## 物理学报 Acta Physica Sinica



### 基于 Ni 电极和 $ZrO_2/SiO_2/ZrO_2$ 介质的 MIM 电容的导电机理研究

刘骐萱 王永平 刘文军 丁士进

Conduction mechanisms of MIM capacitors with ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> stacked dielectrics and Ni electrodes

Liu Qi-Xuan Wang Yong-Ping Liu Wen-Jun Ding Shi-Jin

引用信息 Citation: Acta Physica Sinica, 66, 087301 (2017) DOI: 10.7498/aps.66.087301 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.087301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I8

您可能感兴趣的其他文章 Articles you may be interested in

基于串并联磁控忆阻器的耦合行为研究

Research of coupling behavior based on series-parallel flux-controlled memristor 物理学报.2015, 64(23): 237303 http://dx.doi.org/10.7498/aps.64.237303

Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布

Cluster distribution for oxygen vacancy in Ti/HfO<sub>2</sub>/Pt resistive switching memory device 物理学报.2015, 64(20): 207302 http://dx.doi.org/10.7498/aps.64.207302

忆阻器及其阻变机理研究进展

Research progress of memristors and memristive mechanism 物理学报.2014, 63(18): 187301 http://dx.doi.org/10.7498/aps.63.187301

Ni/HfO<sub>2</sub>/Pt 阻变单元特性与机理的研究

Electric characteristics and resistive switching mechanism of Ni/HfO $_2$ /Pt resistive random access memory cell

物理学报.2014, 63(14): 147301 http://dx.doi.org/10.7498/aps.63.147301

界面效应调制忆阻器研究进展

Progress of memristor modulated by interfacial effect 物理学报.2012, 61(21): 217306 http://dx.doi.org/10.7498/aps.61.217306

## 基于Ni电极和ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub>介质的MIM 电容的导电机理研究<sup>\*</sup>

刘骐萱 王永平 刘文军 丁士进†

(复旦大学微电子学院,专用集成电路与系统国家重点实验室,上海 200433)

(2016年11月13日收到;2017年1月16日收到修改稿)

研究了基于 Ni 电极和原子层淀积的 ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> 对称叠层介质金属-绝缘体-金属 (MIM) 电容的电 学性能. 当叠层介质的厚度固定在 14 nm 时,随着 SiO<sub>2</sub> 层厚度从 0 增加到 2 nm,所得电容密度从 13.1 fF/µm<sup>2</sup> 逐渐减小到 9.3 fF/µm<sup>2</sup>,耗散因子从 0.025 逐渐减小到 0.02.比较 MIM 电容的电流-电压 (*I-V*)曲线,发现在 高压下电流密度随着 SiO<sub>2</sub> 厚度的增加而减小,在低压下电流密度的变化不明显,还观察到电容在正、负偏压 下表现出完全不同的导电特性,在正偏压下表现出不同的高、低场 *I-V* 特性,而在负偏压下则以单一的 *I-V* 特 性为主导.进一步对该电容在高、低场下以及电子顶部和底部注入时的导电机理进行了研究.结果表明,当电 子从底部注入时,在高场和低场下分别表现出普尔-法兰克 (PF)发射和陷阱辅助隧穿 (TAT) 的导电机理;当 电子从顶部注入时,在高、低场下均表现出 TAT 导电机理.主要原因在于底电极 Ni 与 ZrO<sub>2</sub> 之间存在镍的氧 化层 (NiO<sub>x</sub>),且 ZrO<sub>2</sub> 介质层中含有深浅两种能级陷阱 (分别为 0.9 和 2.3 eV),当电子注入的模式和外电场不 同时,不同能级的陷阱对电子的传导产生作用.

关键词:金属-绝缘体-金属电容,导电机理,ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub>叠层介质,Ni电极
 PACS: 73.40.Rw, 73.20.At, 73.43.Jn
 DOI: 10.7498/aps.66.087301

1引言

近年来,为了满足射频电路和模拟/混合信号 集成电路对高性能金属-绝缘体-金属(MIM)电容 的需求,基于高介电常数( $\kappa$ )介质的高密度MIM 电容得到了广泛的研究<sup>[1-9]</sup>,尤其是基于ZrO<sub>2</sub>介 质的MIM电容引起了人们广泛的关注<sup>[10-13]</sup>.这 是由于ZrO<sub>2</sub>具有高介电常数(20—40)、宽带隙 (5.8 eV)、高击穿电场(5—7 MV/cm)等优点,被 视作MIM电容介质层的优选材料之一<sup>[14]</sup>.然而, 对于单一ZrO<sub>2</sub>介质MIM电容,电容电压系数( $\alpha$ )、 泄漏电流和击穿电场等参数仍然面临挑战.由于 ZrO<sub>2</sub>介质MIM电容的 $\alpha$ 值为正,将其与 $\alpha$ 值为负 的SiO<sub>2</sub>介质结合在一起,作为MIM电容的绝缘介 质层,可望获得更小的 $\alpha$ 值<sup>[15–18]</sup>.为了进一步降 低 MIM 电容的泄漏电流, 研究者通常采用功函数 较大的金属作为电极材料, 以增大电子的发射势 全<sup>[19,20]</sup>.另一方面, 由于 MIM 电容需要集成到铜 互连工艺中, 因此其最高制备工艺温度必须与铜 互连工艺相兼容, 即要求其制备工艺温度不能超过 420°C. 然而, 在该温度下其他薄膜制备技术很难 获得高质量的绝缘薄膜.近些年兴起的原子层淀积 (ALD)技术不仅具有淀积温度低、化学计量比的薄 膜组成以及精确的厚度控制能力, 而且可以制备不 同空间结构的复合薄膜, 非常适合 MIM 电容中介 质的制备, 已被广泛用于 MIM 电容的研究<sup>[21-26]</sup>.

国际上对纳米叠层结构介质 MIM 电容也进 行了大量的研究,通过不同材料的选择、空 间组合以及单层厚度的控制可以实现电容性 能的调控<sup>[14-18,27-35]</sup>.此外,针对该类 MIM 电 容的导电机理,人们进行了广泛的研究. 譬

<sup>\*</sup> 国家 02 科技重大专项 (批准号: 2015ZX02102-003) 资助的课题.

<sup>†</sup>通信作者. E-mail: sjding@fudan.edu.cn

<sup>© 2017</sup> 中国物理学会 Chinese Physical Society

如,在 $ZrO_2/Al_2O_3/ZrO_2$ <sup>[28]</sup>,Gd<sub>2</sub>O<sub>3</sub>/Eu<sub>2</sub>O<sub>3</sub><sup>[29]</sup>, Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub><sup>[31]</sup>, Ta<sub>2</sub>O<sub>5</sub>/Nb<sub>2</sub>O<sub>5</sub>/ZrO<sub>2</sub><sup>[32]</sup> 介质 MIM 电容中, 高场下的导电机理为普尔-法 兰克(PF)发射. 在ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub><sup>[30]</sup>, Al<sub>2</sub>O<sub>3</sub>/  $ZrO_2/SiO_2$ <sup>[33]</sup>介质 MIM 电容中, 高场下发生的 导电机理是电场辅助隧穿;在 $HfO_2/La_2O_3$ <sup>[34]</sup>, Al<sub>2</sub>O<sub>3</sub>/HfO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub><sup>[35]</sup>介质 MIM 电容中, 高场下 则以肖特基发射为主导. 低场下的导电机理有PF 发射(如HfO<sub>2</sub>/La<sub>2</sub>O<sub>3</sub><sup>[34]</sup>, ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub><sup>[27]</sup>,  $ZrO_2/SiO_2/ZrO_2$ <sup>[30]</sup>)、陷阱辅助隧穿(如Al<sub>2</sub>O<sub>3</sub>/ ZrO<sub>2</sub>/SiO<sub>2</sub><sup>[33]</sup>, ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub><sup>[30]</sup>)以及肖特 基发射 (ZrO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>/ZrO<sub>2</sub><sup>[27]</sup>, Gd<sub>2</sub>O<sub>3</sub>/Eu<sub>2</sub>O<sup>[29]</sup>). 总之, MIM 电容的导电机理不仅与叠层介质的空 间结构<sup>[28,31]</sup>、材料种类<sup>[28,30,31,35]</sup>有关,还与介质 的厚度<sup>[27,28,30]</sup>、陷阱特征<sup>[28,31,33]</sup>、界面特性<sup>[27,29]</sup> 以及电极<sup>[32]</sup>有关.

因此,本文采用高功函数金属Ni (5.1 eV) 作为电极材料<sup>[36,37]</sup>,同时采用ALD技术淀积 ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub>叠层介质薄膜,制备了以金属Ni 为电极的MIM电容,研究了总介质厚度不变的情 况下ZrO<sub>2</sub>与SiO<sub>2</sub>的相对厚度对MIM电容特性的 影响,重点讨论了其电流-电压特性及其导电机理.

#### 2 实 验

首先,采用热氧化的方法在洁净的硅衬底上 生长500 nm厚的SiO<sub>2</sub>薄膜,然后磁控溅射150 nm 的Ni薄膜作为底电极. 将覆盖Ni薄膜的硅片放入 ALD腔体中,在250 °C的淀积温度下,依次淀积 ZrO<sub>2</sub>,SiO<sub>2</sub>,ZrO<sub>2</sub>薄膜,其中生长ZrO<sub>2</sub>和SiO<sub>2</sub>的 前驱体和氧化剂分别为四(二甲基氨基)锆和水,以 及三(二甲基氨基)硅烷和氧等离子体.为了研究绝 缘层中SiO<sub>2</sub>薄膜厚度对MIM电容电学特性的影 响,实验固定ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub>叠层介质总厚度为 14 nm,改变SiO<sub>2</sub>和ZrO<sub>2</sub>的相对厚度,其中SiO<sub>2</sub> 厚度变化依次为0,1,2 nm. 再磁控溅射100 nm的 Ni薄膜作为顶电极,并通过光刻和湿法刻蚀等工艺 形成一批独立的MIM 电容器件.

SiO<sub>2</sub>, ZrO<sub>2</sub>薄膜的厚度通过椭偏仪测量(Sopra GES-5E), ZrO<sub>2</sub>/Ni底电极的界面组成分析通 过X射线光电子能谱(Kratos Axis Ultra DLD)来 测量.器件的电容-电压(C-V),电流-电压(I-V)特 性分别由精密阻抗分析仪(Agilent 4294A)和半导 体器件分析仪(Agilent B1500)测试.所有电学测 试过程均在温度可控的Cascade 探针台上进行,偏 压加在顶电极上.

#### 3 结果与讨论

图1(a)为100 kHz下不同叠层介质 MIM 电 容的C-V曲线和耗散因子. 当SiO<sub>2</sub>的厚度由0 增加到2 nm时,器件在零偏压下的电容密度从 13.1 fF/µm<sup>2</sup>逐渐减小到9.3 fF/µm<sup>2</sup>, 耗散因子从 0.025 逐渐减小到 0.02. 根据 14 nm ZrO2 介质 MIM 电容的电容密度,可推出ZrO2的相对介电常数约 为23. 这与文献报道的单斜晶向结构ZrO2的介电 常数一致 ( $\kappa = 16-25$ )<sup>[38]</sup>.图1(b) 为室温下不同 叠层介质 MIM 电容的 I-V 关系曲线, 可以发现所 有器件在-3-+3 V范围内均表现出很小的漏电 流密度(低于5×10<sup>-8</sup> A/cm<sup>2</sup>). 此外, 进一步观察 发现,当顶电极上施加正偏压时,随着电压的增加 泄漏电流明显表现出两个不同的导电区域;而当顶 电极上施加负偏压时,泄漏电流随电压的增加而缓 慢增大,主要表现为一个导电区域.这种明显不同 的 I-V 特性应该归因于不同的导电机理.



图 1 (网刊彩色) (a) 100 kHz 下 ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub>(Z/S/Z) 叠 层 介 质 MIM 电 容 的 *C*-*V* 特 性 和 耗 散 因 子; (b) 室 温 (25°C) 下 Z/S/Z 叠层介质 MIM 电容的 *I*-*V* 曲线

Fig. 1. (color online) (a) C-V characteristics and dissipation factors at 100 kHz for the MIM capacitors with  $ZrO_2/SiO_2/ZrO_2$  (Z/S/Z) stacked dielectrics; (b) I-V curves at room temperature (25 °C) for the MIM capacitors with Z/S/Z stacked dielectrics.

为了进一步研究器件的导电机理,我们以 14 nm ZrO<sub>2</sub>介质和ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/2 nm/ 6 nm)叠层介质的两种 MIM 电容作为研究对象,分 别测量了它们在不同温度下的*I-V*曲线.结果表 明,当顶电极上加正偏压时(即电子底部注入),测 得的电流在低场区域随偏压缓慢增加,在高场区域 随偏压快速上升.对于 MIM 电容来说,一般在高场 下器件的导电机理主要为PF 发射<sup>[24,25,39]</sup>. PF发 射可描述为

$$J = CE \exp\left[\frac{-q(\varphi_{\rm t} - \sqrt{qE/\pi\varepsilon_0\varepsilon_{\rm r}})}{kT}\right],\qquad(1)$$

式中J为电流密度, C为常数, E是电场, T是绝对 温度, q是电子电荷, k是玻尔兹曼常数,  $\varphi_t$ 是 ZrO<sub>2</sub> 介质中的陷阱能级,  $\varepsilon_r$ 是绝缘体的动态介电常数,  $\varepsilon_0$ 是真空介电常数. 我们首先对14 nm ZrO<sub>2</sub>介质 MIM 电容在高场区域的  $\ln(J/E)$  与  $E^{1/2}$  的关系进 行拟合,可以看出在不同温度下二者之间具有良 好的线性关系,进一步由直线的斜率可提取出不 同温度下 $ZrO_2$ 的折射率(n),如图2(a)所示.室温 下(25°C)提取出的折射率等于1.66,接近于实验 测量值1.8. 这表明高场下的导电机理符合PF发 射.此外,由lnJ和1/T的关系还可以计算得到不 同电场下的活化能,然后根据 Ea (Ea 为活化能)和 E<sup>1/2</sup>的关系可以外推得到其零电场下的值,即为介 质ZrO2中的本征陷阱能级,如图2(b)所示.得到 的本征陷阱能级约为 0.9 eV, 这与文献报道的结果 一致 [24,39,40].

对于 ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/2 nm/6 nm)叠 层介质 MIM 电容来说,由于叠层介质中每层介质 的厚度和介电常数不同,所以每层介质中的电场是 不同的.讨论导电机理时,若使用整个介质层的平 均电场会引起较大的误差,所以必须采用 ZrO<sub>2</sub> 介 质层中的实际电场.根据高斯定律和基尔霍夫定 律,可以计算出施加在 ZrO<sub>2</sub> 层上的电场,即

$$\begin{cases} \kappa_{\rm s} E_{\rm s} = \kappa_{\rm z} E_{\rm z}, \\ d_{\rm s} E_{\rm s} + 2d_{\rm z} E_{\rm z} = V_{\rm insulator}, \end{cases}$$
(2)

式中 $\kappa_s$ 和 $\kappa_z$ 代表SiO<sub>2</sub>和ZrO<sub>2</sub>的介电常数,分别取 值4.7和23;  $E_s$ 和 $E_z$ 分别代表施加在SiO<sub>2</sub>和ZrO<sub>2</sub> 层上的电场;  $d_s$ 和 $d_z$ 分别表示SiO<sub>2</sub>和ZrO<sub>2</sub> 层的厚 度; Vinsulator 是施加到整个叠层的电压.由于SiO<sub>2</sub> 厚度仅为2 nm,电子在其中以直接隧穿的方式通 过,叠层介质的导电机理主要由ZrO<sub>2</sub>中的缺陷决 定.如前所述,按照PF发射机理对高场下的*I-V* 特性进行了线性拟合,如图3(a)所示.结果表明,  $\ln(J/E) 与 E^{1/2}$ 不仅具有良好的线性关系,而且根 据直线斜率计算得到室温下ZrO<sub>2</sub>的折射率为1.99, 与实验值相符.这表明叠层介质 MIM 电容在高场 下的导电机理也为PF发射.如图3(b)所示,根据  $E_a 和 E^{1/2}$ 的线性关系,进一步外推出叠层介质中 ZrO<sub>2</sub>层中的本征陷阱能级为0.88 eV.这与前面从 ZrO<sub>2</sub> 介质 MIM 电容中推导得到的本征陷阱能级 基本一致,这也从侧面证实了采用介质层中的实际 电场的科学性.



图 2 (a) 14 nm  $ZrO_2 \uparrow ff$  MIM 电容在不同温度下  $\ln(J/E) 和 E^{1/2}$ 的关系以及通过高场区线性拟合所提取的  $ZrO_2$  折射率 n; (b) 不同电场下  $\ln J \ln 1/T$ 的关系以及提取的活化能  $E_a$ , 插图表明  $E_a 和 E^{1/2}$ 之间良好的线性关系以及在零电场下的陷阱能级

Fig. 2. (a) Plotting of  $\ln(J/E)$  versus  $E^{1/2}$  at different temperatures for the 14 nm ZrO<sub>2</sub> dielectric MIM capacitor, and the refractive index *n* of ZrO<sub>2</sub> extracted by linear fitting in the high field region; (b) plotting of  $\ln J$  versus 1/T in various electric fields, together with the extracted activation energy  $E_{\rm a}$ , and the inset demonstrates a good linear relationship between  $E_{\rm a}$  and  $E^{1/2}$  as well as the trap energy level in a zero field.



图 3 (a)  $ZrO_2/SiO_2/ZrO_2$  (6 nm/2 nm/6 nm) 介质 MIM 电容在不同温度下 ln(J/E) 和  $E^{1/2}$  的关系以及通 过高场区线性拟合所提取的  $ZrO_2$  的折射率 n; (b) 不同电 场下 ln J 和 1/T 的关系以及提取的活化能  $E_a$ , 插图表明  $E_a$  和  $E^{1/2}$  之间良好的线性关系以及在零电场下的陷阱 能级

Fig. 3. (a) Plotting of  $\ln(J/E)$  versus  $E^{1/2}$  at different temperatures for the  $\rm ZrO_2/SiO_2/ZrO_2$  (6 nm/2 nm/6 nm) stacked dielectric MIM capacitor, together with the extracted refractive index n of ZrO<sub>2</sub> by linear fitting in the high field region; (b) plotting of  $\ln J$  versus 1/T in various electric fields, together with the extracted activation energy  $E_a$ , and the inset demonstrates a good linear relationship between  $E_a$  and  $E^{1/2}$  as well as the trap energy level in a zero field.

由于低场下的泄漏电流表现出与电场较弱的依赖关系,所以其导电机理可能受肖特基发射<sup>[22-24]</sup>或者陷阱辅助遂穿<sup>[41,42]</sup>控制.其中,肖特基发射可表示为

$$J = AT^{2} \exp\left\{\frac{-q\left[\varphi_{\rm B} - \sqrt{qE/(4\pi\varepsilon_{0}\varepsilon_{\rm r})}\right]}{kT}\right\}, (3)$$

式中A为理查德森常数,  $\varphi_B$ 为电极与介质导带 之间的势垒高度, 其他参数与前述内容一致.若 为肖特基发射, 则 $\ln J$ 与 $E^{1/2}$ 应满足线性关系. 通过研究发现,虽然14 nm ZrO<sub>2</sub>介质 MIM 电容 和ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/2 nm/6 nm) 叠层介质 MIM 电容在低场下 ln  $J 与 E^{1/2}$  能满足线性关系, 但推导得到的室温下相对介电常数分别高达48和 31,这与前面的实验值23发生了明显的偏离,因此 低场下的导电机理不符合肖特基发射.

若低场下的漏电机理为与温度相关的陷阱 辅助隧穿(TAT),则电流密度与电压之间的关系 为<sup>[41,42]</sup>

$$J \propto N_{\rm t} \exp\left[\left(qBV_{\rm insulator} - \varphi_1 + \varphi_{\rm t}\right)/\left(k_{\rm B}T\right)\right],\tag{4}$$

式中 $N_t$ 为介质中的陷阱密度, $V_{\text{insulator}}$ 为降落在 叠层介质上的电压,B为常数, $k_B$ 为玻尔兹曼常 数, $\varphi_1$ 为电极(Ni)的费米能级距离ZrO<sub>2</sub>导带的势 垒高度,即Ni的功函数和ZrO<sub>2</sub>的亲和势的差值 为2.6 eV, $\varphi_t$ 为ZrO<sub>2</sub>中的陷阱能级.图4为14 nm ZrO<sub>2</sub>介质 MIM 电容的 ln J 和 E 的关系,显然低场 下 ln J 与 E 具有良好的线性关系,这表明低场下 的导电符合TAT 机理.进一步地,不同电场下 ln J 和 1/T 的关系如图4插图所示,根据拟合的直线 斜率可以计算出ZrO<sub>2</sub>中的陷阱能级 $\varphi_t$ 为2.34 eV, 这与文献报道的深能级陷阱理论计算值符合<sup>[40]</sup>. 图 5 为ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/2 nm/6 nm)叠层 介质 MIM 电容的 I-V 特性,结果表明低场下的导 电机理符合TAT 机理.此外,所提取的ZrO<sub>2</sub>中陷 阱能级为2.33 eV.



图 4 14 nm  $ZrO_2$  介质 MIM 电容在低场区不同温度下 ln J 和 E 的关系 (电子底部注入), 插图为 ln J 与 1/T 的 关系以及所提取的  $ZrO_2$  的陷阱能级

Fig. 4. Plotting of  $\ln J$  versus E in the low field region at various temperatures under the electron bottom injection mode for the 14 nm ZrO<sub>2</sub> dielectric MIM capacitor. The inset shows plotting of  $\ln J$  versus 1/T, and the extracted trap energy level of ZrO<sub>2</sub>.



图 5  $ZrO_2/SiO_2/ZrO_2$  (6 nm/2 nm/6 nm) 介质 MIM 电 容在低场区不同温度下 ln J 和 E 的关系 (电子底部注入), 插 图为 ln J 与 1/T 的关系以及所提取的 ZrO\_2 的陷阱能级 Fig. 5. Plotting of ln J versus E in the low field region at various temperatures under the electron bottom injection

mode for  $ZrO_2/SiO_2/ZrO_2$  (6 nm/2 nm/6 nm) stacked dielectric MIM capacitor. The inset shows plotting of ln Jversus 1/T, and the extracted trap energy level of  $ZrO_2$ .



图 6 不同温度下 14 nm ZrO<sub>2</sub> 介质 MIM 电容 ln *J* 和 *E* 的关系 (电子顶部注入), 插图为 ln *J* 和 1/*T* 的关系以及提取出的 ZrO<sub>2</sub> 的陷阱能级

Fig. 6. Plotting of  $\ln J$  versus E of the 14 nm ZrO<sub>2</sub> dielectric MIM capacitor at various temperatures under the electron top injection mode. The inset shows plotting of  $\ln J$  versus 1/T, as well as the extracted trap energy level of ZrO<sub>2</sub>.

当顶电极上加负偏压时(即电子顶部注入),我们对14 nm  $ZrO_2$ 介质MIM电容和 $ZrO_2$ / SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/2 nm/6 nm)叠层MIM电容的 I-V特性分别进行了TAT机理拟合,如图6和 图7所示.在研究的几乎整个电场区域,不同温 度下  $\ln J$ 与E均具有良好的线性关系,这表明上述 两种器件的导电机理均符合TAT机理.根据不同 电场下  $\ln J$ 和1/T的关系,可进一步理论推导得到  $ZrO_2$ 介质和叠层介质 MIM 电容中  $ZrO_2$  的陷阱能 级分别为 2.33 和 2.38 eV.



图7 不同温度下 ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/2 nm/6 nm) 介质 MIM 电容 ln J 和 E 的关系 (电子项部注入), 插图为 ln J 和 1/T 的关系以及由不同电场下的直线斜率提取的 ZrO<sub>2</sub> 陷阱能级

Fig. 7. Plotting of  $\ln J$  versus E of  $\text{ZrO}_2/\text{SiO}_2/\text{ZrO}_2$ (6 nm/2 nm/6 nm) stacked dielectric MIM capacitor at various temperatures under the electron top injection mode. The inset shows plotting of  $\ln J$  versus 1/T, as well as the extracted trap energy level of  $\text{ZrO}_2$ .

为了进一步了解电子从顶部和底部注入所表现出的不同导电机理,我们对ZrO<sub>2</sub>(14 nm)/Ni底电极的界面特性进行了X射线光电子能谱(XPS)分析.就高分辨率O 1s光谱来说,如图8(a)所示,经过原位离子刻蚀后,O 1s谱可以拟合成530和532.2 eV处的两个峰,分别对应O-Zr和O-Ni组分<sup>[43,44]</sup>.随着刻蚀深度的增加,O-Zr键的相对含量由92%降低到39%,而O-Ni键的相对含量从8%上升到61%,这表明在ZrO<sub>2</sub>介质与底电极Ni的界面处存在镍氧化物(NiO<sub>x</sub>).此外,高分辨率Ni 2p<sub>3/2</sub>光谱中也出现了单质镍及其氧化物的峰,分别位于852.7和853.8 eV<sup>[45]</sup>,如图8(b)所示,这也进一步证实了镍氧化物界面层的存在.

为了更好地理解上述不同的导电机理,图9给 出了不同条件下的能带示意图.基于前文讨论, ZrO2中分别存在深能级陷阱(约2.34 eV)和浅能级 陷阱(约0.9 eV).当电子从顶部注入时,由于Ni的 费米能级与ZrO2中深陷阱能级(2.34 eV)接近,所 以来自阴极的电子优先被深能级陷阱俘获,然后 以陷阱辅助隧穿的方式穿过ZrO2层,同时以直接 隧穿的方式通过超薄SiO2层和NiOx层,最终到达 阳极,如图9(a)所示.当电子底部注入时,由于镍 氧化物的存在,随着电场的增强,其能带随之向上 弯曲, Ni的费米能级也会随之提高,此时Ni的费 米能级与ZrO<sub>2</sub>导带之间的势垒高度逐渐减小.低 场下Ni的费米能级与ZrO<sub>2</sub>中深陷阱能级距离较 近,来自阴极的电子优先被深能级(2.34 eV)陷阱 俘获,并以陷阱辅助隧穿的方式穿过ZrO<sub>2</sub>介质层, 如图 9 (b) 所示.随着外电场的增强, ZrO<sub>2</sub>中浅陷 阱能级逐渐向底电极 Ni 的费米能级靠近,导致电子优先被浅能级 (0.9 eV) 陷阱俘获,并进一步跃迁 到 ZrO<sub>2</sub> 的导带上, 然后沿着导带到达阳极, 即形成 PF 发射电流, 如图 9 (c) 所示.



图 8 ZrO<sub>2</sub>/Ni 样品经历不同刻蚀次数后 (a) O 1s 的高分辨 XPS 图谱和 (b) Ni  $2p_{3/2}$  的高分辨 XPS 图谱 Fig. 8. (a) High-resolution O 1s XPS patterns and (b) high-resolution Ni  $2p_{3/2}$  XPS patterns of the 14 nm ZrO<sub>2</sub>/Ni sample after different etching times.



图 9 不同条件下 ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/2 nm/6 nm) 叠层介质 MIM 电容的能带示意图 (a) 电子顶部注入, 外加电场 2 MV/cm; (b) 电子底部注入, 外加电场 1 MV/cm; (c) 电子底部注入, 外加电场 2.5 MV/cm Fig. 9. Energy band diagrams for the MIM capacitor with the stacked insulator of ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> (6 nm/ 2 nm/6 nm) for different conditions: (a) Under the external electric field of 2 MV/cm and electron topinjection mode; (b) under the external electric field of 1 MV/cm and electron bottom-injection mode; (c) under the external electric field of 2.5 MV/cm and electron bottom-injection mode.

#### 4 结 论

本文通过对基于Ni电极的ZrO<sub>2</sub>/SiO<sub>2</sub>/ZrO<sub>2</sub> 叠层介质 MIM 电容导电机理的研究,发现当电子 从底部注入时在高场和低场下的导电机理分别以 PF发射和TAT为主导: 而当电子从顶部注入时 在整个电场区域都是以TAT 为主导. 这主要归因 于底电极 Ni 和  $ZrO_2$  之间的界面层 NiO<sub>x</sub> 以及  $ZrO_2$ 中存在深浅两种能级陷阱. 当电子从底部注入时, 镍氧化物界面层的引入使得其能带随电场的增加 向上弯曲, Ni的费米能级也随之提升, ZrO2中浅 陷阱能级逐渐向底电极Ni的费米能级靠近,因此 低场下电子易被ZrO2中的深能级陷阱俘获,形成 TAT 电流, 高场下电子优先被  $ZrO_2$  的浅能级陷阱 俘获,从而跃迁至导带,形成PF发射电流.当电子 从顶部注入时,由于Ni的费米能级和ZrO2导带之 间的势垒高度并不随电场发生变化,所以在整个电 场区域内电子易被ZrO2中的深能级陷阱俘获,形 成TAT 电流.

#### 参考文献

- [1] Sung H K, Wang C, Kim N Y 2015 Mat. Sci. Semicon Proc. 40 516
- [2] Mangla O, Gupta V 2016 J. Mater Sci. 27 12537
- [3] Dugu S, Pavunny S P, Scott J F, Katiyar R S 2016 Appl. Phys. Lett. 109 212901
- [4] Chiang K C, Huang C C, Chen G L, Chen W J, Kao H L, Wu Y H, Chin A, McAlister S P 2006 *IEEE Trans. Electron Devices* 53 2312
- [5] Wu Y H, Lin C C, Hu Y C, Wu M L, Wu J R, Chen L L 2003 IEEE Electron Device Lett. 32 1107
- [6] Ding S J, Huang Y J, Huang Y, Pan S H, Zhang W, Wang L K 2007 Chin. Phys. 16 2803
- [7] Xu J, Huang J Y, Ding S J, Zhang W 2008 Acta Phys. Sin. 58 3433 (in Chinese) [许军, 黄建字, 丁士进, 张卫 2008 物理学报 58 3433]
- [8] Huang J Y, Huang Y, Ding S J, Zhang W, Liu R 2007 Chin. Phys. Lett. 24 2492
- [9] Wang C, Zhuang D M, Zhang G, Wu M S 2003 Chin. J. Mater. Res. 17 332 (in Chinese) [王超, 庄大明, 张弓, 吴 敏生 2003 材料研究学报 17 332]
- [10] Monaghan S, Cherkaoui K, Djara K, Hurley P K, Oberbeck L, Tois E, Wilde L, Teichert S 2009 *IEEE Electron Device Lett.* **30** 219
- Bertaud T, Blonkowski S, Bermond C, Vallee C, Gonon P, Jean M G, Flechet B 2010 IEEE Electron Device Lett.
  31 114

- [12] Wu Y H, Lin C C, Chen L L, Hu Y C, Wu J R, Wu M L 2011 Appl. Phys. Lett. 98 013506
- [13] Lutzer B, Simsek S, Zimmermann C, Pollach M S, Bethge O, Bertagnoli E 2016 J. Appl. Phys. 119 125304
- [14] Zhu B, Liu W J, Wei L, Ding S J 2016 J. Phys. D 49 135106
- [15] Zhang Q X, Zhu B, Ding S J, Lu H L, Sun Q Q, Zhou P, Zhang W 2014 IEEE Electron Device Lett. 35 1121
- Phung T H, Srinivasan D K, Steinmann P, Wise R, Yu
  M B, Yeo Y C, Zhu C 2011 J. Electrochem. Soc. 158 1289
- [17] Kim S J, Cho B J, Li M F, Ding S J, Zhu C, Yu M B, Narayanan B, Chin A, Kwong D L 2004 *IEEE Electron Device Lett.* 25 538
- [18] Chen J D, Yang J J, Yu M B, Zhu C, Yeo Y C 2009 IEEE Electron Device Lett. 56 2683
- [19] Htoa M K, Mahata C, Mallik S, Sarkar C K, Maiti C K 2011 J. Electrochem. Soc. 158 45
- [20] Chiang K C, Chen C H, Pan H C, Hsiao C N, Chou C P, Chin A, Hwang H L 2007 *IEEE Electron Device Lett.*28 235
- [21] Ding S J, Huang Y J, Li Y B, Zhang D W, Zhu C, Li M F 2006 J. Vac. Sci. Technol. B 24 2518
- [22] Pan S H, Ding S J, Huang Y, Huang Y J, Zhang W, Wang L K, Liu R 2007 J. Appl. Phys. 102 073706
- [23] Mojarad S A, Kwa K S K, Goss J P, Zhou Z, Ponon N K, Appleby D J R, AI-Hamadany R S, Oneil A 2012 J. Appl. Phys. 111 014503
- [24] Molina J, Thamankar R, Pey K L 2016 Phys. Status Solidi A 14 154
- [25] Ding S J, Xu J, Huang Y, Sun Q Q 2008 Appl. Phys. Lett. 93 092902
- [26] Lee S Y, Kim H, Mcintyre P C, Saraswat K C, Byun J S 2003 Appl. Phys. Lett. 82 2874
- [27] Knebel S, Schroeder U, Zhou D, Mikolajick T, Krautheim G 2014 IEEE Trans. Device Mater. Rel. 14 154
- [28] Paskaleva A, Weinreich W, Bauer A J, Lemberger M, Frey L 2015 Mat. Sci. Semicon. Proc. 29 124
- [29] Padmanabhan R, Bhat N, Mohan S 2013 IEEE Electron Device Lett. 60 1523
- [30] Weinreich W, Shariq A, Seidel K, Sundqvist J, Paskaleva A, Lemberger M, Bauer A J 2013 J. Vac. Sci. Technol. B 31 01A109
- [31] Zhou D Y, Schroeder U, Xu J 2010 J. Appl. Phys. 108 124104
- [32] Jogi I, Kukli K, Ritala M, Leskela M, Aarik J, Aidla A, Lu J 2010 Microelectron Eng. 87 144
- [33] Zhu B, Liu W J, Wei L, Zhang W, Jiang A Q, Ding S J 2015 J. Appl. Phys. 118 014501
- [34] Srivastava A, Mangla O, Gupta V 2015 IEEE Trans. Nanotechnol. 14 612
- [35] Ding S J, Zhu C X, Li M F, Zhang D W 2005 Appl. Phys. Lett. 87 053501
- [36] Mondal S, Pan T M 2011 IEEE Electron Device Lett.32 1576

- [37] Tsai C Y, Chiang K C, Lin S H, Hsu K C, Chi C C, Chin A 2010 IEEE Electron Device Lett. 31 749
- [38] Zhao X Y, Vanderbilt D 2001 Phys. Rev. B 65 075105
- [39] Ramanathan S, Park C M, McIntyre P C 2002 J. Appl. Phys. 91 4521
- [40] Hur J H, Park S J, Chung U I 2012 J. Appl. Phys. 112 113719
- [41] Svensson C, Lundstorm I 1973 J. Appl. Phys. 44 4657
- [42] Houssa M, Tuominen M, Naili M, Afanasev V, Stesmans A, Haukka S, Henyns M M 2000 J. Appl. Phys. 87 8615
- [43] Vuong T H, Radnik J, Kondratenko E, Schneider M, Armbruster U, Bruckner A 2016 Appl. Catal. B 197 159
- [44] Peck M A, Langell M A 2012 Chem. Mater. 24 4483
- [45] Goto Y, Taniguchi K, Omata T, Otsukayaomatsuo S 2008 Chem. Mater. 20 4156

# Conduction mechanisms of MIM capacitors with $ZrO_2/SiO_2/ZrO_2$ stacked dielectrics and Ni electrodes<sup>\*</sup>

Liu Qi-Xuan Wang Yong-Ping Liu Wen-Jun Ding Shi-Jin<sup>†</sup>

(State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China) (Received 13 November 2016; revised manuscript received 16 January 2017)

#### Abstract

The electrical characteristics of Ni electrode-based metal-insulator-metal (MIM) capacitors have been investigated with atomic layer deposited  $ZrO_2/SiO_2/ZrO_2$  symmetric stacked-dielectrics. When the thickness of the stacked-dielectrics is fixed at 14 nm, the resulted capacitance density decreases from 13.1  $fF/m^2$  to 9.3  $fF/m^2$ , and the dissipation factor is reduced from 0.025 to 0.02. By comparison of current-voltage (I-V) curves of different MIM capacitors, it is found that the leakage current density in the high voltage region decreases gradually with the increasing thickness of  $SiO_2$ , and it does not exhibit clear change in the low voltage region. Meanwhile, the capacitors show different conduction behaviors under positive and negative biases with increasing the thickness of  $SiO_2$  from 0 to 2 nm. Under the positive bias, different I-V characteristics are demonstrated at high and low electric fields, respectively. However, a single I-V characteristic is dominant under the negative bias. Further, the conduction mechanisms of the capacitors are investigated under the electron bottom and top injection modes, respectively. It is found that the Poole-Frenkel emission and the trap-assisted tunneling are dominant in the high and low field regions, respectively, for the electron bottom injection; however, the trap-assisted tunneling is dominant in the whole field region for the electron top injection. These are attributed to the formation of a thin  $NiO_x$  interfacial layer between the Ni bottom-electrode and the  $ZrO_2$  dielectric layer, as well as the existence of both deep and shallow level traps (0.9 and 2.3 eV) in the  $ZrO_2$  dielectric. Therefore, the level trap plays a key role in the electron conduction in the MIM capacitor under different electron injection modes and different electric fields.

Keywords: metal-insulator-metal capacitor, conduction mechanism,  $ZrO_2/SiO_2/ZrO_2$  stacked-dielectric, Ni electrodes

PACS: 73.40.Rw, 73.20.At, 73.43.Jn

**DOI:** 10.7498/aps.66.087301

<sup>\*</sup> Project supported by the National Key Technologies R&D Program of China (Grant No. 2015ZX02102-003).

<sup>†</sup> Corresponding author. E-mail: sjding@fudan.edu.cn