阳极 电流和电功率) 随负载阻抗的变化规律如图 3 所示. 随着负载阻抗 Z_d 减小, MIVA 输出电压逐渐降低, 阴/阳极电流均逐渐增大, 阴极电流占阳极电流比 例 I_c/I_a 增大. 与磁绝缘最小电流工作点相比, 当负 载阻抗 Z_d 为 80 Ω时, 负载电压 U_d 降低至 12 MV, 阴、阳电流分别为 150 和 113 kA; 当 Z_d 减小至 40 Ω 时, $U_d = 7.5$ MV, $I_a = 186$ kA, $I_c = 176$ kA, 鞘层 电子流仅 10 kA. 随着负载阻抗 Z_d 减小, MIVA 向 负载耦合的总电功率降低, 但有效电功率先增大、 后减小. 当 $Z_d = 61 \Omega$ 时, MIVA 向负载耦合的有效电功率最大.

图 3 10级 MIVA 装置输出参数随负载欠匹配程度的变化规律 (a)负载电压和阴、阳极电流随负载阻抗的变化; (b)总电功率、有效电功率随负载阻抗的变化

Fig. 3. Change law of the output parameters depending on the under-matching degree of loads: (a) Load voltage, anode current, and cathode current varies with the load impedances; (b) total and effective electrical power functions as the load impedances.

3 负载欠匹配型 MIVA 次级阻抗优化

3.1 以负载辐射X射线剂量率最大为目标 的次级阻抗优化方法

以驱动闪光照相二极管的 MIVA 装置为例,通 过优化 MIVA 次级 MITL 运行阻抗 Z_{op},使 MIVA 末端二极管辐射 X 射线剂量率最大.已有研究表 明,高能脉冲闪光照相二极管 X 射线剂量率 D 与二 极管电压 U_d、阴极传导电流 I_c 的定标关系为^[3,25]

$$\dot{D} = \beta I_{\rm c} U_{\rm d}^{\alpha},\tag{8}$$

其中, α , β 均为常数, 其取值与二极管特性 (二极管 类型、工作状态等) 密切有关 ^[3].现有研究表明, 常 数 α 取值范围为 $1 < \alpha < 3^{[3]}$. 当 $\alpha = \beta = 1$ 时, (8) 式为 MIVA 耦合到二极管负载上的有效电功率. 由于 β 仅影响剂量率绝对值,本文假定 $\beta \equiv 1$.

将(3)和(7)式的二极管电压、电流公式代入 (8)式,得到二极管剂量率为

$$\dot{D} = \Psi(Z_{\rm op}, Z_{\rm d}, \alpha). \tag{9}$$

虽然无法给出(9)式的显性表达式,(9)式表明 X射线剂量率取决于MITL运行阻抗*Z*_{op}、负载阻 抗*Z*_d和定标系数α.以X射线剂量率最大为目标 函数的MIVA次级阻抗优化问题可表示为:

$$\max \dot{D} = \Psi(Z_{\rm op}, Z_{\rm d}, \alpha), \tag{10}$$

$$Z_{\rm op} \text{ s.t.} \{ Z_{\rm d} < Z_{\rm op} \leqslant Z_{\rm op_upper} \}.$$
(11)

(11) 式中优化变量 Z_{op}下限值是为了满足负载欠 匹配条件,上限值 Z_{op_upper}通常出于 MIVA 工程 实际考虑.由(2) 式可知,当给定前级脉冲源馈入 参数 Z_s和 V_s时,线电压 U₀ 随 Z_{op} 增大而线性增加, 但受感应腔最高耐受电压的限制, U₀存在最大值, 即次级阻抗存在最大值 Z_{op_upper}.

3.2 运行阻抗对 MIVA 输出参数的影响 规律

给定 MIVA 前级馈入脉冲源参数 $V_{\rm s} = 22$ MV, $Z_{\rm s} = 60 \Omega$ (MIVA 感应腔串联级数 n = 10, 每级 并联馈入脉冲路数 m = 1, 每路电脉冲幅值电压 1.1 MV, 驱动阻抗6 Ω). 假定每级感应腔最高耐 受电压为1.5 MV, 由(2)式计算运行阻抗上限值 $Z_{\rm op_upper} = 129 \Omega$.

由于二极管的实际工作阻抗随时间动态变化, 只能近似给出稳态阶段阻抗变化范围.现有研究表 明,对于低阻抗闪光照相二极管(自磁箍缩或负极 性杆箍缩二极管),其阻抗变化范围为30—50 Ω^[22], 本文选取三个典型负载阻抗值(30,40,50 Ω)作为 优化对象.

图 4 — 图 6 分别给出了不同负载 Z_d 时, MIVA 输出电压 U_d 、阴阳极电流比例 I_c/I_a 和电功率随 运行阻抗 Z_{op} 的变化规律. 对于给定负载阻抗 Z_d ,随着运行阻抗 Z_{op} 降低 (但仍满足欠匹配条件 $Z_{op} > Z_d$),由于 MIVA 次级 MITL 与负载之间的 阻抗失配程度减弱,MIVA 输出电压 U_d 逐渐增大. 当 $Z_{op} = Z_d$ (MIVA 与负载阻抗匹配)时,负载电压 U_d 取最大值, Z_d 为 30, 40, 50 Ω时, U_d 最大值分别 为7.3, 8.8和10 MV. 若 Z_{op} 继续降低, 当 $Z_{op} < Z_{d}$ 时, MITL运行在磁绝缘最小电流工作点, MIVA输出特性与负载大小无关, 负载电压 U_{d} 随 $Z_{op}减小逐渐降低.$

图4 运行阻抗对 MIVA 负载电压的影响

由图 **5** 可知, 对于给定负载 Z_{d} , 随着 Z_{op} 降低 (阻抗失配程度减弱), 鞘层电子流再俘获作用减弱, 阴、阳极电流比例 I_{c}/I_{a} 减小; 当 $Z_{op} \leq Z_{d}$ 时, 无 鞘层电子流再俘获, 随着 Z_{op} 降低, MITL 线电压减 小, I_{a} , I_{c} 和 I_{c}/I_{a} 均增大.

图 5 运行阻抗对阴、阳极电流比例 I_c/I_a 的影响 Fig. 5. The ratio of the cathode current and anode current varies with the operating impedances.

由图6可知,随着运行阻抗 Z_{op} 降低,MIVA 输出总电功率P和有效电功率 P_{eff} 均先增大后减 小,但峰值P和峰值 P_{eff} 对应的运行阻抗不同.当 $Z_{op} = Z_d$ (MIVA 次级 MITL 与负载匹配)时,总电 功率P最大,但此时有效电功率 P_{eff} 极低, P_{eff} 在 $Z_{op}>Z_d$ (负载欠匹配)时获得.

图 6 (网刊彩色) 运行阻抗对 MIVA 输出电功率的影响 Fig. 6. (color online) Electrical power of MIVA varies with the operating impedances.

3.3 使二极管辐射X射线剂量率最大的 次级优化阻抗*Z**_{op}

图7给出了 MIVA 末端 X 射线二极管选取三 个典型阻抗值 (Z_d 分别为30,40,50 Ω)时,最大X 射线剂量率 \dot{D} 随次级优化阻抗 Z_{op}^* 和定标系数 α 的变化规律. 需要指出的是,图7所示为剂量率的 相对值 (假定 (8)式中 β = 1).图8给出了使剂量 率最大的优化阻抗 $Z_{op}($ 最佳阻抗)与定标系数 α 的 关系.对于给定负载阻抗 Z_d ,最佳阻抗 Z_{op}^* 随 α 增 大 (剂量率对电压依赖程度提高)近似指数衰减,这 与负载匹配型 MIVA 存在显著区别,后者最佳阻 抗 Z_{op}^* 随定标系数 α 增大而线性增加 ^[26].两种类 型 MIVA 次级优化阻抗变化规律不同的本质原因 在于,MIVA输出电压随次级阻抗 Z_{op} 增加而增

图7 三种典型负载阻抗下,二极管辐射 X 射线剂量率随 定标系数 α 和优化阻抗 Z^{*}_{op} 的变化规律

图 8 三种典型负载阻抗时最佳阻抗 Z_{op} 随定标系数 α 的 变化规律

Fig. 8. Optimized operating impedance $Z_{\rm op}^*$ varies with the scaling factor α under three typical load impedances.

大,但欠匹配型 MIVA 输出电压随 Z_{op} 增加反而逐 渐减小 (见图 4).由(8)式可知, MIVA 输出电压对 X 射线剂量率的影响程度很大 (特别是定标系数 α 较大时).正是由于次级阻抗对两种类型 MIVA 输 出电压影响规律的差异,导致最大剂量率对应的次 级阻抗 (最佳阻抗) 随定标系数 α 的变化趋势不同.

对于欠匹配 MIVA, 经数值 拟合得到, 使 X 射 线剂量率最大的次级阻抗 Z_{op}^* 与定标系数 α 的关 系可表示为^[26]

$$Z_{\rm op}^* = C_1 \,\mathrm{e}^{-k_1 \alpha} + C_2 \,\mathrm{e}^{-k_2 \alpha},\tag{12}$$

式中 C_1 , C_2 和 k_1 , k_2 为常数, 取值与负载 Z_d 、前级脉冲源等效驱动阻抗 Z_s 相关^[26].

4 结 论

基于稳态磁绝缘 Creedon 层流理论和鞘层电 子流再俘获 (re-tapping) 理论, 建立了负载欠匹配 型 MIVA 电路分析方法和次级 MITL 运行阻抗优 化方法. 当给定次级运行阻抗时, 获得了 MIVA 输 出参数 (输出电压、阴/阳极电流和电功率) 随负载 欠匹配程度的变化规律. 当给定负载阻抗时, 数值 分析获得了次级运行阻抗对 MIVA 输出参数的影 响规律. 获得了使 MIVA 末端辐射 X 射线剂量率最 大的次级优化阻抗值 *Z*^{*}_{op} 的变化规律: 随着二极管 X 射线剂量率对电压依赖程度提高 (定标系数α增 大), 最佳阻抗近似指数下降. 本文建立的欠匹配 MIVA 电路分析方法和次级阻抗优化方法已应用于 MIVA 装置电路分析和物理设计.

参考文献

- Smith I D 2004 Phys. Rev. Spec. Top. Accel. Beams 7 064801
- [2] Smith I D, Bailey V L, Fockler J, Gustwiller J S, Johnson D L, Maenchen J E, Droemer D W 2000 *IEEE Trans.* on Plasma Sci. 28 1653
- [3] Oliver B V 2008 Proceeding of 17th IEEE High Power Particle Beams Conference Xi'an, Shaanxi, China, July 7–11, 2008 p1
- [4] Thomas K 2014 IEEE Pulsed Power Symposium Loughborough, UK, March 18–20, 2014, pp1–29
- [5] Thomas K, Beech P, Brown S, Buck J, Burscough J, Clough S, Crotch I, Duff Y J, Goes C, Huckle I, Jones A, King A, Stringer B, Threadgold J, Trenaman S, Wheeldon R, Woodroofe M, Carboni V, DaSilva T, Galver B, Glazebrook W, Hanzel K, Pearce J, Pham J, Pomeroy S, Saunders W, Speits D, Warren T, Whitney B, Wilson J 2011 Proceeding of 18th IEEE Pulsed Power Conference Chicago, IL, June 19–23, 2011 p1042
- [6] Guo F, Zou W K, Gong B Y, Jiang J H, Chen L, Wang M, Xie W P 2017 *Phys. Rev. Accel. Beams* 20 020401
- Wei H, Sun F J, Qiu A C, Zeng J T, Liang T X, Yin J H, Hu Y X 2014 *IEEE Trans. Plasma Sci.* 42 3057
- [8] Sun F J, Qiu A C, Yang H L, Zeng J T, Gai T Y, Liang T X, Yin J H, Sun J F, Cong P T, Huang J J, Su Z F, Gao Y, Liu Z G, Jiang X F, Li J Y, Zhang Z, Song G Z, Pei M J, Niu S L 2010 *High Power and Laser and Particle Beams* 22 936 (in Chinese) [孙凤举, 邱爱慈, 杨 海亮, 曾江涛, 盖同阳, 梁天学, 尹佳辉, 孙剑锋, 丛培天, 黄 建军, 苏兆锋, 高屹, 刘志刚, 姜晓锋, 李静雅, 张众, 宋顾周, 裴明敬, 牛胜利 2010 强激光与粒子束 22 936]
- [9] Zhang T K, Han D, Wu Y C, Yan Y H, Zhao Z Q, Gu Y Q 2016 Acta Phys. Sin. 65 045203 (in Chinese) [张天 奎, 韩丹, 吴玉迟, 闫永宏, 赵宗清, 谷渝秋 2016 物理学报 65 045203]
- [10] Wei H, Sun F J, Hu Y X, Liang T X, Cong P T, Qiu A C 2017 Acta Phys. Sin. 66 038402 (in Chinese) [魏浩, 孙凤举, 呼义翔, 梁天学, 丛培天, 邱爱慈 2017 物理学报 66 038402]
- [11] Zhou J, Zhang P F, Yang H L, Sun J, Sun J F, Su Z F, Liu W D 2012 Acta Phys. Sin. 61 245203 (in Chinese)
 [周军, 张鹏飞, 杨海亮, 孙江, 孙剑峰, 苏兆锋, 刘万东 2012
 物理学报 61 245203]
- [12] Bailey V, Corcoran P, Carboni V, Smith I, Johnson D L, Oliver B, Thomas K, Swierkosz M 2005 Proceeding of 15th IEEE Pulsed Power Conference Monterey, CA, USA, June 13–15, 2005 p322
- [13] Bailey V L, Johnson D L, Corcoran P, Smith I, Maenchen J E, Molina I, Hahn K, Rovang D, Portillo S, Oliver B V, Rose D, Welsh D, Droemer D, Guy T 2003

Proceeding of 14th IEEE International Pulsed Power Conference Dallas, Texas, USA, June 15–18, 2003 p399

- [14] Ottinger P, Schumer J, Hinshelwood D, Allen R J 2008 IEEE Trans. Plasma Sci. 36 2708
- [15] Ottinger P, Schumer J 2006 Phys. Plasma 13 063109
- [16] Pate R C, Patterson J C, Dowdican M C, Ramirez J J, Hasti D E, Tolk K M, Poukey J W, Schneider L X, Rosenthal S E, Sanford T W, Alexander J A, Heath C E 1987 Proceeding of 6th IEEE Pulsed Power Conference Arlington, Virginia, 1987 pp478–481
- [17] Guo F, Zou W K, Chen L 2014 High Power and Laser and Particle Beams 26 045010 (in Chinese) [郭帆, 邹文 康, 陈林 2014 强激光与粒子束 26 045010]
- [18] Liu X S 2005 High Pulsed Power Technologh (Beijing: National Defense Industry Press) pp128-262 (in Chinese) [刘锡三 2005 高功率脉冲技(北京: 国防工业出版 社) 第128-262页].
- [19] Zou W K, Deng J J, Song S Y 2007 High Power and Laser and Particle Beams 19 992 (in Chinese) [邹文康, 邓建军, 宋盛义 2007 强激光与粒子束 19 992]
- [20] Bailey V L, Corcoran P, Johnson D L, Smith I, Oliver B, Maenchen J 2007 Proceeding of 16th IEEE Pulsed Power Conference Albuquerque, New Mexico, USA, June 17–22, 2007 p1268
- [21] Bailey V L, Corcoran P, Johnson D L, Smith I D, Maenchen J E, Rahn K D, Molina I, Rovang D C, Portillo S, Puetz E A, Oliver B V, Rose D V, Welch D R, Droemer D W, Guy T 2004 Proceeding of 14th IEEE high Power Beams Conference Dallas, Texas, USA, 2004 p247
- [22] Hahn K, B V Oliver, Cordova S R, Leckbee J, Molina I, Johnston M, Webb T, Bruner N, Welch D R, Portillo S, ZiskaD, Crotch I, Threadgold J 2009 Proceeding of 17th IEEE Pulsed Power Conference Washington, DC, USA, June 28–July 2, 2009 p34
- [23] Hahn K, Maenchen J, Cordova S, Molina I, Portillo S, Rovang D, Rose D, Oliver B, Welch D, Bailey V, Johnson D L, Schamiloglu E 2003 Proceeding of 14th IEEE Pulsed Power Conference Dallas, Texas, USA, June 15–18, 2003 p871
- [24] Portillo S, Hahn K, Maenchen J, Molina I, Cordova S, Johnson D L, Rose D, Oliver B, Welch D 2003 Proceeding of 14th IEEE Pulsed Power Conference Dallas, Texas, USA, June 15–18, 2003 p879
- [25] Hu Y X, Sun F J, Zeng J T, Cong P T 2015 Modern Appl. Phys. 6 191 (in Chinese) [呼义翔, 孙凤举, 曾江涛, 丛培天 2015 现代应用物理 6 191]
- [26] Wei H 2017 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [魏浩 2017 博士学位论文 (西安: 西安交通大学)]
- [27] Creedon J M 1975 J. Appl. Phys. 46 2946

Method of optimizing secondary impedances for magnetically-insulated induction voltage adders with impedance under-matched loads^{*}

Wei Hao^{1)2)† Sun Feng-Ju²⁾ Hu Yi-Xiang²⁾ Qiu Ai-Ci¹⁾²⁾

1) (State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China)

2) (State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology,

Xi'an 710024, China)

(Received 10 March 2017; revised manuscript received 3 July 2017)

Abstract

The magnetically-insulated induction voltage adder (MIVA) is a pulsed-power accelerator widely used in the X-ray flash radiography and γ -ray radiation simulation. The operating impedance of magnetically-insulated transmission line (MITL) on the secondary side of MIVA will produce significant influence on the power coupling between the pulsedpower driving source and the terminal load. Therefore, optimizing the secondary impedance of MIVA to maximize the electrical-power or radiated output of load is critical for the design of MIVA facility. According to whether the MITL operating impedance is smaller than the load impedance, MIVAs can be divided into two different types, i.e., the impedance-matched case and impedance undermatched case. For the impedance-matched MIVA, because the MITL of MIVA operates at the minimal current point or self-limited flow, the output of MIVA just depends on the MITL operating impedance and is independent of load. Correspondingly, the circuit analysis is relatively easy. However, for MIVA with impedance undermatched load, the analysis method is more complicated. Based on the classical Creedon theory of the magnetic insulation equilibrium and the sheath electron re-trapping theory, a circuit method is established for MIVA with impedance under-matched load. The analysis process consists of two steps. Firstly, the working point of the forward magnetic insulation wave is solved by the minimal current theory on the assumption that the MIVA is terminated by impedance-matched load. Then, the actual operating point after the re-trapping wave has passed is solved, in which the characteristic impedance of the re-trapping wave is treated as a vacuum impedance. And the relationship between the output parameters of MIVA, e.g., the output voltage, the cathode and anode current, and the electrical power, and the undermatched extent of load is obtained numerically. Based on the analysis method, a method to optimize the secondary impedance of MIVA with ten-stage cavities stacked in series to drive X-ray radiographic diodes is developed. This optimization method aims at maximizing the radiated X-ray dose rate of the diode loads on the assumption that only the cathode current is available for the X-ray radiographic diode. The optimization secondary impedance, Z_{op}^* , varying with the scaling factor, α , is achieved, where α is the power exponent between the dose rate and the diode voltage $(D \propto U_d^{\alpha})$. α is usually determined by the diode type, geometrical structure, and operating characteristics. It is found that the optimization secondary impedance Z_{op}^* decays exponentially with the increase of value α , i.e., the increase of the diode-voltage-dependent degree of the radiated X-ray dose rate. And the larger the load impedance, the larger the value of Z_{op}^{*} is. The circuit analysis method and the impedance optimization method developed in this paper are specially useful for the applications of MIVA in the flash radiographic fields.

Keywords: magnetically-insulated induction voltage adders, secondary impedance, minimal current of magnetic insulation, re-trapping of sheath electron flow

PACS: 84.70.+p, 52.59.-f, 02.60.Pn, 84.30.Ng

DOI: 10.7498/aps.66.208401

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11505138, 51577156).

[†] Corresponding author. E-mail: weihao@nint.ac.cn