物理学报 Acta Physica Sinica

全反式 β-胡萝卜素太赫兹光谱的实验及理论研究

闫微 马淼 戴泽林 谷雨 朱宏钊 刘禹彤 许向东 韩守胜 彭勇

Experimental and theoretical study on terahertz spectra of all-trans β -carotene Yan Wei Ma Miao Dai Ze-Lin Gu Yu Zhu Hong-Zhao Liu Yu-Tong Xu Xiang-Dong Han Shou-Sheng Peng Yong

引用信息 Citation: Acta Physica Sinica, 66, 037801 (2017) DOI: 10.7498/aps.66.037801 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.037801 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I3

您可能感兴趣的其他文章 Articles you may be interested in

轮烯衍生物电子结构及三阶非线性光学性质的理论研究

Electronic structures and second hyperpolarizabilities of annulenes derivatives 物理学报.2015, 64(12): 127801 http://dx.doi.org/10.7498/aps.64.127801

FOX-7转晶行为的太赫兹光谱及理论计算研究

Terahertz spectrum and simulation of the phase transformation of FOX-7 物理学报.2015, 64(7): 073302 http://dx.doi.org/10.7498/aps.64.073302

用节点变分的代数方法研究双原子体系的完全振动能谱和离解能

Investigations of vibrational levels and dissociation energies of diatomic systems using a variational algebraic method

物理学报.2012, 61(13): 133301 http://dx.doi.org/10.7498/aps.61.133301

亚乙基硫脲分子键伸缩模式与全耦合模式键极化率的对比及其拉曼激发虚态的相关研究 The comparison of temporal bond polarizabilities of the nonresonant Raman excited virtual state of ethylene thiourea by two different algorithms 物理学报.2010, 59(9): 6052-6058 http://dx.doi.org/10.7498/aps.59.6052

全反式β-胡萝卜素太赫兹光谱的实验及理论研究*

闫微 马淼 戴泽林 谷雨 朱宏钊 刘禹彤 许向东† 韩守胜 彭勇

(电子科技大学光电信息学院,成都 610054)

(2016年6月22日收到;2016年10月24日收到修改稿)

采用傅里叶变换红外光谱技术和太赫兹时域光谱技术,在室温下对全反式β-胡萝卜素薄膜进行了光谱测 试.据此,详细地指认出全反式β-胡萝卜素在太赫兹波段的指纹谱峰,并验证了近期报道的棕树叶的太赫兹 光谱结果.运用密度泛函理论的B3LYP方法计算了全反式β-胡萝卜素的太赫兹光谱,理论计算结果与实验 测量结果基本符合.此外,根据理论计算结果,对实测的太赫兹特征峰的振动模式进行了系统归属.本文研究 结果有助于推动有机物的太赫兹光谱规律和太赫兹响应原理等理论与应用研究.

关键词: 全反式β-胡萝卜素, 太赫兹光谱, 密度泛函理论, 振动模式
 PACS: 78.30.Jw, 87.50.U-, 31.15.E-, 33.20.Tp
 DOI: 10.7498/aps.66.037801

1引言

太赫兹波是指频率在0.1—10 THz、波长在 3000—30 µm 范围内的电磁波^[1]. 由于长期缺少稳 定的光源和探测技术,太赫兹波的研究进展十分缓 慢. 近年来, 超快激光的出现为太赫兹研究提供了 新型、稳定的高功率激发光源,极大地促进了太赫 兹技术的发展.利用太赫兹光谱研究材料的结构 及其在太赫兹波段的光学特性是太赫兹领域一个 新的研究热点. 太赫兹光谱包含非常丰富的物理 和化学信息,理论及实验研究表明,许多有机分子 的色散特性及吸收谱线都处于太赫兹波段^[2],因此 利用太赫兹光谱技术可以获得有机物分子在太赫 兹波段的光学性能,进而研究它们的结构和特性. 2000 年, Markelz 等^[3]利用太赫兹时域光谱 (terahertz time-domain spectroscopy, THz-TDS) 技术 研究了DNA、牛血清蛋白和胶原质在太赫兹波段 的性质,结果表明这三种物质在太赫兹波段有特定 的响应. 近几年, 有关核苷酸^[4]、氨基酸^[5]、纤维 素^[6]等有机分子太赫兹光谱特性的研究也引起了 学术界的关注.

β-胡萝卜素是自然界中最普遍、最稳定的一类 天然色素, 它们广泛地存在于动植物和微生物体 中. β-胡萝卜素有许多同分异构体,常见的约有20 余种. β -胡萝卜素是含有9个 π 电子共轭双键的短 链多烯类分子^[7].由于其特殊的分子结构,此类有 机物不仅在光采集、光防护、防癌及抗癌等生物医 学方面应用广泛[8-10],而且在光电器件、功能材料 等其他方面也有重要的应用[11].近年,β-胡萝卜素 在太赫兹波的产生和探测方面的新应用逐渐引起 了人们的关注. 其中, Zuo等^[12]、张磊巍等^[13]的研 究显示,全反式β-胡萝卜素在太赫兹波段有特定的 响应吸收. 最近, 我们的研究表明, 棕树叶中类胡 萝卜素等成分具有特殊的太赫兹指纹谱峰[14].遗 憾的是,前人^[12,13]没有对β-胡萝卜素的太赫兹特 征峰进行有效的归属与验证,相关的太赫兹响应原 理也未见报道. 而且, 在我们近期通过直接测量固 态棕树叶及其溶剂提取液的数据中^[14],所获得的 类胡萝卜素的太赫兹指纹谱峰可能存在叶绿素等 其他成分的干扰, 需要对相关的太赫兹特性进一步 甄别与验证.

为此,本文利用傅里叶变换红外光谱(Fourier transform infrared spectroscopy, FTIR)及THz-

^{*} 国家自然科学基金(批准号: 61071032, 61377063)资助的课题.

[†]通信作者. E-mail: xdxu@uestc.edu.cn

^{© 2017} 中国物理学会 Chinese Physical Society

TDS两种当今最主要的太赫兹光谱测量技术,系统 地研究了全反式β-胡萝卜素试剂的太赫兹光谱特 性,据此梳理此类有机分子的太赫兹响应规律.特 别地,本文还利用密度泛函理论对全反式β-胡萝卜 素进行了光谱理论研究,并根据仿真结果对实测的 太赫兹特征峰进行系统归属.研究结果不仅为进一 步研究有机分子在太赫兹波段的光谱特征和响应 原理提供了很好的借鉴,也为有机物太赫兹光谱的 理论研究奠定了基础.

2 实 验

2.1 样品制备

本实验使用的全反式 β -胡萝卜素 (all-trans β -carotene, 以下简称 β -胡萝卜素, 化学结构如图 1 所

示)购自百灵威科技有限公司,纯度为97%;三氯甲 烷购自成都市联合化工试剂研究所,纯度为99%; 溴化钾购自百灵威科技有限公司,纯度为99.9%.

FTIR 的测试样品是采用喷涂法制备的薄膜. 首先,称取 30 mg β-胡萝卜素晶体溶解在 30 mL 三 氯甲烷溶液中,制成浓度为1 mg/mL 的溶液,溶液 为橘红色.由于β-胡萝卜素在光照下不稳定,三氯 甲烷也易挥发,所以实验过程中需用保鲜膜将烧 杯口密封,并用锡箔纸包住小烧杯以避光保存.喷 涂法制膜使用的衬底为预处理过的洁净硅片(100). 喷涂条件包括:喷枪支架的高度设为12 cm;喷涂 气体采用高纯氮气,压强为1.5 kPa;喷涂后的薄膜 在 50 °C下退火 30 min.在以上条件下喷涂 108 s, 制得 β-胡萝卜素薄膜.

图 1 全反式 β -胡萝卜素的化学结构图 Fig. 1. Chemical structure of all-trans β -carotene.

THz-TDS测试的样品通过传统的溴化钾 (KBr)压片法进行制备. 将β-胡萝卜素样品以质量比1:100与KBr均匀混合,在玛瑙研钵中仔细 研磨后放入模具,用20 MPa的压强压成厚度约为 1 mm、直径约为13 mm的圆盘形样品. 样品的结 构均匀,前后两平面保持平行,以减少测量时的多 重反射效应.

2.2 太赫兹光谱测量

实验采用美国PerkinElmer公司的Spectrum 400型FTIR光谱仪,测量β-胡萝卜素在 30—400 cm⁻¹范围的太赫兹光谱.FTIR系统的 结构原理如图2(a)所示.其中,红外光源发出的 红外光经过干涉仪形成干涉光到达衰减全反射 (attenuated total reflection, ATR)系统,红外光在 ATR系统中通过晶体进入样品材料并发生衰减全 反射,最后携带样品信息的红外光被远红外检测器 检测.测试参数包括:扫描次数256次,分辨率为 1 cm⁻¹.测试前,先将空白硅片放置在夹具上进行 背景扫描以扣除硅片背景.

此外,还采用THz-TDS(型号为TPS Spectra 3000, 测量范围为 0.06—3.0 THz, 信噪比优 于4000:1),以空气为参考,测量压片样品在 0.5-3.0 THz 范围的太赫兹透射光谱. THz-TDS 系统透射测试光路如图2(b)所示. 钛蓝宝石 (Ti:sapphire)飞秒激光器输出波长为800 nm、重 复频率为80 MHz、脉冲宽度小于100 fs、平均功率 约为300 mW的激光. 激光发出后, 经分束镜分为 抽运光和探测光. 其中, 抽运光聚焦到偏置的太赫 兹发射天线上, 通过光电导原理激发出太赫兹脉 冲. 然后, 太赫兹脉冲被聚焦到待测样品上, 经样 品透射后与探测光汇合共线通过太赫兹探测器进 行相干检测. 探测器是基于低温生长的GaAs偶极 子天线. 检测信号通过快速傅里叶变换得到测试样 品在太赫兹波段的响应光谱. 在本文的光谱测量 中, THz-TDS的光谱分辨率为0.006 THz, 测量环 境为干燥的空气环境,相对湿度小于1%.

图 2 实验装置图 (a) FTIR-ATR; (b) THz-TDS 的测 量装置示意图

Fig. 2. Experimental setups of (a) FTIR-ATR and (b) THz-TDS.

3 结果与讨论

图 3 是使用 FTIR 光谱仪测得的 β -胡萝卜素 薄膜在 30—400 cm⁻¹ (0.9—12 THz) 波段的太赫 兹光谱. 从图 3 可以看出,在 30—400 cm⁻¹ 波段, β -胡萝卜素的主要吸收峰包括 35,53,63,77,89, 95,115,124,134,170,247,279 cm⁻¹等.由于 FTIR 光源的低波数能量低,容易受到空气中 CO₂ 和 H₂O 的影响,产生反常吸收^[15].相比而言,THz-TDS 采用同步相干探测技术,对热背景噪声不敏 感,可以获得很高的信噪比^[16].就信噪比而言, THz-TDS 在低于 3 THz 时远高于 FTIR,而 FTIR 则在 5 THz 以上时更好^[17,18].THz-TDS 与 FTIR 相互补充,是研究分子结构和分子振动光谱的重要 工具.

为此,本文使用 THz-TDS 技术进一步测试了 β -胡萝卜素在 0.5—3.0 THz (17—100 cm⁻¹) 波段 的太赫兹光谱.本文首先测量压片所用 KBr 的 THz-TDS,结果如图 4 (a) 所示.该图显示, KBr 在 0.5—2.0 THz 频段的吸收很弱,但在 2.0—3.0 THz 频段的吸收逐渐增强.在此基础上,我们利用 THz-TDS继续对压嵌在KBr中的β-胡萝卜素的 太赫兹光谱进行测量,结果如图4(b)所示. 由 于KBr压片在0.5-2.0 THz范围几乎没有吸收 峰(图4(a)),所以图4(b)在此范围的吸收峰都 源于β-胡萝卜素.另一方面,在2.5—3.0 THz范 围, KBr虽然有少量吸收峰(图4(a)), 但其光谱 透射率均大于93%,吸收峰的强度较弱,而且它 们的峰形也明显地与图4(b)的不同. 这说明, 图 4 (b) 所示在 0.5—3.0 THz 探测到的主要是 β-胡 萝卜素的太赫兹吸收峰, KBr没有对前者的太 赫兹光谱造成明显影响. 图4(b)表明, β-胡萝卜 素在1.62 THz (54 cm⁻¹), 1.71 THz (57 cm⁻¹), 1.83 THz (61 cm^{-1}), 1.91 THz (64 cm^{-1}), 2.06 THz (69 cm⁻¹), 2.21 THz (74 cm⁻¹), 2.32 THz (77 cm^{-1}) , 2.44 THz (81 cm^{-1}) , 2.54 THz (85 cm⁻¹), 2.61 THz (87 cm⁻¹), 2.69 THz (90 cm⁻¹), 2.76 THz (92 cm⁻¹), 2.85 THz (95 cm⁻¹), 2.91 THz (97 cm⁻¹), 2.95 THz (98 cm⁻¹) 处有明显的吸收峰. 我们 还注意到,图4(b)中的54,64,77,90,95 cm⁻¹ 等特征峰与FTIR光谱仪测得在50-100 cm⁻¹波 段的结果(图3)相符合. 图3与图4(b)的比较还 说明,采用THz-TDS技术,能够检测到β-胡萝卜 素在太赫兹低频段更丰富的特征峰,进一步说明 THz-TDS技术在太赫兹低频范围(<3 THz)具有 更高的灵敏度. 与之相比, FTIR则在太赫兹的高 频范围(> 3 THz), 谱峰稳定、灵敏. 遗憾的是, FTIR 的 35 cm⁻¹峰(图 3)没有被THz-TDS检测 到(图4(b)),估计该峰可能是FTIR的低频极限 测量噪声.我们前期通过FTIR差谱方法获得的 结果表明^[14],棕树叶中类胡萝卜素的太赫兹指纹谱

Fig. 3. FTIR spectra of β -carotene film.

图 4 THz-TDS (a) KBr 薄膜; (b) β -胡萝卜素薄膜 Fig. 4. THz-TDS of (a) KBr film and (b) β -carotene film.

峰包括 37, 58, 65, 75, 92, 100, 121, 126 cm⁻¹. 类 似地,其中的 37 cm⁻¹也可能是FTIR的低频极限 测量噪声.当然,相关结论有待于将来的进一步 确认.令人欣喜的是,这些棕树叶中类胡萝卜素 的太赫兹特征峰与本文对β-胡萝卜素试剂的测量 结果基本符合,进一步证明我们近期研究植物太 赫兹光谱的方法^[14]是正确的.需要提醒的是,由 于本文测量的是纯度高达97%的全反式β-胡萝卜 素试剂的太赫兹光谱,避免了前期研究^[14]中棕树 叶中共存的高含量叶绿素以及提取液中混合溶剂 等的干扰,从而能够进一步甄别与验证类胡萝卜 素的太赫兹特征峰. 我们还注意到,首都师范大 学张存林课题组^[12,13]也曾采用 THz-TDS 和 FTIR 技术测量了 β 胡萝卜素分子,其结果表明,该化 合物在1.07 THz (36 cm⁻¹), 1.91 THz (64 cm⁻¹), 2.82 THz (94 cm⁻¹) 等处存在太赫兹吸收峰^[12], 与本文获得的相应的太赫兹指纹谱峰相符合. 据此,并结合本文图 3 的 FTIR 和图 4 (b) 的 THz-TDS 实测结果,可以确定 β -胡萝卜素在太赫兹波 段的特征峰依次为1.62 THz (54 cm⁻¹), 1.71 THz (57 cm⁻¹), 1.91 THz (64 cm⁻¹), 2.32 THz (77 cm⁻¹), 2.69 THz (90 cm⁻¹), 2.95 THz (98 cm⁻¹), 3.45 THz (115 cm⁻¹), 3.72 THz (124 cm⁻¹), 4.02 THz (134 cm⁻¹), 5.11 THz (170 cm⁻¹), 7.42 THz (247 cm⁻¹), 8.38 THz (279 cm⁻¹)等.

为了更好地理解β-胡萝卜素在太赫兹波段的 响应原理,并对其太赫兹特征峰进行有效归属, 本文使用Gaussian09软件,采用密度泛函理论在 B3LYP/6-311G(d,p)基组下对孤立β-胡萝卜素分 子的光谱进行了仿真计算.我们首先对胡萝卜素 单分子结构进行优化和频率计算.图5是β-胡萝卜 素分子经过结构优化后的模型及C原子编号.频率 计算无虚频产生,说明优化得到的几何结构为稳定 结构.

由于 THz-TDS 在频率高于 3 THz 时,测量结 果不稳定、噪声大.与之相比,FTIR 具有更广的测 量范围 (1—20 THz).所以,为了在更广的光谱范围 里进行评估,我们把理论计算结果与FTIR 实测结 果进行比较.图6是β-胡萝卜素在 30—160 cm⁻¹ 范围的仿真太赫兹光谱与FTIR 实测光谱的对照. 其中,本文对理论计算得到的光谱进行了简化处 理,只将其主要吸收峰的位置及强度标在图上. 图6显示,在 30—160 cm⁻¹范围内计算得到5个主

图 5 (网刊彩色) β -胡萝卜素分子的几何优化结构 Fig. 5. (color online) Optimized geometry structure of β -carotene molecule.

037801-4

要的吸收峰,分别位于52,76,115,132,148 cm⁻¹. 其中, 52, 76, 115, 132 cm⁻¹分别对应FTIR 实测 的53,77,115,134 cm⁻¹ 谱峰,最大误差仅为2个 波数,这说明理论计算得出的太赫兹特征峰与实验 测得的结果符合程度高(图6),同时表明本文利用 β-胡萝卜素分子结构进行理论计算是可行的. 我 们注意到, 仿真的148 cm⁻¹ 强吸收峰在实测光谱 中不明显,造成这种差异的原因可能与温度效应有 关. 前人的研究表明^[19], 分子体系内的化学键尤 其是氢键强度容易受温度的影响,从而导致其振 动频率发生改变. 类似地, Shen 等^[20] 在讨论低温 下生物分子的太赫兹光谱时也认为,随着温度的 降低,太赫兹吸收峰的强度将增强.由于本文理论 计算出的振动频率对应温度为0K时的值,而实际 的光谱则是在室温(298 K)下测量,由此导致计算 结果与实测结果在148 cm⁻¹处的差异. 除此之外, 我们还注意到一个明显的现象,即实验测量的63, 89,95 和124 cm⁻¹等吸收峰在仿真结果中没有出 现(图6). 这是由于实验测量的样品是多分子体系, 体系中除了单分子的原子振动之外,还存在β-胡萝 卜素分子之间的相互作用. 后者的分子间作用也 将引起太赫兹波的特征吸收^[21].与之不同,本文的 仿真计算采用单分子模型,不存在β-胡萝卜素分子 之间的相互作用.因为β-胡萝卜素分子的分子量 大,受限于计算条件,我们目前还无法实现多分子 计算. 而且, 现有的能量收敛精度还不足以很好地 描述较弱吸收峰所对应的振动模式,这也可能是造 成理论计算值与实验值不完全一致的原因之一. 据 此,我们推测,实测的63,89,95和124 cm⁻¹等吸 收峰可能与β-胡萝卜素的分子间相互作用有关,该 结果有待于进一步验证.

图 6 (网刊彩色) β 胡萝卜素太赫兹光谱的理论计算结果 与 FTIR 实测结果的比较 Fig. 6. (color online) Comparison between the experimental and calculated THz spectra of β -carotene.

分子在太赫兹波段的振动主要是分子中多 个原子参与的变形振动、扭绞振动和弯曲振 动^[22].由于不同峰位的振动模式不同,结合Gaussview 5.08的视频动态功能,能够对β-胡萝卜素在 30—160 cm⁻¹波段特征峰的振动模式进行系统的 归属.图7为理论计算的148 cm⁻¹吸收峰的β胡 萝卜素分子的振动模式.

图 7 (网刊彩色) β -胡萝卜素在 148 cm⁻¹ 位置吸收峰的振动模式 Fig. 7. (color online) Vibration modes of β -carotene at 148 cm⁻¹.

根据图7,148 cm⁻¹吸收峰可归属为靠近β-胡 萝卜素分子中心的两个—CH₃的面内摇摆振动. 图中蓝色箭头代表各原子的振动方向,红色箭头代 表整个分子的振动方向,箭头的长度代表原子振 动幅度的大小.类似地,132 cm⁻¹处的吸收峰归 属为β-胡萝卜素分子两端的β-紫萝酮环上—CH₂ 的面内摇摆振动以及—CH₃的扭绞振动.相比而 言,115,76和52 cm⁻¹处的振动模式较为复杂,涉 及多个官能团的振动模式.其中,115 cm⁻¹峰以中 心碳链(不包括两端β-紫萝酮环)上原子的振动为 主,包含—CH3的面内摇摆振动以及—CH的弯曲 振动,但是不涉及分子的整体振动.另外,76 cm⁻¹ 峰主要是中心碳链上—CH3的扭绞振动和—CH 的弯曲振动. 52 cm⁻¹峰主要是两端 β -紫萝酮环上 —CH3的扭绞振动和—CH2的面内摇摆振动,分子 整体也没有振动.具体的理论计算结果、实验测量 结果以及相对应的振动模式归属均列于表1. 由于 全反式 β -胡萝卜素分子呈中心对称的结构(图5), 其两边的振动模式相同,所以表1只需列出其中一 部分原子的振动模式. 这些结果表明, 通过理论仿 真与实测光谱相对比的方法,能够有效地归属复杂 的有机物太赫兹指纹谱峰. 所以, 本文的理论计算 结果进一步验证和丰富了我们前期的植物太赫兹 光谱的研究成果^[14],重要的是,还揭示了对有机大 分子复杂的太赫兹响应原理进行研究的一种新的 有效途径.

表 1 β -胡萝卜素的太赫兹特征峰的振动模式归属 Table 1. Assignment of absorption peaks for β carotene.

FTIR 实测值 /cm ⁻¹	理论计算值 /cm ⁻¹	振动模式归属
53	52	$\rho(C_{1-3}H_2), t(C_{7-9,18}H_3)$
63		
77	76	$\delta({ m C}_{10,\ 11,\ 14-16,\ 19,\ 20}{ m H}), \ { m t}({ m C}_{13,18}{ m H}_3)$
89		
95		
115	115	$ ho \; ({ m C}_{13,18}{ m H}_3), \ \delta({ m C}_{10,11,14-16,19,20}{ m H})$
134	132	ρ (C ₁₋₃ H ₂), t(C _{7-9,38-40} H ₃)
	148	$ ho(\mathrm{C}_{18}\mathrm{H}_3)$

4 结 论

本文利用 FTIR 技术测量了全反式 β -胡萝卜 素在 30—400 cm⁻¹ 波段的太赫兹透射光谱,同 时利用 THz-TDS 技术测量了全反式 β -胡萝卜素 在 0.5—3.0 THz 波段的太赫兹透射光谱,两种 技术在重叠波段得到的太赫兹特征峰基本符 合. 据此,我们指认出全反式 β -胡萝卜素的太 赫兹指纹谱峰为1.62 THz (54 cm⁻¹), 1.71 THz (57 cm⁻¹), 1.91 THz (64 cm⁻¹), 2.32 THz (77 cm^{-1}) , 2.69 THz (90 cm⁻¹), 2.95 THz (98 cm^{-1}) , 3.45 THz (115 cm⁻¹), 3.72 THz $(124 \text{ cm}^{-1}), 4.02 \text{ THz} (134 \text{ cm}^{-1}), 5.11 \text{ THz}$ (170 cm^{-1}) , 7.42 THz (247 cm^{-1}) , 8.38 THz (279 cm⁻¹)等. 另一方面, 本文还利用密度泛函 理论对β-胡萝卜素分子进行了仿真,计算出β-胡萝 卜素的太赫兹特征峰,验证了实测的太赫兹指纹谱 峰. 重要的是, 还对 β-胡萝卜素在148, 132, 115, 76 和52 cm⁻¹等处的太赫兹特征峰的振动模式进行 了归属,较好地解释了该有机物太赫兹光谱的形成 机理.本文的研究结果,不仅验证并丰富了相关的 近期成果[14],而且还揭示了通过多种测量与理论 仿真相结合的方式,探索有机分子结构与太赫兹光 谱联系的一种新的研究方法,这对探究有机物的太 赫兹光谱特性和响应原理,以及探索有机物的太赫 兹指纹甄别及器件应用等都具有重要的参考价值.

参考文献

- [1] Ferguson B, Zhang X C 2002 $\it Nat.~Mater.~1$ 26
- [2] Shen Y C, Upadhya P C, Linfield E H, Davies A G 2004 Vib. Spectrosc. 35 111
- [3] Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42
- [4] Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C 2003 J. Biol. Phys. 29 89
- [5] Taday P F, Bradley I V, Arnone D D 2003 J. Biol. Phys. 29 109
- [6] Guo H, He M, Huang R, Qi W, Guo W H, Su R X, He Z M 2014 RSC Adv. 4 57945
- [7] Schlücker S, Szeghalmi A, Schmitt M, Popp J, Kiefer W 2003 J. Raman Spectrosc. 34 413
- [8] Ziegler R G 1991 Am. J. Clin. Nutr. 53 251S
- [9] Sugisaki M, Fujiwara M, Nair S V, Ruda H E, Cogdell R J, Hashimoto H 2009 *Phys. Rev. B* 80 035118
- [10] Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698
- [11] Yanagi K, Miyata Y, Kataura H 2006 Adv. Mater. 18 437
- [12] Zuo J, Zhang L L, Yu F, Zhang Z W, Zhang C L 2010 Proc. SPIE Beijing, China, October 18–22, 2010 p785439
- [13] Zhang L W, Zuo J, Zhang C L 2014 Spectrosc. Spect. Anal. 34 405 (in Chinese) [张磊巍, 左剑, 张存林 2014 光 谱学与光谱分析 34 405]
- [14] Liu Y K, Liu Y T, Xu X D, Yan W, Ma M, Zhu H Z, Ma C Q, Zou R J, Din L, Luo M J 2015 Acta Phys. Sin. 64 068701 (in Chinese) [刘一客, 刘禹彤, 许向东, 闫 微, 马淼, 朱宏钊, 马春前, 邹瑞娇, 丁廉, 罗梦佳 2015 物理 学报 64 068701]

- [15] Hu Y Q, Chen Y J, Li H H, Wang H S 2012 Spectrosc. Spect. Anal. 32 339 (in Chinese) [胡燕琴, 陈玉静, 李慧 华, 王海水 2012 光谱学与光谱分析 32 339]
- $[16]\,$ Naftaly M, Miles R E 2007 P. IEEE 95 1658
- [17] Zhang T J, Cai J H, Zhou Z K 2008 Spectrosc. Spect.
 Anal. 28 721 (in Chinese) [张同军, 蔡晋辉, 周泽魁 2008 光谱学与光谱分析 28 721]
- [18] Mickan S P, Lee K S, Lu T M, Munch J, Abbott D, Zhang X C 2002 *Microelectron. J.* **12** 1033
- [19] Li Y B, Zheng Y Y, Wang W N 2007 J. Capital Normal Univ.: Nat. Sci. Ed. 28 39 (in Chinese) [李元波, 郑盈盈,

王卫宁 2007 首都师范大学学报: 自然科学版 28 39]

- [20] Shen Y C, Upadhya P C, Linfield E H, Davies A G 2003 Appl. Phys. Lett. 82 2350
- [21] Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J, Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese) [马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨 2009 物理学报 58 6101]
- [22] Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R R 2004 *Biophys. J.* 86 164

Experimental and theoretical study on terahertz spectra of all-trans β -carotene^{*}

Yan Wei Ma Miao Dai Ze-Lin Gu Yu Zhu Hong-Zhao Liu Yu-Tong Xu Xiang-Dong[†] Han Shou-Sheng Peng Yong

(School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China) (Received 22 June 2016; revised manuscript received 24 October 2016)

Abstract

The β -carotene is a short chain polyene molecule containing nine π -electron conjugated double-bonds. Because of its special molecular structure, β -carotene has been used widely in many fields, including functional materials, optoelectronic devices and biological applications of light collection, light protection, anti-cancer, etc. Recently, new applications of β -carotene in generation and detection of terahertz (THz) wave have also attracted great attention. In this work, alltrans β -carotene films are prepared by spray coating, and the THz spectra in a wavenumber range of 30–400 cm⁻¹ (a frequency range of 0.9–12 THz) of the as-prepared products are experimentally measured at room temperature by Fourier transform infrared spectroscopy. For comparison, the THz spectra in 0.5–3.0 THz are also characterized at the same temperature by THz time-domain spectroscopy. Based on these measurements, the fingerprint peaks of all-trans β -carotene in the THz region are experimentally identified to be located at 54 cm⁻¹ (1.62 THz), 57 cm⁻¹ (1.71 THz), 64 cm⁻¹ (1.91 THz), 77 cm⁻¹ (2.32 THz), 90 cm⁻¹ (2.69 THz), 98 cm⁻¹ (2.95 THz), 115 cm⁻¹ (3.45 THz), 124 cm⁻¹ (3.72 THz), 134 cm⁻¹ (4.02 THz), 170 cm⁻¹ (5.11 THz), 247 cm⁻¹ (7.42 THz), and 279 cm⁻¹ (8.38 THz), respectively. It is worth noting that the recent results about the THz spectra of palm leaves are thus verified. Particularly, the B3 LYP method of density functional theory is further utilized in this work to theoretically simulate the THz spectra of all-trans β -carotene molecule. It is revealed that the theoretical simulation results accord well with those experimentally measured data. In addition, we also find that the absorption peaks are caused by the torsion, deformation and rocking vibration of the molecules. Accordingly, the vibrational modes of the measured THz characteristic peaks at 148 cm⁻¹ (4.44 THz), 132 cm^{-1} (3.96 THz), 115 cm^{-1} (3.45 THz), 76 cm⁻¹ (2.28 THz) and 52 cm⁻¹ (1.56 THz) are theoretically assigned, which provides a reference to explain the formation mechanism of the THz spectra. The valuable results presented in this work will be helpful for promoting the studies of the THz spectral features and response mechanisms of the organics.

Keywords: all-trans β -carotene, terahertz spectra, density functional theory, vibrational modes **PACS:** 78.30.Jw, 87.50.U–, 31.15.E–, 33.20.Tp **DOI:** 10.7498/aps.66.037801

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61071032, 61377063).

[†] Corresponding author. E-mail: xdxu@uestc.edu.cn