物理学报 Acta Physica Sinica

双腔光力学系统中输出光场纠缠特性的研究

张秀龙 鲍倩倩 杨明珠 田雪松

Entanglement characteristics of output optical fields in double-cavity optomechanics

Zhang Xiu-Long Bao Qian-Qian Yang Ming-Zhu Tian Xue-Song

引用信息 Citation: Acta Physica Sinica, 67, 104203 (2018) DOI: 10.7498/aps.67.20172467 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20172467 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I10

您可能感兴趣的其他文章 Articles you may be interested in

多模光力系统中的非传统声子阻塞

Unconventional phonon blockade in multimode optomechanical system 物理学报.2018, 67(4): 044203 http://dx.doi.org/10.7498/aps.67.044203

表面等离激元量子信息应用研究进展

Recent progress of the application of surface plasmon polariton in quantum information processing 物理学报.2017, 66(14): 144202 http://dx.doi.org/10.7498/aps.66.144202

基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感

Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics 物理学报.2016, 65(19): 194205 http://dx.doi.org/10.7498/aps.65.194205

三机械薄膜腔光力系统相互作用的研究

Optomechanical interaction with triple membranes 物理学报 2016, 65(12): 124202 http://dx.doi.org/10.7498/aps.65.124202

参量放大器腔中光力诱导透明与本征模劈裂性质

Optomechanically induced transparency and normal mode splitting in an optical parametric amplifier cavity 物理学报.2014, 63(20): 204201 http://dx.doi.org/10.7498/aps.63.204201

双腔光力学系统中输出光场纠缠特性的研究^{*}

张秀龙¹⁾ 鲍倩倩^{2)†} 杨明珠³⁾ 田雪松³⁾

(东北石油大学电子科学学院,大庆 163318)
 2)(辽宁大学物理学院,沈阳 110036)
 3)(黑龙江科技大学理学院,哈尔滨 150001)

(2017年11月17日收到; 2018年3月22日收到修改稿)

腔光力学系统中的光辐射压力可以使系统中的各个子系统之间产生量子纠缠,最近在腔光力学系统中的 量子纠缠引起了人们广泛的关注.本文研究了双腔光力系统中关于输出光场之间纠缠的性质,发现:此系统 中力学振子的弛豫速率和滤波器带宽以及非相等耦合对输出光场之间纠缠的大小有着非常显著的影响,特别 是在相等耦合条件下,输出光场中心频率与光腔本征频率近共振时,滤波器带宽对输出光场纠缠有着显著的 抑制作用;但是如果采用非相等耦合,则可以有效抵制滤波器带宽对纠缠的抑制作用,使输出光场纠缠得到大 幅提高.研究结果可应用在光力耦合系统中实现量子态转换、量子隐形传态等量子信息处理过程.

关键词: 腔光力学, 输出纠缠, 多模光力系统 PACS: 42.50.Ex, 42.50.Wk, 07.10.Cm

DOI: 10.7498/aps.67.20172467

1引言

量子纠缠是量子物理区别于经典物理的最显 著特征之一. 它不但可用于验证可观测量之间量 子关联的非局域性,而且在量子信息处理和量子通 信等领域有极其重要的应用价值. 自薛定谔等提 出量子纠缠以来,量子纠缠就引起了人们极大的兴 趣. 人们在理论上和实验上对宏观物体之间的量 子纠缠都做了广泛研究,比如在原子系综之间的纠 缠^[1,2]以及超导量子比特之间的纠缠^[3-6].近年来 由于纳米技术的进步,使腔光力学得到了快速发 展^[7-10].最近,腔光力学系统中的量子纠缠引起 了越来越多的关注,因为腔光力学系统中的光辐射 压力可以使系统中的各个子系统之间产生量子纠 缠. 例如, 在理论上对光力学系统中谐振子之间的 纠缠[11-14]、不同光模之间的纠缠[15-26] 以及光模 与谐振子之间的纠缠[27-35]都做了广泛研究,而在 最近一个实验中实现了谐振子与微波场之间的量 子纠缠^[36].

本文研究了左右两个光腔与中间一个力学振 子耦合的光力系统中输出光场之间的量子纠缠的 性质,此系统中,在参数放大相互作用和劈裂相互 作用的共同作用下,使左右两腔中的光模之间产生 量子纠缠,从而使经过滤波器后的输出光场之间也 会产生量子纠缠.研究发现,力学振子的弛豫速率、 滤波器的带宽以及非相等耦合(左右两腔的有效光 力耦合常数*G*₁与*G*₂不相等)都对输出光场之间的 量子纠缠大小有着显著的影响.这些研究结果有望 应用于在光力系统中实现量子态转换、量子隐形传 态等量子信息处理过程.

2 理论模型与主要公式

我们研究了一个双腔光力学系统,如图1所示,左右两个光学腔与中间一个力学振子相耦合; $\hat{a}_i(\omega_i)$ 和 $\hat{b}(\omega_m)$ 分别表示光学腔i和力学振子的湮

© 2018 中国物理学会 Chinese Physical Society

^{*} 黑龙江省自然科学基金(批准号: QC2017062)、辽宁省教育厅一般项目(批准号: L2014002)和辽宁大学青年科研基金(批准号: LDQN201430, LDGY201403)资助的课题.

[†]通信作者. E-mail: baoqianqian@lnu.edu.cn

灭算符 (本征频率); κ_i 和 γ 分别表示光腔 i和力学 振子的弛豫速率. 驱动场 H_d 从左右两侧射入并驱 动腔模 ω_i ,则系统的哈密顿量可写为

$$H = \omega_m \hat{b}^{\dagger} \hat{b} + \sum_{i=1,2} [\omega_i \hat{a}_i^{\dagger} \hat{a}_i + g_i (\hat{b}^{\dagger} + \hat{b}) \hat{a}_i^{\dagger} \hat{a}_i] + H_d,$$
(1)

其中 g_i 为光学腔i与力学振子之间的耦合常数.如 果用红边带激光($\omega_{d1} = \omega_1 - \omega_m$)和蓝边带激光 ($\omega_{d2} = \omega_2 + \omega_m$)分别驱动腔1和腔2,通过标准的 线性化方法,在相对系统自由哈密顿量做旋转以及 在旋波近似下,则系统哈密顿量变为

$$\hat{H}_{\text{int}} = G_1 \hat{b}^{\dagger} \hat{d}_1 + G_2 \hat{b} \hat{d}_2 + \text{H.c.},$$
 (2)

其中, $\hat{d}_i = \hat{a}_i - \bar{a}_i$, \bar{a}_i 为经典的腔模振幅; G_i 为有 效耦合强度. 线性化之后, 哈密顿量 (1) 中的驱动 场部分 H_d 不再出现在哈密顿量 (2) 当中, 其贡献只 影响有效耦合强度 G_i 的大小.

由系统哈密顿量(2)可以得出系统算符的海森 伯-郎之万运动方程:

$$\frac{\mathrm{d}}{\mathrm{dt}}\hat{b} = -\frac{\gamma}{2}\hat{b} - \mathrm{i}(G_{1}\hat{d}_{1} + G_{2}\hat{d}_{2}^{\dagger}) - \sqrt{\gamma}\hat{b}^{\mathrm{in}},
\frac{\mathrm{d}}{\mathrm{dt}}\hat{d}_{1} = -\frac{\kappa_{1}}{2}\hat{d}_{1} - \mathrm{i}G_{1}\hat{b} - \sqrt{\kappa_{1}}\hat{d}_{1}^{\mathrm{in}},
\frac{\mathrm{d}}{\mathrm{dt}}\hat{d}_{2}^{\dagger} = -\frac{\kappa_{2}}{2}\hat{d}_{2}^{\dagger} + \mathrm{i}G_{2}\hat{b} - \sqrt{\kappa_{2}}\hat{d}_{2}^{\mathrm{in},\dagger},$$
(3)

其中 \hat{b}^{in} , \hat{d}^{in}_i 分别为力学振子 \hat{b} 和光腔 \hat{d}_i 的输入热 噪声算符,其关联函数分别为 $\langle \hat{b}^{in,\dagger}(t)\hat{b}^{in}(t')\rangle =$ $N_m\delta(t-t')$, $\langle \hat{d}^{in,\dagger}_i(t)\hat{d}^{in}_i(t')\rangle = N_i\delta(t-t')$; N_m , N_i 分别为力学振子和光学腔的平均热占有 数. 本文主要研究在系统参数满足 $\kappa_i \gg \gamma$ 和 $4G_i^2/(\kappa_i\gamma) \gg 1$ 的条件下,滤波器带宽 σ 、力学 振子弛豫速率 γ 以及非相等耦合 $G_2 < G_1$ 对输出 光场之间纠缠的影响,所以在下面的讨论中均令 $N_m = N_i = 0$. 由Routh-Hurwitz 稳态条件^[37]可 知: 当两个光学腔的弛豫速率 $\kappa_1 \neq \kappa_2$, 稳态条 件为 $G_1^2/G_2^2 > \max(\kappa_1/\kappa_2,\kappa_2/\kappa_1)$; 当 $\kappa_1 = \kappa_2$, 且 $G_1 \ge G_2$ 时,系统总是稳定的^[21,24].

Fig. 1. Sketch of the output light fields in a doublecavity optomechanical system.

本文采用对数负性^[38,39]的方法来数值计算两 个输出光场之间的量子纠缠大小.经过滤波器之后 的输出光场可以表示为

$$\hat{D}_i^{\text{out}}[\omega, \sigma, \tau_i] = \int d\omega' e^{-i\omega'\tau_i} f(\omega') \hat{d}_i^{\text{out}}(\omega'). \quad (4)$$

为简单起见,采用方形滤波函数来输出光场,即

$$f(\omega') = \frac{\theta\left[\omega' - \left(\omega - \frac{\sigma}{2}\right)\right] - \theta\left[\omega' - \left(\omega + \frac{\sigma}{2}\right)\right]}{\sqrt{\sigma}},$$
(5)

其中*θ*[ω]为阶跃函数, σ为输出光场的带宽, ω为输 出光场的中心频率.则经过此方形滤波函数的输出 光场可以表示为

$$\hat{D}_{i}^{\text{out}}[\omega,\sigma,\tau_{i}] = \frac{1}{\sqrt{\sigma}} \int_{\omega_{-}}^{\omega_{+}} \mathrm{d}\omega' \mathrm{e}^{-\mathrm{i}\omega'\tau_{i}} \hat{d}_{i}^{\text{out}}(\omega'), \quad (6)$$

其中 $\omega_{\pm} = \omega \pm \frac{\sigma}{2}$, τ_i 为光场从光腔 ω_i 的输出时间, 本文研究从两光学腔同时输出的光场之间的纠缠, 所以可取 $\tau_1 = \tau_2 = 0$.用对数负性来计算输出光场 $\hat{D}_1^{\text{out}}[\omega, \sigma, 0]$ 和 $\hat{D}_2^{\text{out}}[-\omega, \sigma, 0]$ 之间的量子纠缠度, 其定义为

$$En = \max[0, -\ln 2\eta],\tag{7}$$

其中

γ

$$\eta = \frac{1}{\sqrt{2}} \sqrt{\Sigma - \sqrt{\Sigma^2 - \det \boldsymbol{V}}}, \qquad (8)$$

和

$$\Sigma = \det \boldsymbol{B} + \det \boldsymbol{B}' - 2 \det \boldsymbol{C}, \qquad (9)$$

以及4×4关联矩阵**V**的定义为 $V_{jj'} = \frac{1}{2} \langle \hat{u}_j \hat{u}_{j'} + \hat{u}_{j'} \hat{u}_j \rangle$, 其中 $\hat{u} = \{\hat{x}_1, \hat{p}_1, \hat{x}_2, \hat{p}_2\}^{\mathrm{T}}$, 且 $\hat{x}_i = \frac{\hat{D}_i + \hat{D}_i^{\dagger}}{\sqrt{2}}$ 和 $\hat{p}_i = \frac{\hat{D}_i - \hat{D}_i^{\dagger}}{\sqrt{2}i}$. 2×2 矩阵**B**, **B**'和 **C**与关联矩阵**V**的关系为

$$\boldsymbol{V} = \begin{pmatrix} \boldsymbol{B} & \boldsymbol{C} \\ \boldsymbol{C}^{\mathrm{T}} & \boldsymbol{B}' \end{pmatrix}.$$
 (10)

3 输出光场之间的纠缠性质

根据对数负性 (9) 式来分别讨论力学振子的弛 豫速率 γ 、滤波器带宽 σ 以及非相等耦合 $G_1 > G_2$ 对输出光场之间纠缠的影响.

首先研究力学振子的弛豫速率 γ 对纠缠的影响,这里主要讨论强耦合情况 ($G > \kappa$),并取参数 $G_1 = G_2 = G = 5 \times 10^5$, $\kappa_1 = \kappa_2 = \kappa = 10^5$ 以 及 $\sigma \rightarrow 0$. 带宽 $\sigma \rightarrow 0$,此时输出光场为单色平 面波,滤波器的中心频率 ω 即为输出光场的频率.

图2给出了在力学振子弛豫速率 γ 不同取值下,即 $\gamma = 1$ (红色实线), $\gamma = 10^{2}$ (蓝色虚线), $\gamma = 10^{4}$ (绿色点线)时的输出光场之间纠缠 En 随着滤波器 中心频率 ω/κ 的变化曲线. 从图2可知, 在 $\sigma \to 0$ 的条件下,当输出光场的中心频率与光学腔共振 时(在旋转参考系下,共振时 $\omega = 0$),两个输出光 场之间的纠缠最大,纠缠随着中心频率ω的增加不 断减小,并且有 $En(\omega) = En(-\omega)$. 通过计算可知, 在共振时纠缠 $En(0) \approx \ln\left(\frac{8G^2}{\kappa\gamma}\right)$,由此可以看出 在输出光场中心频率与光学腔共振频率附近,力 学振子的弛豫速率γ对输出光场之间的纠缠有着 很大的影响, $\gamma = 1$ 时, $En(0) \approx 16.81$, $\gamma = 10^2$ 时, $En(0) \approx 12.21$, $\gamma = 10^4$ 时, $En(0) \approx 7.60$. 而 当输出光场的中心频率远离光学腔的共振频率 时,力学振子的弛豫速率γ对纠缠的影响逐渐减 小. 对于弱耦合情况 ($G < \kappa$), 纠缠曲线形状与强 耦合情况没有太大区别,只是纠缠数值相对较小, 图 2 只给出了 $\gamma = 10^2$ 时的弱耦合纠缠曲线, 见黑 色实线, 其他参数为: $G_1 = G_2 = G = 2 \times 10^4$, $\kappa_1 = \kappa_2 = \kappa = 10^5.$

图2 在 $\sigma \to 0$ 的条件下,力学振子弛豫速率 γ 取不同值 时,输出光场之间纠缠 En随着输出光场中心频率 ω/κ 的 变化曲线 强耦合条件下 ($G = 5\kappa = 5 \times 10^5$), $\gamma = 1$ (红 色实线), $\gamma = 10^2$ (蓝色虚线), $\gamma = 10^4$ (绿色点线); 弱耦 合条件下 ($G = \kappa/5 = 2 \times 10^4$), $\gamma = 10^2$ (黑色实线) Fig. 2. Under the condition of $\sigma \to 0$, the output entanglement En is plotted with the change of center frequency of output fields ω/κ for different mechanical decay γ : for strong coupling ($G = 5\kappa = 5 \times 10^5$), $\gamma = 1$ (red solid line), $\gamma = 10^2$ (blue dashed line), $\gamma = 10^4$ (green dotted line); for weak coupling ($G = \kappa/5 = 2 \times 10^4$), $\gamma = 10^2$ (black solid line).

由以上讨论可知, 当 $\sigma \rightarrow 0$ 时输出光场纠缠 的最大值出现在共振处, 即 $\omega = 0$. 然而接下 来的讨论发现, 滤波器半宽 σ 对输出光场纠缠产 生重要的影响. 当 σ 取有限值时, 纠缠的最大

值不再出现在 $\omega = 0$ 的位置,相反在 $\omega = 0$ 处, 纠缠取局部最小值. 在这里我们只讨论强耦合 情况(弱耦合纠缠图形只是数值较小),并取参 $\kappa_1 = \kappa_2 = \kappa$). 通过计算可知, 当输出光场中心 频率 ω 满足 $-\frac{\sigma}{2} \lesssim \omega \lesssim \frac{\sigma}{2}$ 时, $En \approx \frac{\pi\gamma}{2\sigma}$. 图3给 出了在滤波器带宽 σ 取不同值时输出光场纠缠En随着输出光场中心频率 ω/κ 的变化曲线: $\sigma = 10^3$ (红色虚线), $\sigma = 10^4$ (蓝色点线), $\sigma = 10^5$ (绿色 实线). 由图3可知, 输出光场之间的纠缠 En 最大 值出现在绝对值大于σ/2的某一中心频率处,而在 $-\frac{\sigma}{2} \lesssim \omega \lesssim \frac{\sigma}{2}$ 范围内几乎为零,这是因为 $\gamma/\sigma \approx 0$. 这说明滤波器带宽 σ 对共振频率附近的纠缠有很 强的抑制作用. 输出纠缠的最大值也随着 σ 的增加 不断降低. 由公式 $En \approx \frac{\pi\gamma}{2\sigma}$ 可知, 当半宽 σ 不为零 时,可以通过提高力学振子的弛豫速率γ的方法来 提高共振频率 ($\omega = 0$) 附近的输出光场纠缠大小.

图 3 在滤波器带宽 σ 取不同值时,输出光场之间纠缠 En随着输出光场中心频率 ω/κ 的变化曲线 $\sigma = 10^3$ (红色 虚线), $\sigma = 10^4$ (蓝色点线), $\sigma = 10^5$ (绿色实线); 其他参 数 $\gamma = 1, G_1 = G_2 = G = 5 \times 10^5, \kappa_1 = \kappa_2 = \kappa = 10^5$ Fig. 3. The output entanglement En is plotted with the change of center frequency of output fields ω/κ for different filter bandwidth σ : $\sigma = 10^3$ (red dashed line), $\sigma = 10^4$ (blue dotted line), $\sigma = 10^5$ (green solid line). Other parameters: $\gamma = 1, G_1 = G_2 = G = 5 \times 10^5, \kappa_1 = \kappa_2 = \kappa = 10^5$.

最后讨论非相等耦合 $(G_1 > G_2)$ 对输出光场 纠缠的影响,这里分强耦合和弱耦合两种情况讨 论,参数取 $\gamma = 1$, $\sigma = 10^3$, $\kappa = 10^5$. 强耦合 情况下 $(G_1 = G = 5 \times 10^5 > \kappa)$,图4给出了在 G_2/G_1 取不同值时输出纠缠 En随着输出光场中 心频率 ω/κ 的变化曲线: $G_2/G_1 = 1$ (红色虚线); $G_2/G_1 = 0.95$ (蓝色点线); $G_2/G_1 = 0.90$ (黑色实 线).当 $G_2/G_1 = 1$ 时,由上面的讨论可知,滤波器 带宽 σ 对 $\omega = 0$ 附近的纠缠产生很强的抑制作用. 但是如果采用非相等耦合,则可以有效抵制滤波器 带宽 σ 对输出纠缠的抑制作用(见图4中的蓝色点 线和黑色实线).由图4可知,与相等耦合时(红色 虚线)在 $\omega = 0$ 附近的输出纠缠相比,非相等耦合 时的输出纠缠得到大幅提高,并在共振频率处取局 部最大值,而且非相等耦合时输出光场纠缠会出现 三个峰值.这是因为在强耦合条件下哈密顿量 H_{int} 的三个本征模发生劈裂^[22].图5给出了在弱耦合时

图4 在强耦合条件下, G_2/G_1 取不同值时输出纠缠En随着输出光场中心频率 ω/κ 的变化曲线 $G_2/G_1 = 1$ (红 色虚线), $G_2/G_1 = 0.95$ (蓝色点线), $G_2/G_1 = 0.90$ (黑 色实线); 其他参数 $\gamma = 1$, $\sigma = 10^3$, $\kappa = 10^5$, $G_1 = 5\kappa$ Fig. 4. With strong coupling, the output entanglement En is plotted with the change of center frequency of output fields ω/κ for different values of G_2/G_1 : $G_2/G_1 = 1$ (red dashed line), $G_2/G_1 = 0.95$ (blue dotted line), $G_2/G_1 = 0.90$ (black solid line). Other parameters: $\gamma = 1$, $\sigma = 10^3$, $\kappa = 10^5$, $G_1 = 5\kappa$.

图5 在弱耦合条件下, G_2/G_1 取不同值时输出纠缠 En随着输出光场中心频率 ω/κ 的变化曲线 $G_2/G_1 = 1$ (红 色虚线), $G_2/G_1 = 0.95$ (蓝色点线), $G_2/G_1 = 0.90$ (黑 色实线); 其他参数 $\gamma = 1$, $\sigma = 10^3$, $\kappa = 10^5$, $G_1 = \kappa/5$ Fig. 5. With weak coupling, the output entanglement En is plotted with the change of center frequency of output fields ω/κ for different values of G_2/G_1 : $G_2/G_1 = 1$ (red dashed line), $G_2/G_1 = 0.95$ (blue dotted line), $G_2/G_1 = 0.90$ (black solid line). Other parameters: $\gamma = 1$, $\sigma = 10^3$, $\kappa = 10^5$, $G_1 = \kappa/5$.

 $(G_1 = G = 2 \times 10^4 < \kappa)$, 在 G_2/G_1 取不同值时, 输出纠缠 En 随着输出光场中心频率 ω/κ 的变化曲 线: $G_2/G_1 = 1$ (红色虚线); $G_2/G_1 = 0.95$ (蓝色 点线); $G_2/G_1 = 0.90$ (黑色实线). 由图5 可见, 在 弱耦合时输出光场纠缠值比强耦合时小很多, 由于 是弱耦合, 所以不会出现本征模劈裂现象, 而输出 纠缠却出现两个峰值, 这是因为滤波器半宽σ对共 振频率 $\omega = 0$ 附近的输出纠缠 En 有很强的抑制作 用, 使本来不应该出现劈裂的现象出现了两个峰.

4 结 论

对双腔光力学系统中输出光场之间的纠缠性 质进行了分析.研究发现,此系统中力学振子的弛 豫速率 γ 和滤波器带宽 σ 的大小以及非相等耦合 G1 > G2条件对输出光场之间纠缠的大小都有着 显著的影响,特别是在相等耦合时 $(G_1 = G_2)$ 和输 出光场中心频率在光学腔本征频率附近时,滤波器 带宽 σ 对纠缠有很强的抑制作用;但是如果采用非 相等耦合,则可以有效抵制滤波器带宽的这种抑制 作用; 当系统在强耦合参数区域时, 如果采用非相 等耦合,则输出光场纠缠会出现三个峰值,这是因 为此时系统的哈密顿量 Hint 的三个本征模发生劈 裂; 而对于弱耦合纠缠会出现两个峰值, 这是因为 滤波器半宽 σ 对共振频率 $\omega = 0$ 附近的输出纠缠 En有很强的抑制作用,使本来不应该出现劈裂的 现象出现了两个峰. 这些研究结果有望应用于光力 系统中量子态转换、量子隐形传态等量子信息处理 过程.

参考文献

- Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400
- Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 *Phys. Rev. Lett.* 107 080503
- Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J, Wellstood F C 2003 Science 300 1548
- [4] Neeley M, Bialczak R C, Lenander M, Lucero E, Mariantoni M, Sank D, Wang H, Weides M, Wenner J, Yin Y, Yamamoto T, Cleland A N, Martinis J M 2010 *Nature* 467 570
- [5] DiCarlo L, Reed M, Sun L, Johnson B L, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

- [6] Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012
 Phys. Rev. Lett. 109 183901
- [7] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
- [8] Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P
 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘 晓威, 张可烨, 袁春华, 张卫平 2015 物理学报 64 164211]
- [9] Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205 (in Chinese) [陈华俊, 方贤文, 陈昌兆, 李 洋 2016 物理学报 65 194205]
- [10] Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese) [严晓波,杨柳, 田雪冬,刘一谋,张岩 2014 物理学报 63 204201]
- [11] Bhattacharya M, Giscard P L, Meystre P 2008 Phys. Rev. A 77 030303
- [12] Chen R X, Shen L T, Yang Z B, Wu H Z, Zheng S B 2014 Phys. Rev. A 89 023843
- $[13]\,$ Liao J Q, Wu Q Q, Nori F 2014 Phys. Rev. A 89 014302
- [14] Yang C J, An J H, Yang W, Li Y 2015 Phys. Rev. A 92 062311
- [15] Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J, Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401
- [16] Wipf C, Corbitt T, Chen Y, Mavalvala N 2008 New J. Phys. 10 095017
- [17] Genes C, Mari A, Tombesi P, Vitali D 2008 Phys. Rev. A 78 032316
- [18] Barzanjeh Sh, Vitali D, Tombesi P, Milburn G J 2011 Phys. Rev. A 84 042342
- [19] Barzanjeh Sh, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503
- [20] Barzanjeh Sh, Pirandola S, Weedbrook C 2013 Phys. Rev. A 88 042331

- [21] Wang Y D, Clerk A A 2013 Phys. Rev. Lett. 110 253601
- [22] Tian L 2013 Phys. Rev. Lett. **110** 233602
- [23] Kuzyk M C, van Enk S J, Wang H 2013 Phys. Rev. A 88 062341
- [24] Wang Y D, Chesi S Clerk A A 2015 Phys. Rev. A 91 013807
- [25] Deng Z J, Habraken S J M, Marquardt F 2016 New J. Phys. 18 063022
- [26] Deng Z J, Yan X B, Wang Y D, Wu C W 2016 Phys. Rev. A 93 033842
- [27] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A, Aspelmeyer M 2007 *Phys. Rev. Lett.* **98** 030405
- [28] Hofer S G, Wieczorek W, Aspelmeyer M, Hammerer K 2011 Phys. Rev. A 84 052327
- [29] Akram U, Munro W, Nemoto K, Milburn G J 2012 Phys. Rev. A 86 042306
- [30] Sinha K, Lin S Y, Hu B L 2015 Phys. Rev. A 92 023852
- [31] He Q Y, Ficek Z 2014 Phys. Rev. A 89 022332
- [32] Kiesewetter S, He Q Y, Drummond P D, Reid M D 2014 *Phys. Rev. A* 90 043805
- [33] He Q Y, Reid M D 2013 Phys. Rev. A 88 052121
- [34] Wang M, Gong Q H, Ficek Z, He Q Y 2015 Sci. Rep. 5 12346
- [35] Wang M, Gong Q H, Ficek Z, He Q Y 2014 Phys. Rev. A 90 023801
- [36] Palomaki T A, Teufel J D, Simmonds R W, Lehnert K W 2013 Science 342 710
- [37] DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288
- [38] Vidal G, Werner R F 2002 Phys. Rev. A 65 032314
- [39] Plenio M B 2005 Phys. Rev. Lett. 95 090503

Entanglement characteristics of output optical fields in double-cavity optomechanics^{*}

Zhang Xiu-Long¹) Bao Qian-Qian^{2)†} Yang Ming-Zhu³) Tian Xue-Song³)

1) (College of Electronic Science, Northeast Petroleum University, Daqing 163318, China)

2) (College of Physics, Liaoning University, Shenyang 110036, China)

3) (College of Science, Heilongjiang University of Science and Technology, Harbin 150001, China)

(Received 17 November 2017; revised manuscript received 22 March 2018)

Abstract

Radiation pressure in an optomechanical system can be used to generate various quantum entanglements between the subsystems. Recently, one paid more attention to the study of quantum entanglement in an optomechanical system. Here in this work, we study the properties of output entanglement between two filtered output optical fields by the logarithmic negativity method in a double-cavity optomechanical system. Our calculations show that the decay rate of the mechanical resonator, the bandwidth of filter function, and non-equal-coupling will evidently affect the value of the output entanglement. In particular, under the parameters of equal-coupling and zero filter bandwidth, the output entanglement in the vicinity of resonant frequency ($\omega = 0$ in the rotating frame) will decease with mechanical decay rate increasing. But under the parameters of equal-coupling and non-zero filter bandwidth, the output entanglement will be suppressed if the center frequency of output field is in the vicinity of the resonant frequency. However, the output entanglement can be enhanced if we adopt a non-equal-coupling to counteract the suppression effect of the filter bandwidth. Furthermore, we find that there are three peaks in the whole center frequency domain of the output field if we adopt strong non-equal-coupling. This is because the normal mode of Hamiltonian H_{int} will split into three normal modes in this case. Our results can also be used in other parametrically coupled three-mode bosonic systems and may be applied to realizing the state transfer process and quantum teleportation in an optomechanical system.

Keywords: cavity-optomechanics, output entanglement, multi-mode optomechanical systemPACS: 42.50.Ex, 42.50.Wk, 07.10.CmDOI: 10.7498/aps.67.20172467

^{*} Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. QC2017062), the General Science and Technology Research Plans of Liaoning Educational Bureau, China (Grant No. L2014002) and the Youth Fund of Liaoning University, China (Grant Nos. LDQN201430, LDGY201403).

[†] Corresponding author. E-mail: baoqianqian@lnu.edu.cn