物理学报 Acta Physica Sinica

高压调控的磁性量子临界点和非常规超导电性 程金光

Pressure-tuned magnetic quantum critical point and unconventional superconductivity

Cheng Jin-Guang

引用信息 Citation: Acta Physica Sinica, 66, 037401 (2017) DOI: 10.7498/aps.66.037401 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.037401 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I3

您可能感兴趣的其他文章 Articles you may be interested in

铁基超导体 FeSe0.5 Te0.5 表面隧道谱的研究

Investigation of scanning tunneling spectra on iron-based superconductor FeSe_{0.5}Te_{0.5} 物理学报.2015, 64(9): 097401 http://dx.doi.org/10.7498/aps.64.097401

介观薄圆环中的间隙性超导

Intermittent superconductivity in mesoscopic thin-film rings 物理学报.2012, 61(15): 157401 http://dx.doi.org/10.7498/aps.61.157401

专题: 高压下物质的新结构与新性质研究进展

高压调控的磁性量子临界点和非常规超导电性^{*}

程金光†

(中国科学院物理研究所,极端条件物理重点实验室,北京 100190)

(2016年11月2日收到;2016年11月19日收到修改稿)

通过化学掺杂或者施加高压等调控手段抑制长程磁有序可以实现磁性量子临界点,在其附近往往伴随出现诸如非费米液体行为或者非常规超导电性等奇特物理现象.相比于化学掺杂,高压调控具有不引入晶格无序和精细调控等优点.利用能提供良好静水压环境的立方六面砧和活塞-圆筒高压低温测量装置,首先系统研究了具有双螺旋磁有序结构的 CrAs 和 MnP 单晶的高压电输运行为,分别在 $P_c \approx 0.8$ GPa 和 8 GPa 实现了它们的磁性量子临界点,并在 P_c 附近分别观察到 $T_c = 2$ K 和 1 K 的超导电性,相继实现了铬基和锰基化合物超导体零的突破;然后,详细测量了 FeSe 单晶高压下的电阻率和交流磁化率,绘制了详尽的温度-压力相图,揭示了电子向列序、长程反铁磁序和超导相之间的相互竞争关系,特别是在接近磁有序消失的临界点 $P_c \approx 6$ GPa 附近观察到 $T_c^{max} = 38.5$ K 的高温超导电性,表明临界反铁磁涨落对 FeSe 中的高温超导电性起重要作用.

关键词: 高压调控, 磁性量子临界点, 非常规超导, 非费米液体行为 PACS: 74.40.Kb, 74.25.Dw, 74.62.Fj, 74.70.Xa DOI: 10.7498/aps.66.037401

1引言

近年来,量子临界性被认为是强关联电子体 系中许多反常物理现象的普适性特征而备受关 注^[1,2].对于目前己知的非常规超导体系^[3-6],包 括重费米子和有机化合物超导体、铜基和铁基高温 超导体等,它们的超导相图都可以在量子临界的框 架下得到统一的理解,即超导电性往往出现在反铁 磁序消失的临界点附近.实验上,利用化学掺杂或 者施加高压等调控手段,将发生在有限温度的连续 相变(通常为反铁磁序)抑制到绝对零度附近,就可 以实现量子临界点,如图1所示.虽然量子临界点 是发生在零温的电子相变,但是与之相关的量子临 界涨落可以在非常大的温度范围内影响物理性质, 造成一系列奇特的物理现象.例如,描述正常金属 中低温电子合作行为的朗道费米液体理论往往会 失效,取而代之的是一系列反常的非费米液体行为 和电子有效质量的显著增加^[7],对这些反常现象的 描述超越了朗道费米液体理论框架.此外,由于量 子临界点附近的超导电性与长程反铁磁序毗邻,人 们普遍认为反铁磁临界涨落是造成电子配对的重 要机理,支持非常规超导^[5].因此,探索并实现磁 性量子临界点不仅可以系统地揭示反常物理行为 的规律,为发展新颖的理论框架提供机遇,而且还 可能发现非常规超导电性,从而为探索新型的非常 规超导体系提供重要的思路.

尽管化学掺杂是抑制长程磁有序进而诱导非 常规超导电性常用的手段,然而高压调控具有独特 的优势:一方面,施加物理压力原则上不会引入晶 格无序、造成相分离或者提供额外的电荷载流子, 因此是一种相对"干净"和"均匀"的调控手段,有 利于揭示材料内禀性质的演化过程;另一方面,通 过非常小步长的增加压力还可以实现精确的物性

* 国家自然科学基金 (批准号: 11574377)、国家重点基础研究发展计划 (批准号: 2014CB921500) 和中国科学院先导 B 项目 (批准号: XDB07020100) 资助的课题.

†通信作者. E-mail: jgcheng@iphy.ac.cn

© 2017 中国物理学会 Chinese Physical Society

调控,从而以"可控"的方式趋近量子临界点并详细 研究临界区域非常窄范围内的奇异物理性质,这一 点在许多重费米子体系中尤为重要^[3].

图1 量子临界点示意图 通过化学掺杂 x、施加高压 P或者磁场 H等调控手段 δ 将发生在有限温度 T_N 的有序 相变抑制到零温附近,就可以实现量子临界点 (QCP),在 临界点 δ_c 附近往往发现奇特的物理现象,例如非费米液 体行为、电子有效质量 m^*/m_0 的显著提高,甚至非常规 超导电性

Fig. 1. A schematic drawing of quantum critical point (QCP), which arises when a continuous phase transition at $T_{\rm N}$ is suppressed to occur at zero temperature by the application of external tuning parameter δ , such as the chemical doping x, pressure P, or magnetic field H. Exotic phenomena such as the non-Fermi-liquid behaviors, a dramatic enhancement of the effective mass m^*/m_0 , and unconventional superconductivity are frequently observed near the QCP.

值得注意的是,近年来越来越多的高压实验研 究表明,保持良好的静水压环境是高压物性测量中 获得材料本征压力效应的关键^[8-10]. 很典型的一 个例子是CaFe₂As₂,能否利用高压诱导其出现超 导电性完全取决于静水压的好坏^[8].采用气体或 者液体传压介质的高压技术通常能提供相对较好 的静水压环境. 目前, 在测量高压下的电输运性质 时,能提供较好静水压环境的高压技术主要有活 塞-圆筒^[11]和立方六面砧压腔^[12].前者能提供约 3 GPa的最高压强,是目前已经商业化的、应用较 广泛的高压技术,本文中将不再赘述;后者能实现 高达16 GPa的压强^[13],样品空间较大,操作相对 简易,在本文第二部分将详细介绍.近年来,基于 金刚石对顶砧 [14] 的高压电输运测量技术得到迅速 推广,其优点是能实现100 GPa以上的超高压,而 且高压装置体积小,因而容易与商用恒温器和磁体 配合使用,但是由于样品空间的制约通常采用固体 传压介质,这不可避免地会造成较大的压力不均匀 性(例如,单轴压力和切向应力等)^[15].

本文概述近三年来我们利用活塞-圆筒和六面 砧高压技术探索压力诱导的磁性量子临界点和非 常规超导电性方面的最新研究进展^[16–18].第二部 分介绍在中国科学院物理研究所建立的国内第一 台基于立方六面砧压腔的高压低温物性测量装置; 第三和第四部分分别介绍利用高压抑制双螺旋磁 体CrAs和MnP的长程磁有序,并在它们的磁性量 子临界点附近首次发现超导电性;第五部分将给出 FeSe单晶的完整温度-压力相图,揭示电子向列序、 反铁磁序与高温超导的相互竞争关系;第六部分是 结论和展望.

2 立方六面砧高压低温物性测量装置

基于立方六面砧压腔的高压-低温物性测量技 术起源于日本东京大学物性研究所,由 Mori教授 等^[19]在20世纪90年代设计并逐步发展起来.如 图2(a)所示,其核心部件由六个压砧构成,通过 一对对称的具有45°斜面的导向块将这六个压砧 向中心推动来同步挤压固体密封块,密封块中心 放置了聚四氟乙烯胶囊,样品悬挂在充满液体传 压介质的胶囊中. 这种三轴加压和样品浸泡在液 体传压介质中的方式能保证良好的静水压环境, 即压力的各向同性和均匀性[12]. 然而由于高压 腔体积庞大,实现低温时需要消耗大量的液氮和 液氦低温制冷剂(例如,从室温降至2K需30L以 上的液氦), 这成为阻碍此技术推广的一个重要原 因. Mori 教授的继任者 Uwatoko 教授进一步发展 了此技术,在2008年设计了一种微型立方六面砧 压腔^[20],在保持最高压强不变的情况下大大缩小 了高压腔体的体积,不仅大大降低了低温实验成 本,而且更容易与极低温和强磁场等综合极端条件 相结合^[21].

我们在 2014年将此技术引进到中国科学院物 理研究所极端条件物理重点实验室,成功搭建了国 内第一套基于立方六面砧的大腔体高压低温物性 测量装置.如图 2 (b)所示,此装置将微型六面砧压 腔、交换气体型恒温器和室温孔超导磁体集成在 一起,实现了最高压强 *P*_{max} = 15 GPa、最低温度 *T*_{min} = 1.4 K和最高磁场 *H*_{max} = 9 T等综合极端 条件下的物性测量,包括电阻率、磁阻、霍尔电阻、 交流磁化率、交流比热等.最近,我们与人民大学 于伟强教授课题组合作,成功地将此装置应用于高 压下的核磁共振测量,详细研究了FeSe单晶在高 达8 GPa下的微观磁性,获得了有意义的结果.因此,基于立方六面砧的高压低温物性测量装置将成为获得10 GPa量级静水压下高压效应的重要研究手段.

图 2 (a) 立方六面砧装置的加压示意图, 其中六个压砧同步挤压中心的立方密封块, 样品放置在密封块中心充满液体传压 介质的聚四氟乙烯胶囊中; (b) 中国科学院物理研究所搭建的基于立方六面砧压腔的高压低温物性测量装置, 包括六面砧高 压腔、气体交换腔恒温器和超导磁体, 可实现最高压强 $P_{\text{max}} = 15$ GPa、最低温度 $T_{\text{min}} = 1.4$ K 和最高磁场 $H_{\text{max}} = 9$ T 的综合极端条件

Fig. 2. (a) A schematic drawing of the cubic anvil cell (CAC) consisting of six anvils converging onto the cubic gasket, in which the sample was suspended in a Teflon cell filled with the liquid pressure transmitting medium; (b) a picture of the CAC apparatus established in the IOP CAS by integrating the CAC with the L-Helium cryostat and a superconducting magnet. This system enables us to measure physical properties under multiple extreme conditions including the $P_{\text{max}} = 15$ GPa, $T_{\text{min}} = 1.4$ K and $H_{\text{max}} = 9$ T.

3 CrAs中高压诱导超导电性的发现^[16]

在常温常压条件下, CrAs 具有 MnP型 (B31) 正交晶体结构, 如图3 (a) 插图所示, 晶格参数 为a = 5.649 Å, b = 3.464 Å, c = 6.2084 Å (空间群 Pnma). 常压下随着温度降低, CrAs 在 $T_N \approx 265$ K发生一级反铁磁相变^[22–24], 中子粉 末衍射表明其在 T_N 以下具有双螺旋型的反铁磁结 构, Cr离子的磁矩约为1.7 μ_B , 在ab平面内旋转, 螺旋传播方向为c轴. 很奇特的是, 伴随着反铁磁 转变, 其晶体结构在 T_N 处发生强烈的等结构变化, 特别是b轴突然膨胀约4%, 而a和c轴分别突然缩 短约0.3%和0.9%, 造成体积膨胀约1%. 虽然在铁 基超导体的母体化合物中, 反铁磁 (自旋密度波)转 变的同时也伴随着结构相变, 即从四方到正交晶 体结构的变化, 不同的是 CrAs 在 T_N 处发生的是等 结构变化, 晶体结构的对称性并没有降低. 对高质 量 CrAs 单晶的电阻率测试表明^[25],其在室温以下的整个温区表现出良好的金属性电导,电阻率和磁化率在一级反铁磁转变处都呈现突然跳变,升降温时 T_N 存在约10 K的热滞.通常情况下,这种与结构变化紧密关联的磁相变往往对压力是非常敏感的.早期对 CrAs 多晶的高压电阻率测试确实表明^[26], T_N 随着压力的升高而逐渐降低,在约5 kbar (1 bar = 10⁵ Pa)时就消失了,这意味着高压可能在 CrAs 中诱导磁性量子临界点.然而,早期的高压研究并没有关注临界点附近的低温物性.

从 2013年6月开始,我们利用活塞-圆筒高压 腔对高质量的 CrAs 单晶^[25] 开展了仔细的高压电 阻率和磁化率测试,最终在其磁有序被压制的临 界点附近首次观察到超导电性^[16].图3(a)显示的 是 0 $\leq P \leq$ 7 kbar 范围内 CrAs 单晶在整个温区的 $\rho(T)$ 曲线. 从图3(a)可以清晰地看到: T_N 随着压 力的增加逐渐向低温移动, 6.97 kbar 时已降至约 70 K; 当 P > 7 kbar 时,从 $\rho(T)$ 曲线上已经看不

出明显反常,这意味着高压已经完全抑制了反铁磁 序. 值得注意的是, 当P < 3 kbar时, $\rho(T)$ 表现出 与常压类似的强烈一级相变特征;而当P>3 kbar 时, $\rho(T)$ 在 T_N 处则表现为相对平滑的拐点, 而且随 着压力的增加越来越弱,但是升、降温时TN处仍然 存在较大热滞,表明其一级相变的特征仍然维持. 上述结果与早期的高压研究^[26] 类似, 证实了高压 确实可以完全抑制长程磁有序. 图3(b)和图3(c) 显示了不同压力下的低温 $\rho(T)$ 数据,证实了磁性 量子临界点附近确实出现了超导电性. 可以看出, CrAs的ρ(T)在常压下降到0.3 K也没有任何超导 迹象; 在0 < P < 3 kbar区间, 当高温 $\rho(T)$ 在 T_N 处表现为突然跳变时,虽然低温 $\rho(T)$ 在T < 3 K 出现多台阶的下降,但是并没有达到零电阻;在 3 < P < 7 kbar 区间, 当高温 $\rho(T)$ 在 T_N 处表现为 相对平滑的拐点时,低温 $\rho(T)$ 经过多台阶的下降, 最终在约1K达到零电阻,表明实现了超导电性, 而这种多台阶式的ρ(T)下降归因于反铁磁相与超 导相的共存; 当 P> 7 kbar 时, 反铁磁序完全消失, 超导转变表现为非常陡峭的下降,约11 kbar时的

超导转变温度为 $T_c = 1.5$ K (本文中定义达到零电 阻的温度为超导转变温度); 当P > 11 kbar时, T_c 随着压力的增加而逐渐降低. 我们还测试了高压下 的交流磁化率, 进一步确认了P > 8 kbar 以上的超 导相占样品体积的90%以上, 证实为体超导. 而且, 在3 < P < 7 kbar之间超导体积因子逐渐增加, 也 印证了超导相与反铁磁相是共存的, 与 $\rho(T)$ 中观 察到的多台阶下降一致.

根据上述测试结果,我们绘制了 CrAs 单晶的 温度-压力相图.如图 4 (a) 所示,随着压力升高, T_N 逐渐降低,外推至零温的临界压强 $P_c \approx 8$ kbar. 如图 4 (b) 所示,在 3 kbar < $P < P_c$ 区间,超导相 与反铁磁相共存,造成超导转变温度宽度 ΔT_c (定 义为电阻率下降 10% 和 90% 的温度范围)较大 (约 1 K),超导相的抗磁体积因子 $|4\pi\chi|$ 随压力的升高 而逐渐增加;最终当 $P > P_c$ 时, $|4\pi\chi|$ 超过 90% 且 保持恒定,而且 ΔT_c 小于 0.1 K,表明进入体超导 态; T_c 在 11 kbar 附近呈现出较宽的极大值,然后 随压力的升高逐渐缓慢降低.

图3 (a) $0 \le P \le 7$ kbar 范围内 CrAs 单晶在整个温区的电阻率 $\rho(T)$ 数据,图中数值表示压强,单位为 kbar,箭头指示反铁磁有 序温度 T_N ,从中可以清晰地看出压力逐渐抑制 T_N ,插图为 CrAs 的晶体结构; (b), (c) $0 \le P \le 21$ kbar 范围内 CrAs 单晶在低温 区的 $\rho(T)$ 数据,从中可以看出超导转变的演化过程^[16]

Fig. 3. (a) Resistivity $\rho(T)$ of the CrAs single crystal under various hydrostatic pressures up to 7 kbar in the whole temperature range highlighting the variation with pressure of the antiferromagnetic transition temperature $T_{\rm N}$ indicated by the arrows. Inset shows a schematic crystal structure of CrAs. (b) and (c) $\rho(T)$ data at low temperatures in the whole investigated pressure range highlighting the evolution with pressure of the superconducting transition ^[16].

图4 (a) CrAs 单晶的温度压力相图, 其中 AF 和 SC 分 别代表双螺旋反铁磁序和超导相; (b) 从交流磁化率数 据估计的 0.4 K时的超导抗磁体积因子 $|4\pi\chi|_{T=0.4 \text{ K}}$ 和 10%—90% 超导转变温度宽度 ΔT_c 随压力的变化; (c) 低 温正常态电阻率温度指数 n 随压力的变化; (d) 按照 ρ - $T^{1.5}$ 画出的 P = 9.5 kbar 的正常态 $\rho(T)$, 可以看到很好 的线性关系; (a)—(c) 中红色圆圈、蓝色方块和绿色三角 符号分别代表三个不同样品测试的结果 [16]

Fig. 4. (a) Temperature-pressure phase diagram of CrAs crystal. AF and SC represent the antiferromagnetism and superconductivity, respectively. $T_{\rm c}$ has been scaled by a factor of 20 for clarity. (b) The superconducting shielding fraction at 0.4 K, $|4\pi\chi|_{T=0.4}$ K, and the superconducting transition temperature width, $\Delta T_{\rm c}$ as a function of pressure. Here $\Delta T_{\rm c}$ is defined as the 10%–90% superconducting transition width. (c) Pressure dependence of the low-temperature resistivity exponent, n, obtained from the power-law fitting to the normal-state resistivity below 10 K. (d) A plot of ρ versus $T^{1.5}$ for the normal-state $\rho(T)$ curve at P = 9.5 kbar. The symbols of circle (red), square (blue), and triangle (green) in (a), (b), (c) represent three independent samples with residual resistivity ratio = 240, 327, and 250,respectively^[16].

CrAs 的超导相图与前面提到的许多非常规超导体系的相图非常类似,包括圆顶状的 $T_c(P)$ 曲线,这意味着近邻反铁磁序的临界涨落可能是造成超导配对的重要媒介.通过对CrAs 正常态的低温电阻率拟合,即 $\rho(T) = \rho + AT^n$,发现电阻率的温度指数在3—20 kbar 很宽的压力区间接近 $n = 1.5 \pm 0.1$,如图4(c)和图4(d)所示.这与三维

反铁磁体系中由于磁涨落对准粒子的非相干散射 给出的理论值非常接近,表明在 P_c 附近的反铁磁 涨落对电输运性质具有重要影响.此外,Kotegawa 等^[27]对CrAs进行了高压核四极矩共振研究,发 现1/(T_1T)在 T_c 处并没有呈现出Bardeen-Cooper-Schrieffer常规超导体特有的Hebel-Slichter相干 峰,进一步支持CrAs中观察到的超导态具有非 常规配对机理.由于电子能带结构计算表明CrAs 中费米面附近的电子态密度主要来源于Cr-3d电 子^[28],因此CrAs成为第一个铬基化合物超导体, 从而启发人们探索新型的铬基非常规超导体.例 如,浙江大学曹光旱教授课题组^[29–31]合成了一类 新型的准一维超导体 A_2 Cr₃As₃(A = K,Rb,Cs), 表现出反常高的上临界磁场 μ_0H_{c2} ,成为最近强关 联电子体系的一个研究热点.

4 MnP中高压诱导超导电性的发现^[17]

在CrAs工作的基础上,我们继续对与CrAs具 有相同晶体结构和类似双螺旋反铁磁基态的MnP 单晶开展了详细的高压研究. 在展示高压实验结果 之前,我们首先对常压下的物理性质做简单介绍. 在常温常压下, MnP也具有正交B31-型晶体结构, 晶格常数为a = 5.26 Å, b = 3.17 Å, c = 5.92 Å. 在不加外磁场情况下降温, MnP先后经历了两个 磁相变^[32,33]:首先,在 $T_{\rm C} \approx 290$ K附近发生顺磁 到铁磁转变, Mn^{3+} 磁矩沿着 b 轴平行排列, 在低温 时饱和磁矩达到约1.3 μ_B/Mn ; 然后在 $T_s \approx 50$ K 从铁磁态转变为双螺旋反铁磁结构,类似于CrAs, Mn磁矩在ab平面内旋转,螺旋传播方向沿着c轴, 但是螺旋的周期远大于CrAs. MnP在整个温区也 具有金属性电导, 电阻率 $\rho(T)$ 在 $T_{\rm C}$ 处表现出明显 的拐点; 而 c-轴 $\rho_c(T)$ 在 T_s 处出现台阶式跃变^[34]. 因此, 通过跟踪高压下电阻率曲线上的这些反常, 我们就可以获得 $T_{\rm C}$ 和 $T_{\rm s}$ 随压力的变化关系,从而 探索磁性量子临界点和可能的超导电性.

图 5 (a) 给出了 0 $\leq P \leq 10.7$ GPa 范围 MnP 单晶电阻率 $\rho(T)$. 我们测量的 MnP 样品是采用 Sn 助溶剂法生长的高质量的针状单晶,电流方向 沿着最长的 b 轴方向. 高压电阻率测试采用的是立 方六面砧压腔. 从图 5 (a) 可以清晰地看出,常压 下的 $\rho(T)$ 在铁磁相变 $T_{\rm C} = 291$ K 具有明显拐点, 对应图 5 (b) 所示的 d ρ /dT 曲线上的尖峰; 当压力

图5 (a), (b) $0 \le P \le 10.7$ GPa 范围内 MnP 单晶在 整个温区的电阻率 $\rho(T)$ 和相应的温度导数 d ρ /dT, 图中 数值表示压强,单位为 GPa,从中可以清晰看出压力逐渐 抑制磁有序温度 (竖直箭头指示); (c) $0 \le P \le 1.07$ GPa 范围内的 c-轴电阻率 $\rho_c(T)$,从中可以看出双螺旋反铁磁 有序温度 T_s 随压力的变化; (d)不同压力下的交流磁化率 $\chi'(T)$,从中可以看到新的反铁磁转变 T^{*}[17]

Fig. 5. (a) Resistivity $\rho(T)$ and (b) the temperature derivative $d\rho/dT$ of the MnP single crystal under various pressures up to 10.7 GPa highlighting the variation with pressure of the magnetic transition indicated by the vertical arrows; (c) the *c*-axis $\rho_c(T)$ data at low temperatures highlighting the evolution with pressure of the double helical transition at T_s ; (d) temperature dependence of the ac magnetic susceptibility $\chi'(T)$ measured under various pressures, which evidences the appearance of a new magnetic transition at T^* [17].

升高到2.8 GPa时, $\rho(T)$ 形状基本保持不变, 只是 $T_{\rm C}$ 降到约250 K; 然而, 当P = 5.0 GPa 时, $\rho(T)$ 和 d ρ /dT 曲线都表现出显著不同的行为, 前者在约 200 K 出现拐点, 对应在 d ρ /dT 曲线上的上跳, 正 如后面交流磁化率所示, 这些不同的电阻率特征是 由于铁磁相变在 P > 3 GPa时变为反铁磁相变造 成的.因此,我们将P > 3 GPa的磁有序转变温度 定义为 $T_{\rm m}$.如图5(a)和图5(b)所示,随着压力的 增加 $T_{\rm m}$ 逐渐降低,7.4 GPa时已降至约70 K.当 $P \ge 8.1$ GPa时, $\rho(T)$ 上已经不能看出任何明显反 常,这意味着高压已经完全抑制了长程磁有序.

值得一提的是, Banus^[35]早在1972年就曾利 用固体传压介质 (AgCl)对MnP单晶开展过高压研 究,发现其磁有序温度在3—5 GPa时不但没有降 低反而随压力增加稍微升高,与我们看到的单调降 低完全不同.这表明MnP磁有序相变的压力响应 对静水压环境是非常敏感的.早期实验采用的固体 传压介质造成的非静水压环境不利于抑制磁有序, 而只有在较好的静水压条件下才能实现磁性量子 临界点.通过这一对比可以凸显立方六面砧压腔的 优势.

为了跟踪T。随压力的演化关系,我们还利用 活塞-圆筒压腔测试了 MnP 单晶的 c-轴 $\rho_c(T)$. 如 图 5 (c) 所示, 常压下 $\rho_c(T)$ 在 T_s 处表现为小的台阶 式跳跃;随着压力的升高T。迅速向低温移动,在约 1 GPa时完全消失. 图 5 (d) 显示了 MnP 单晶不同 压力下的交流磁化率 $\chi'(T)$,从中可以直接跟踪 $T_{\rm C}$ 和 T_s 随压力的变化. 常压下, $\chi'(T)$ 分别在 T_C 和 T_s 处出现上升和下降,中间的平台即对应铁磁有序 区; 与图 5(a) 中电阻率结果一致, T_C 和 T_s 均随压 力的增加逐渐向低温移动, Ts 在约1.4 GPa时完全 消失. 出乎意料的是, 在 P = 1.8 GPa时 $\chi'(T)$ 重 新在 $T^* \approx 50$ K出现下降, 意味着出现了一个新 的反铁磁转变, 而且T*随着压力的增加迅速向高 温移动,最终在约3 GPa时与T_C汇合,导致铁磁 相完全被压制,取而代之的是新的反铁磁序,对应 于图 5(a) 中 P > 3 GPa 电阻率曲线上的 $T_{\rm m}$. 最新 的高压中子衍射^[36]、核磁共振^[37], µ子自旋旋转 (μSR)^[38] 和磁性X 射线衍射^[39] 表明, 高压下出现 的新的反铁磁相仍然具有螺旋磁有序结构,不过与 低压时T < T_s的螺旋磁有序结构有差别.

通过上述详细的高压下电阻率和交流磁化率 测量,我们可以看到高压可以完全抑制 MnP 的长 程磁有序,在 $P_c \approx 8$ GPa 实现磁性量子临界点.为 了详细研究 P_c 附近的极低温性质,我们采用体积 较小的对顶砧式高压腔与稀释制冷机配合,并采用 氩气作为传压介质,尽量保证较好的静水压环境, 同时测试了极低温 (T < 100 mK)的电阻率 $\rho(T)$ 和 交流磁化率 4 $\pi\chi$,如图 6 所示.

图 6 临界压力 P_c 附近 MnP 单晶的极低温 (a) 电阻率 $\rho(T)$ 和 (b) 交流磁化率 $4\pi\chi(T)^{[17]}$

Fig. 6. Temperature dependence of (a) the resistivity $\rho(T)$ and (b) the ac magnetic susceptibility $4\pi\chi$ on MnP at low temperatures under various pressures near the critical pressure P_c ^[17]

从图 6 (a) 可以看出, 在 P = 7.6 GPa 时, $\rho(T)$ 在约1 K开始缓慢下降; 当压力升到7.8 GPa 时, $\rho(T)$ 在约1K出现陡降,表明可能发生了超导转 变; 然而当继续增加压力时, 此转变往低温移动, 这意味着超导转变只存在非常窄的压力区间. 遗 憾的是,图6(a)所示的 $\rho(T)$ 并没有达到零电阻,这 可能是由于对顶砧式压腔的单轴加压方式和传 压介质在低温固化造成高压腔内存在一定的压力 不均匀分布,而MnP超导转变存在的压力范围又 非常窄造成的.不过,图6(b)所示的交流磁化率 数据提供了MnP体超导的直接证据. $4\pi\chi(T)$ 在 P = 7.6 GPa时开始观察到超导抗磁信号, 当压力 升高到7.8 GPa时超导抗磁体积因子达到了95%, 表明进入体超导态;当继续升高压力到8.6 GPa时, 超导抗磁体积因子保持不变,但是超导转变温度 T_{sc} 降至0.5 K以下.这些结果与图6(a)中的电阻 率数据完全符合,进一步证实了观察到的电阻率陡 降来源于超导转变,而且超导只存在Pc附近非常 窄的压力区间,意味着超导电性的出现与磁性量子 临界点具有非常紧密的联系.

图7 (a) MnP单晶的温度-压强相图,其中给出了 磁有序温度 $T_{\rm C}$, $T_{\rm m}$, T^* , $T_{\rm s}$ 和超导转变温度 $T_{\rm sc}$ 随压 力的演化关系,高压首先将铁磁 (FM)序压制,然后在 3—4 GPa将铁磁序改变为反铁磁序 (AFM),最后在 $P_{\rm c} \approx 8$ GPa将长程磁有序完全抑制,同时低温出现超 导电性 (SC); (b), (c) 通过对正常态电阻率在低温极限下 利用 $\rho(T) = \rho_0 + AT^2$ 拟合获得的剩余电阻率 ρ_0 和电阻 率系数 A 随压力的变化,它们在 $P_{\rm c}$ 附近均表现出显著增 强; (a) 中插图为 P = 8.1 GPa 的 $\rho(T)$ 按照 $\rho T^{1.5}$ 做图, 显示出很好的线性关系^[17]

Fig. 7. (a) Temperature-pressure phase diagram of MnP single crystal. Pressure dependences of the magnetic transition temperatures, $T_{\rm C}$, $T_{\rm m}$, T^* , $T_{\rm s}$ and the superconducting transition temperature $T_{\rm sc}$; $T_{\rm sc}$ has been scaled by a factor of 20 for clarity. (b), (c) Variation with pressure of the residual resistivity ρ_0 and the *A* coefficient extracted from a linear fitting to the $\rho(T^2)$ curves at the low-temperature limit. Inset of (a) shows the low-temperature $\rho(T)$ data at 8.1 GPa in the form of ρ versus $T^{1.5}$ [17].

根据以上数据, 我们绘制了 MnP 单晶的温度-压强相图.如图 7 (a) 所示, 外加高压可以逐渐抑 制双螺旋反铁磁序 (T_s) 和铁磁序 (T_c), 前者在约 1.4 GPa 完全消失, 后者在 2—3 GPa 转变为新的螺 旋反铁磁序 (T_m), 直到 $P_c \approx 8$ GPa 时完全消失; 同 时, 在 P_c 附近非常窄 (约1 GPa) 的压力区间观察到 $T_{sc} = 1$ K 的超导电性.同样地, MnP 的超导相图 与CrAs及前面提及的非常规超导体系非常相似, 特别是超导存在的压力区间很窄这一点与重费米 子超导体,例如CeIn₃和CePd₂Si₂相似^[3].不同之 处是,MnP的磁有序在高压下表现出更丰富的变 化,是目前研究的热点^[36-39].

不论MnP在高压下螺旋反铁磁序的具体形式 如何,超导电性只出现在Pc附近很窄的压力范围 表明反铁磁临界量子涨落与超导配对机理具有重 要联系. 如图7(a)的插图所示, 在 P_c 附近的正常 态电阻率确实表现出 $\rho(T) \propto T^{1.5}$ 的非费米液体行 为,与三维反铁磁量子临界点附近准粒子的非相干 散射给出的理论值符合[7]. 此外, 根据费米液体理 论对低温正常态电阻率进行零温极限的拟合分析, 表明电子有效质量m*/mo在Pc附近表现出非常显 著的增强,如图7(b)和图7(c)所示.由于在P。附 近观察到的非费米液体行为和电子有效质量的大 幅度提高均是反铁磁量子临界点的典型特征,这些 结果均表明MnP中高压诱导的超导电性很可能是 反铁磁临界涨落作为配对媒介的非常规机理.同 样, 电子能带结构计算表明 MnP 费米面附近的电 子态密度主要来源于 Mn-3d 电子 [40], 因此 MnP 成 为第一个锰基化合物超导体,这将启发人们去探索 更多的锰基非常规超导体.

5 FeSe单晶的高压研究^[18]

在铁基高温超导体的母体化合物中,随着温度 降低往往会发生四方-正交结构相变,造成旋转对 称性的破缺,形成电子向列序,而且在向列序发生 的同时或者稍低温度还会出现长程反铁磁序.通过 化学掺杂或者施加压力等调控手段将反铁磁序和 电子向列序抑制掉会诱导高温超导电性.因此,澄 清向列序、磁有序和超导电性的相互关联或竞争关 系是理解铁基非常规超导机理的关键^[41].

FeSe 是铁基超导体系中晶体结构最简单的 一员,但是却表现出诸多奇特反常的物理性质, 成为近年来的研究焦点.一方面,虽然 FeSe 在 $T_{\rm s} \approx 90$ K 也发生四方-正交结构相变^[42],但是与 其他铁基超导体系截然不同的是, FeSe 在向列相内 并没有形成长程反铁磁序^[43].目前,对 FeSe 非磁 基态的原因以及电子向列序到底是起源于自旋涨 落还是轨道序仍存在较大争议^[44].另一方面,无需 化学掺杂或施加高压, FeSe 在正交对称性的向列 相内就可以出现 $T_c \approx 9$ K的超导电性^[45].通过对 FeSe 单晶进行碱金属^[46],有机分子或其他离子插 层^[47]、施加高压^[48]、电场调控^[49]、或者在SrTiO₃ 衬底上生长单层 FeSe 薄膜^[50]等多种途径,都可以 大幅度提高其 T_c 至30—40 K以上,甚至达到液氮 温区^[51],从而进入高温超导行列.那么,FeSe 是如 何从低温超导体转变为高温超导的呢?

通过对 FeSe-基高温超导体电子结构的大量研 究表明电子掺杂是实现高温超导的关键^[49,52].但 是,目前已有的基于离子插层和掺杂、电场调控以 及单层膜等调控手段得到的实验结果并不能给出 高温超导与母体的电子向列序、甚至压力下出现 的磁有序之间的具体关系.对FeSe施加高压并没 有引入额外的电荷载流子,仍然可以实现近40K 的高温超导^[48];而且,高压µSR测试显示^[53,54], FeSe在约1 GPa下可以形成长程反铁磁序,并且 发现在P < 2.5 GPa时磁有序温度 $T_{\rm m}$ 与超导转 变温度Tc都随压力增加而升高,遗憾的是需要更 高的压力才能澄清T_m与T_c的具体关系^[55].因此, 我们利用活塞-圆筒和立方六面砧高压低温测量 装置,详细测试了FeSe单晶高压下的电阻率和交 流磁化率,绘制了完整的温度-压力相图,具体阐 明了电子向列序、高压诱导的磁有序和超导相之 间的相互竞争关系,揭示了高温超导是如何逐步 实现的.

图 8 (a) 给出了利用活塞-圆筒压腔测试的 0 $\leq P < 1.9$ GPa范围内的电阻率 $\rho(T)$. 常压 下, $\rho(T)$ 在电子向列序转变温度 $T_{\rm s} \approx 90$ K出现上 翘 (箭头所示), 然后在 $T_{\rm c} = 8.5$ K实现零电阻超导. 随着压力升高, $T_{\rm s}$ 逐渐向低温移动,P > 1.5 GPa 时降至50 K以下;同时, $\rho(T)$ 在 $T_{\rm m} \approx 20$ K出现 另一个上翘,与高压 μ SR观察到磁有序的温度接 近 ^[53,54],并随着压力升高逐步向高温移动.在此 压力区间, $T_{\rm c}$ 呈现非单调变化,1.89 GPa时升至约 15 K. 这些结果与已经报道的高压下的 μ SR^[53,54]、 电阻率^[55]等实验结果一致.

图 8 (b) 显示的是利用立方六面砧压腔测试的 1.8 $\leq P \leq 8.8$ GPa范围内的 $\rho(T)$,从中可以清晰 地跟踪 $T_{\rm m}$ 和 $T_{\rm c}$ 随压力完整的演化规律.如图 8 (b) 所示, P = 1.8 GPa的 $\rho(T)$ 数据与活塞-圆筒压腔 测试的结果类似,不过电阻率在 $T_{\rm m}$ 处的上翘更加 显著,这可能是由于六面砧压腔能提供更好的静水 压环境.随着压力升高, $T_{\rm m}$ 继续向高温移动,不过 电阻率在 $T_{\rm m}$ 处的上翘越来越弱,在 $P \ge 2.8$ GPa 时转变为下降的拐点,而且下降的幅度越来越大, 不过转变温度逐渐趋近饱和, P = 4.8 GPa时达 到45 K;在此压力区间, $T_{\rm c}$ 基本保持不变,维持在 约20 K附近. 然而,当压力从4.8升至5.8 GPa时, $\rho(T)$ 表现出较复杂的特征, $T_{\rm m}$ 降至约41 K,表现 为电阻率突降之前的拐点(对应d ρ /dT 曲线上的小 峰), $T_{\rm c}$ 跳至约28 K; 当P = 6.3 GPa 时, $\rho(T)$ 上 只能观察到超导转变, $T_{\rm c}^{\rm max}$ 达到38.5 K, 然后随 着压力升高缓慢降低, 8.8 GPa时降至 33.2 K. 当继续升高压力至约 12 GPa时, 四方 FeSe 发生结构 相变, 从层状结构转变为三维的正交结构 (空间群 *Pbnm*). 如图 8 (c) 所示, 此高压相不超导, ρ(T) 表 现出半导体型温度依赖关系, 且电阻率随着压力 的增加而升高. 另外, 我们还利用日本东京大学的 恒压型立方六面砧高压装置对气相传输法生长的 FeSe 单晶开展了高压电阻率测试, 得到非常一致的 结果, 如图 8 (d) 所示.

图 8 FeSe 单晶高压下的电阻率 $\rho(T)$ (a) 采用活塞 -圆筒压腔测试到 1.9 GPa; (b), (c) 采用中国科学院物理研究所的微型立方六 面砧压腔测试到 15 GPa; (d) 采用日本东京大学的恒压型立方六面砧压腔测试到 8 GPa; 不同颜色的箭头对应 $T_{\rm s}$, $T_{\rm m}$ 和 $T_{\rm c}$ ^[18] Fig. 8. Temperature dependence of resistivity $\rho(T)$ in FeSe single crystals under high pressure: (a) $\rho(T)$ curves below 100 K at different pressures up to 1.9 GPa measured in the self-clamped piston-cylinder cell; (b), (c) data up to 8.8 GPa and 15 GPa measured in the self-clamped cubic anvil cell in IOP CAS; (d) $\rho(T)$ curves below 200 K up to 8 GPa measured in the constant-loading cubic anvil cell in ISSP, Univ. Tokyo. Except for (c) the data are vertically shifted for clarity. The resistive anomalies at transition temperatures $T_{\rm s}$, $T_{\rm m}$, and $T_{\rm c}$ are indicated by the arrows ^[18].

为了进一步证实图8(b)中电阻率的上翘或下降对应于反铁磁序,特别是2.8 $\leq P \leq 4.8$ GPa之间电阻率的下降不是超导相变的起始点,我们还在每个压力下测试了不同磁场的 $\rho(T)$,如图9所示. 从P = 1.8 GPa的 $\rho(T)$ 曲线可以看出,随着磁场的增加, $T_{\rm m}$ 是不变的,而 $T_{\rm c}$ 逐渐向低温移动.当P = 2.8 GPa时,随着磁场的增加,零场时 $T_{\rm m}$ 处的电阻率下降逐渐变为上翘,而且 $T_{\rm m}$ 随磁场不变,证实零场时观察到的电阻率反常对应的是反铁磁序而非超导转变的起始.从P = 5.8 GPa时不同磁场下的 $\rho(T)$ 曲线上,我们也进一步确认电阻率在约38 K的突降对应于部分样品的超导转变, $T_{\rm m}$ 对应于电阻突降之前的拐点,如图9(d)中箭头所示.通过施加磁场压低 $T_{\rm c}$,我们在P = 6.3 GPa,H = 9 T 的 ρ(T) 曲线也可以看到反铁磁序的特征, 图 9 (i) 中箭头所示, 表明反铁磁序已降至超导转变以下. 此外, 我们还测试了高压下的交流磁化率, 超导抗 磁信号出现的温度与达到零电阻的温度 T_c 非常一 致^[18].

根据上述测试结果,我们绘制了FeSe单晶目 前最完整温度-压力相图.如图10所示,随着压力 升高,电子向列序温度 T_s 逐渐降低,1.5 GPa时降 到50 K以下,同时在 $T_m \approx 20$ K开始出现长程磁 有序,这表明向列序和反铁磁序之间存在竞争关 系.随着压力的继续增加, T_s 外推至2 GPa时将完 全消失,而 T_m 则逐渐升高,在约4.5 GPa时到达最 高的45 K,之后又逐渐降低,呈现出圆顶状 $T_m(P)$, 其两端分别外推至1 GPa和8 GPa附近.伴随着 压力下电子向列序的消失和磁有序的出现,超导转变温度 T_c 表现出一系列相应的特征变化:随着 T_s 的降低 T_c 首先升高,在约1 GPa附近达到一个局域极大值,然后逐渐降低,这对应于 T_m 开始出现的下临界压力,意味着磁有序会抑制超导;当 T_s 在2 GPa完全消失时, T_c 出现第一次台阶式跳跃,升至约20 K,表明电子向列序和超导之间也存在竞争关系;在 T_m 保持升高的2—5 GPa 压力区间, T_c 几乎保持不变,进一步表明反铁磁序和超导之间存在竞争关系;当压力升高到约6 GPa时, T_m 开始降低,同时 T_c 出现第二次台阶式跳跃,实现最高 $T_c^{max} = 38.5$ K的超导转变;之后, T_c 随着压力的增加而缓慢降低;最终,在约12 GPa时层状FeSe发生结构相变,转变为具有三维晶体结构的非超导

的六角 FeSe.

图 10 给出的温度-压力相图详细展示了 FeSe 单晶中电子向列序、磁有序和超导相之间的相互 竞争关系,具体揭示了 FeSe 单晶中的高温超导是 通过依次抑制电子向列序和反铁磁序而逐步实现 的.特别是,高温超导近邻长程磁有序与其他铁基 超导体系类似,而且磁有序消失的临界压力附近的 正常态电阻率表现出很好的线性温度依赖关系,见 图 8 (b),表明临界反铁磁涨落可能对实现高温超 导起重要作用.值得注意的是,FeSe 中磁有序温度 *T*_m和最高超导*T*_c非常接近,意味着磁有序和超导 配对之间具有非常相近的能量尺度,这与其他铁基 超导体系是不同的.

图 9 FeSe 单晶在高压和不同磁场下的低温 $\rho(T)$ 数据 ((a)—(d), (i)—(l))和相应的 H-T 相图 ((e)—(h), (m)—(p)), 从图中可以看出随着磁场增加, 磁有序温度 $T_{\rm m}$ 保持不变, 而超导转变温度 $T_{\rm c}$ 逐渐降低 ^[18] Fig. 9. Effects of magnetic fields on the magnetic and superconducting transitions under different high pressures. The magnetic transition temperature $T_{\rm m}$ is field independent and marked by the green arrow (a)–(d) ^[18].

037401 -- 10

图 10 FeSe 单晶的温度-压力相图, 其中 T_s, T_m, T_c 分 别代表电子向列序 (nematic)、长程磁有序 (SDW) 和超导 (SC) 转变温度^[18]

6 结论与展望

高压调控是实现磁性量子临界点、探索非常规 超导电性非常有效的研究手段.为了能够在较大的 压力范围开展高压研究,我们在中国科学院物理研 究所建立了国内第一台基于立方六面砧的大腔体 高压低温物性测量装置,实现了多重极端条件(最 高压强15 GPa,最低温度1.4 K和最强磁场9 T) 下的电输运和磁性测试,其三轴加压和样品浸泡在 液体传压介质中的方式能保证良好的静水压环境, 有利于获得材料本征的高压效应.此外,由于样品 空间相对较大,开发更多能够与立方六面砧高压装 置配合使用的物性测量技术,例如10 GPa以上的 高压核磁共振测量,是将来应着重发展的高压技术 方向.

借助于能提供较好静水压环境的立方六面 砧和活塞-圆筒高压低温物性测量装置,我们首 先对具有双螺旋反铁磁序的巡游电子磁体 CrAs 和 MnP 开展了详细的高压物性调控研究,分别在 $P_{\rm c} \approx 0.8$ GPa 和 8.0 GPa 抑制了它们的长程磁有 序,并在 $P_{\rm c}$ 附近观察到 $\rho \propto T^{1.5}$ 的非费米液体行 为和电子有效质量的显著提高,这些现象是反铁磁 量子临界点的典型特征.最重要的是,我们还在 $P_{\rm c}$ 附近首次观察到 $T_{\rm c} = 2$ K (CrAs)和1 K (MnP)的 超导电性,相继实现了铬基和锰基化合物超导体零 的突破.这两个发现打破了人们认为铬基和锰基化 合物不会出现超导这一普遍认识,从而启发人们探 索新型的铬基和锰基非常规超导体.新型准一维超 导体系 A₂Cr₃As₃ (A = K, Rb, Cs)的发现也表明 这一研究领域是很有潜力的.此外,这两个工作也 进一步印证了通过高压实现磁性量子临界点确实 是探索非常规超导体非常有效的手段.因此,非常 有必要对更多的巡游电子磁体开展系统深入的高 压调控研究,我们可以预期将会发现更多的有趣的 物理现象.

此外,对FeSe单晶的高压研究表明,高压还可 以大幅度提高非常规超导体的*T*_c,揭示多种电子序 之间的相互竞争关系.通过绘制FeSe单晶完整的 温度-压力相图,具体阐明了电子向列序、磁有序和 超导相之间的相互竞争关系,并揭示了FeSe单晶 中的高*T*_c是通过依次抑制电子向列序和磁有序而 逐步实现的.特别是FeSe的最高*T*_c出现在反铁磁 序消失的临界压力附近,且正常态电阻率呈现线性 温度依赖关系,表明临界反铁磁涨落与其高温超导 具有重要关联.这些现象与其他FeAs基高温超导 体系类似,有助于统一理解FeSe-和FeAs-基高温超 导的机理.

本文中的工作是作者在过去三年中与多位合作者共 同完成的.感谢中国科学院物理研究所雒建林研究员和 吴伟提出对CrAs进行高压研究并提供了高质量的CrAs和 MnP单晶样品;感谢中国科学院物理研究所的孙建平和叶 光洲同学开展的大量高压低温物性测量工作,特别是孙建 平同学在搭建立方六面砧装置过程中付出了大量努力.感 谢日本东京大学的Uwatoko教授在搭建立方六面砧高压测 量装置方面给予的大力帮助、Matsubayashi博士在利用对 顶砧压腔和稀释制冷机测量 MnP 极低温物性方面的帮助、 以及 Matsuura和 Shibauchi教授在利用恒压型六面砧压腔 测量气相传输 FeSe 单晶方面的合作.感谢美国橡树岭国家 实验室的闫加强博士和 Sales 博士提供了高质量的 FeSe 单 晶样品.最后,感谢中国科学院物理研究所和中组部"青年 千人计划"在搭建高压实验室时给予的经费支持.

参考文献

- [1] Coleman P, Schofield A J 2005 Nature 433 226
- [2] Sachdev S, Keimer B 2011 Phys. Today 64 29
- [3] Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 *Nature* 394 39
- [4] Norman M R 2011 Science **332** 196

Fig. 10. Temperature–pressure phase diagram of bulk FeSe, in which $T_{\rm s}$, $T_{\rm m}$, and $T_{\rm c}$ represent the transition temperatures for nematic order, long-range antiferro-magnetic order and the superconductivity ^[18].

- [5] Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177
- [6] Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186
- [7] Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 *Rev. Mod. Phys.* **79** 1015
- [8] Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511
- [9] Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 *Rhys. Rev. B* 90 125126
- [10] Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502
- [11] Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306
- [12] Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225
- [13] Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 *Rev. Sci. Instrum.* 85 093907
- [14] Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615
- [15] Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 *Rev. Sci. Instrum.* 84 063903
- [16] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508
- [17] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
- [18] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146
- [19] Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185
- [20] Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 *Rev. High Pressure Sci. Technol.* 18 230
- [21] Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206
- [22] Boller H, Kallel A 1971 Solid State Commun. 9 1699
- [23] Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703
- [24] Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128
- [25] Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China: Phys. Mech. Astron. 53 1207
- [26] Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542
- [27] Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002
- [28] Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558
- [29] Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013
- [30] Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 *Phys. Rev. B* 91 020506
- [31] Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China: Mater. 58 16

- [32] Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033
- [33] Felcher G P 1966 J. Appl. Phys. 37 1056
- [34] Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430
- [35] Banus M D 1972 J. Solid State Chem. 4 391
- [36] Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 *Phys. Rev. B* **93** 100405
- [37] Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China: Phys. Mech. Astron. 59 657403
- [38] Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 *Phys. Rev. B* 93 180509
- [39] Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037
- [40] Yanase A, Hasegawa A 1980 J. Phys. C 13 1989
- [41] Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623
- [42] McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002
- [43] Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. **102** 177005
- [44] Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953
- [45] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
- [46] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520
- [47] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15
- [48] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630
- [49] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 *Phys. Rev. Lett.* **116** 077002
- [50] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 *Chin. Phys. Lett.* **29** 037402
- [51] Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285
- [52] Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.: Condens. Mater. 27 183201
- [53] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003
- [54] Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 *Phys. Rev. B* 85 064517
- [55] Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701

SPECIAL TOPIC — Recent advances in the structures and properties of materials under high-pressure

Pressure-tuned magnetic quantum critical point and unconventional superconductivity^{*}

Cheng Jin-Guang[†]

(Key Laboratory of Extreme Conditions Physcis, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China) (Received 2 November 2016; revised manuscript received 19 November 2016)

Abstract

Magnetic quantum critical point (QCP) arises when a long-range magnetic order occurring at finite temperature can be suppressed to absolute zero temperature by using chemical substitutions or exerting high pressure. Exotic phenomena such as the non-Fermi-liquid behaviors or the unconventional superconductivity are frequently observed near the magnetic QCP. In comparison with chemical substitutions, the application of high pressure has some advantages in the sense that it introduces no chemical disorder and can approach the QCP in a very precise manner. In this article, our recent progress in exploring the unconventional superconductors in the vicinity of pressure-induced magnetic QCP is reviewed. By utilizing the piston-cylinder and cubic-anvil-cell apparatus that can maintain a relatively good hydrostatic pressure condition, we first investigated systematically the effect of pressure on the electrical transport properties of the helimagnetic CrAs and MnP. We discovered for the first time the emergence of superconductivity below $T_{\rm c} = 2$ K and 1 K near their pressure-induced magnetic QCPs at $P_{\rm c} \approx 0.8$ GPa and 8 GPa for CrAs and MnP, respectively. They represent the first superconductor among the Cr- and Mn-based compounds, and thus open a new avenue to searching novel superconductors in the Cr- and Mn-based systems. Then, we constructed the most comprehensive temperature-pressure phase diagram of FeSe single crystal based on detailed measurements of high-pressure resistivity and alternating current magnetic susceptibility. We uncovered a dome-shaped magnetic phase superseding the nematic order, and observed the sudden enhancement of superconductivity with $T_c^{\text{max}} = 38.5$ K accompanied with the suppression of magnetic order. Our results revealed explicitly the competing nature of nematic order, antiferromagnetic order, and superconductivity, and how the high- $T_{\rm c}$ superconductivity is achieved by suppressing the long-range antiferromagnetic order, suggesting the important role of antiferromagnetic spin fluctuations for the Cooper paring. These aforementioned results demonstrated that high pressure is an effective approach to exploring or investigating the anomalous phenomena of strongly correlated electronic systems by finely tuning the competing electronic orders.

Keywords: high-pressure measurements, magnetic quantum critical point, unconventional superconductivity, non-Fermi-liquid behaviors

PACS: 74.40.Kb, 74.25.Dw, 74.62.Fj, 74.70.Xa

DOI: 10.7498/aps.66.037401

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11574377), the National Basic Research Program of China (Grant No. 2014CB921500), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).

[†] Corresponding author. E-mail: jgcheng@iphy.ac.cn