# 物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

## Pb掺杂对 $Cd_2Ru_2O_7$ 反常金属态的调控

焦媛媛 孙建平 Prashant Shahi 刘哲宏 王铂森 龙有文 程金光

Effect of Pb doping on metallic state of cubic pyrochlore Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> Jiao Yuan-Yuan Sun Jian-Ping Prashant Shahi Liu Zhe-Hong Wang Bo-Sen Long You-Wen Cheng Jin-Guang

引用信息 Citation: Acta Physica Sinica, 67, 127402 (2018) DOI: 10.7498/aps.67.20180343 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180343 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I12

您可能感兴趣的其他文章 Articles you may be interested in

#### 洪德耦合的调控与轨道选择 Mott 相变

Manipulation of Hund's rule coupling and orbital-selective Mott transition 物理学报.2015, 64(24): 247101 http://dx.doi.org/10.7498/aps.64.247101

### 多轨道 Hubbard 模型的隶玻色子数值算法研究

Numerical algorithm for slave-boson mean field approach to the multi-band Hubbard model 物理学报.2012, 61(1): 017106 http://dx.doi.org/10.7498/aps.61.017106

# Pb掺杂对 $Cd_2Ru_2O_7$ 反常金属态的调控<sup>\*</sup>

焦媛媛<sup>1)2)</sup> 孙建平<sup>1)2)</sup> Prashant Shahi<sup>1)2)</sup> 刘哲宏<sup>1)2)</sup> 王铂森<sup>1)2)</sup> 龙有文<sup>1)2)</sup> 程金光<sup>1)2)†</sup>

1)(中国科学院物理研究所,北京凝聚态物理国家研究中心,北京 100190)2)(中国科学院大学物理科学学院,北京 100049)

(2018年2月22日收到;2018年4月11日收到修改稿)

具有烧绿石结构的 Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 在形成长程反铁磁序的同时进入反常的金属态.采用高压高温方法制备了 一系列 Pb 掺杂的 Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> (0  $\leq x \leq 2$ )多晶样品,并系统研究了其晶体结构和电阻率、磁化率、热 电势等物理性质.尽管 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 是泡利顺磁金属,但少量 Pb<sup>2+</sup> 掺杂的样品 Cd<sub>1.8</sub>Pb<sub>0.2</sub>Ru<sub>2</sub>O<sub>7</sub> 却呈现出明 显的金属-绝缘体转变,与施加静水压和少量 Ca<sup>2+</sup> 掺杂的效果类似.通过与类似的烧绿石 Ru<sup>5+</sup> 氧化物进行 对比,提出 Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 中的 Ru<sup>5+</sup>-4d<sup>3</sup> 电子态恰好处于巡游到局域过渡的区域,少量 Pb<sup>2+</sup> 掺杂造成的晶格无 序增强了电子的局域性,使得形成反铁磁序的同时伴随出现了金属-绝缘体转变.这表明具有烧绿石结构的 Ru<sup>5+</sup> 氧化物是研究巡游-局域电子转变的理想材料体系.

关键词: Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>烧绿石, 金属-绝缘体转变, 反铁磁有序 PACS: 74.70.Pq, 71.27.+a, 72.15.-v

#### **DOI:** 10.7498/aps.67.20180343

## 1引言

局域和巡游是描述固体中电子状态的两种极限情况,分别可以在晶体场理论和能带理论的框架 下得到很好的描述. 然而,在以过渡族金属氧化物 为代表的强关联电子体系中,其电子态往往处于局 域和巡游之间的过渡区域,而且通过化学掺杂或施 加物理压力等手段还可以实现电子态在这两种状 态之间的连续调控<sup>[1]</sup>. 正是由于此过渡区域电子态 的两面性以及自旋、轨道、电荷、晶格等多量子自由 度的强烈耦合,造成强关联电子体系出现了很多奇 特的物理现象,如非常规超导电性<sup>[2]</sup>,金属-绝缘体 转变<sup>[3]</sup>,以及量子临界性<sup>[4,5]</sup>等. 因此,对这些现象 的理解需要对局域-巡游过渡区域的电子态进行深 入的研究,而目前无论从理论上还是实验上这都是 富有挑战的课题.

相对于第一(3d)过渡族金属氧化物,4d轨道 电子具有较大的空间扩展性,减弱了在位库仑排 斥能,这使得4d电子更接近巡游状态.在众多 的4d过渡金属氧化物体系中,具有烧绿石结构的  $A_2^{2+} \operatorname{Ru}_2^{5+} O_7$  (A = Ca, Cd, Hg) 研究较少, 但可能 是研究巡游-局域转变的理想体系之一。6. 在这 一体系中,通过选择不同的非磁性A<sup>2+</sup>离子,可 以调控Ru<sup>5+</sup>-4d<sup>3</sup>电子状态,造成迥异的磁、电输 运性质. 例如, Ca<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>表现出典型的导电自旋 玻璃体系的特征,即场冷(field-cooled, FC)和零场 冷(zero-field-cooled, ZFC) 磁化率在自旋冻结温度  $T_{\rm f} = 23 \, {\rm K}$  分叉, 电阻率随温度降低而升高, 但数 值很小(2-4 mΩ·cm), 且温度依赖关系不符合热 激活模型<sup>[7,8]</sup>. 在烧绿石结构中, Ru<sup>5+</sup> (4d<sup>3</sup>)离子 形成共角连接的四面体结构,具有强烈的几何阻挫 效应<sup>[9]</sup>,这可能是造成自旋玻璃行为的重要原因,

© 2018 中国物理学会 Chinese Physical Society

<sup>\*</sup> 国家重点研发计划(批准号: 2018YFA0305700)、国家重点基础研究发展计划(批准号: 2014CB921500)、国家自然科学基金(批准 号: 11574377)和中国科学院前沿科学重点项目(批准号: QYZDB-SSW-SLH013)资助的课题.

<sup>†</sup>通信作者. E-mail: jgcheng@iphy.ac.cn

 $Cd_2Ru_2O_7$ 在反铁磁有序温度 $T_N \approx 100$  K进入金 属态<sup>[10]</sup>;而 $Hg_2Ru_2O_7$ 在 $T_N = 107$  K形成长程反 铁磁序时发生了金属-绝缘体转变<sup>[11,12]</sup>和一级结 构相变<sup>[11,13]</sup>.这表明 $A_2Ru_2O_7$ 中的 $Ru^{5+}$ -4d<sup>3</sup>电 子态兼具巡游和局域属性,而且高度可调.

由于Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的反铁磁金属基态在单价态 的过渡金属氧化物中是比较少见的,我们最近对 其开展了系统的实验调控研究,发现其金属基态 非常不稳定,无论是施加约1 GPa的静水压还是 用5%—10%的Ca<sup>2+</sup>取代Cd<sup>2+</sup>都会将系统基态转 变为绝缘态, 电阻率温度曲线表现出明显的类金 属-绝缘体转变行为.为了进一步研究Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 中Ru<sup>5+</sup>-4d<sup>3</sup>电子的巡游-局域调控规律,本文详 细研究了Cd<sup>2+</sup>位掺杂Pb<sup>2+</sup>造成的影响. 由于 常压条件下合成的Pb2Ru2O7-6通常含有氧空 位<sup>[14]</sup>,我们利用高压高温合成方法,在高氧压条 件下制备了一系列  $Pb^{2+}$  掺杂的  $Cd_{2-x}Pb_xRu_2O_7$  $(0 \leq x \leq 2, x$ 为Pb掺杂量)多晶样品.研究发 现,尽管Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>具有泡利顺磁金属性质,但少 量 $Pb^{2+}$ 掺杂的样品 $Cd_{1.8}Pb_{0.2}Ru_2O_7$ 也呈现出明 显的类金属-绝缘体转变,与施加静水压和少量 Ca<sup>2+</sup>掺杂的效果类似.结合前期的实验结果,提出  $Cd_2Ru_2O_7$ 中的 $Ru^{5+}-4d^3$ 电子态恰好处于巡游到 局域过渡的区域, 少量 Pb<sup>2+</sup> 掺杂造成的晶格无序 增强了电子局域性,使得形成反铁磁序的同时伴随 出现了金属-绝缘体转变,这表明具有烧绿石结构 的Ru5+氧化物是研究巡游-局域电子转变的理想 材料体系.

#### 2 实 验

本文中所有的 Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> (0  $\leq x \leq$  2) 多 晶样品均采用川井型多面砧压机在高压高 温条件下合成. 首先将 PbO (99.999%)与 Ru (> 99.95%)按照摩尔比为1:1的比例混合,充 分研磨后压片;然后在空气中900°C烧结24 h, 得到氧缺位 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7- $\delta$ </sub>烧绿石. 再将得到的 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7- $\delta$ </sub>与 CdO(99.998%)和 RuO<sub>2</sub>按照化学 计量比混合,并加入20 wt.%—30 wt.%的 KClO<sub>4</sub> 充分研磨作为高压高温合成的前驱体. 实验中, 将前驱体装入金筒中密封,合成条件为4 GPa, 1000°C, 30 min. KClO<sub>4</sub>在加热过程中会分解释放 出氧气,提供超高氧压环境来稳定高价态的Ru<sup>5+</sup>. 高压反应产物中的KCl需要用去离子水洗掉,将洗 掉KCl的粉末样品两端放置KClO4重新进行高压 高温处理,就可以获得致密的块体样品,然后进行 后续的磁性和电输运性质的测试.

采用X射线粉末衍射仪检测样品的晶体结构, 利用量子设计公司的磁学测试系统 (MPMS-III) 测 试磁化率温度曲线,利用物性测试系统 (PPMS-9T) 的标准四端法测试样品的电阻率.热电势的测 量是采用自主搭建的稳态法装置完成的.

#### 3 实验结果

图 1 (a) 为 Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> (x = 0, 0.2, 0.4, 0.6, 1.0, 1.4, 2.0) 系列样品的X射线衍射 (X-ray diffraction, XRD) 图谱. 从图 1 (a) 可以看出:所有样品的主相均为立方烧绿石结构,空间群为 *Fd-3m* (No. 227),部分样品含有少量的 RuO<sub>2</sub> 杂相 (用\*标出,含量为3 wt.%—5 wt.%);所有样品的 XRD 峰



图 1 Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> (0  $\leq x \leq 2$ ) 系列样品的 XRD 图谱 及晶胞参数 *a* 随 Pb 掺杂量 *x* 的定量变化关系 (a) XRD 图; (b) *a* 随 *x* 的变化曲线

Fig. 1. XRD patterns of  $\operatorname{Cd}_{2-x}\operatorname{Pb}_x\operatorname{Ru}_2\operatorname{O}_7$   $(0 \leq x \leq 2)$ and the obtained unit-cell parameter *a* as a function of Pb content *x*: (a) XRD patterns; (b) *a* vs. *x*. 都很尖锐,表明结晶质量很好;而且随着 Pb 掺杂 量 x 的增加, 衍射峰逐渐向低角度移动,表明晶胞 参数逐渐增加.图1(b)给出了立方结构晶胞参数a随 x 的定量变化关系,可以看出,a 随着x 的增加逐 渐增加,这与 Pb<sup>2+</sup> (1.20 Å)的离子半径大于 Cd<sup>2+</sup> 的离子半径(1.10 Å)一致<sup>[15]</sup>,也表明 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>和 Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>形成了很好的固溶体.

图 2 (a) 显示了 Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> 系列样品的 归一化电阻率 $\rho(T)/\rho(300 \text{ K})$  随温度的变化. 从 图 2 (a) 可以看出, Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 的电阻率数值在整 个温度区间变化不大, 随着温度降低首先缓慢升 高, 在 200 K以下增加变缓, 直到  $T_{\rm N} = 85$  K时, 电 阻率突然下降, 表现出金属型温度依赖关系, 即 d $\rho/dT > 0$ ; 但是, 此金属型的温度区间很窄, 电阻 率在 40 K 附近出现极小值, 然后又缓慢升高, 转变 为半导体行为, 即 d $\rho/dT < 0$ . 除了  $T_{\rm N}$  值与文献 中稍有差别, Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 电阻率的数值和整体温度 依赖关系与文献 [10] 报道的结果一致.



图 2  $\operatorname{Cd}_{2-x}\operatorname{Pb}_{x}\operatorname{Ru}_{2}\operatorname{O}_{7}$  (0  $\leq x \leq 2$ ) 系列样品的归一化电阻 率随温度的变化及三维变程跳跃模型 (a)  $\rho(T)/\rho(300 \text{ K})$  随温 度的变化; (b)  $\ln[\rho(T)/\rho(300 \text{ K})]$ - $T^{-1/4}$ 

Fig. 2. Temperature dependence of resistivity normalized at 300 K for Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> ( $0 \le x \le 2$ ) and a plot of threedimensional variable range hopping model: (a) Temperature dependence of  $\rho(T)/\rho(300 \text{ K})$ ; (b)  $\ln[\rho(T)/\rho(300 \text{ K})]$  vs.  $T^{-1/4}$  for the same data.

我们在高氧压下获得的Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 与氧空位 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7- $\delta$ </sub>类似,在整个温区表现出良好的金 属型导电行为,低温符合 $\rho \propto T^2$ 费米液体行 为<sup>[14]</sup>.有趣的是,当10%的Cd<sup>2+</sup>被Pb<sup>2+</sup>取代时,  $Cd_{1.8}Pb_{0.2}Ru_2O_7$ 的电阻率却在 62 K 附近出现明 显的拐点,并且低温下的电阻率随着温度降低急剧 上升,体系的基态转变为绝缘体.从图 2 (b)所示的 三维变程跳跃模型<sup>[16]</sup>,即 ln  $\rho$ - $T^{-1/4}$ 的关系图可以 看出明显的带隙增加.随着 Pb<sup>2+</sup>掺杂量的进一步 增加, Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> (x = 0.4, 0.6)的电阻率随 温度降低而非常缓慢地升高,但在整个温度区间均 没有任何拐点;当x = 1.0时, CdPbRu<sub>2</sub>O<sub>7</sub>在整个 温区已经呈现出金属型电导.上述结果表明, Pb<sup>2+</sup> 掺杂对 Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 的电导率造成非单调的变化,少 量掺杂能将其金属基态转变为绝缘体,而当掺杂量 超过 20%时又逐渐向金属性的 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 过渡,这 与 Ca<sup>2+</sup>掺杂具有类似的效果.

图 **3** (a) 给出了 Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> 系列样品的 FC和ZFC直流磁化率随温度的变化,外加磁场为  $\mu_0 H = 1$  T; 图 **3** (b) 给出了相应的FC磁化率倒数 随温度的变化. 从图 **3** 可以看出, Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 的磁 化率在  $T_N = 85$  K出现明显下降,表明进入长程反 铁磁序;在 $T > T_N$ 的顺磁区,磁化率随着温度升 高先增加后降低,不符合居里-外斯定律,在200 K 附近呈现出一个鼓包,与电阻率的斜率发生变化的 温度一致;在 $T < T_N$ 的反铁磁有序区,磁化率在  $T_s \approx 40$  K还出现一个突然的下降, Miyazaki等在 文献 [6] 中也观察到了这一现象,并根据 $\mu$ 介子自旋 弛豫的测试结果,将这一变化归因于Ru局域磁矩 的减小.

尽管Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的磁化率表现出几乎温度无 关的泡利顺磁行为,但是当用少量Pb取代Cd时, Cd<sub>1.8</sub>Pb<sub>0.2</sub>Ru<sub>2</sub>O<sub>7</sub>样品的磁化率曲线表现出较强 的温度依赖关系,特别是在100 K以下迅速升高, ZFC与FC曲线在40K附近出现分叉,之后FC曲 线经历一个小平台后继续升高,而ZFC曲线出现 一个峰值后降低. 从图3(b)也可以看出, 高温顺 磁区具有居里-外斯行为. 这表明,对Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的 Cd<sup>2+</sup>位掺杂少量的Pb<sup>2+</sup>就使得Cd<sub>1.8</sub>Pb<sub>0.2</sub>Ru<sub>2</sub>O<sub>7</sub> 样品具有较强的局域磁矩特征,并在100 K 以下表 现出显著的磁性关联,在40K附近形成反铁磁序 或者自旋冻结. 值得注意的是, 磁化率随温度变 化最快的温度,即  $d\chi/dT$  的极大值温度,与图 2(a) 中电阻率曲线出现金属-绝缘体转变的温度非常接 近. 这表明电阻率数据中观察到的金属-绝缘体转 变与局域磁矩的增强密切相关. 随着 Pb 含量增加,



图 3 外加磁场 $\mu_0 H = 1$  T时, Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> (0  $\leq x \leq 2$ ) 直流磁化率 $\chi(T)$ 及磁化率倒数 $\chi^{-1}(T)$ 随温度的变化 (1 emu·mol<sup>-1</sup> = 4 $\pi \times 10^{-6}$  m<sup>3</sup>·mol<sup>-1</sup>) (a)  $\chi(T)$  vs. T; (b) FC 情况下,  $\chi^{-1}(T)$  vs. T Fig. 3. Temperature dependence of magnetic susceptibility  $\chi(T)$  and its inverse  $\chi^{-1}(T)$  for the series of Cd<sub>2-x</sub>Pb<sub>x</sub>Ru<sub>2</sub>O<sub>7</sub> (0  $\leq x \leq 2$ ) measured under  $\mu_0 H = 1$  T (1 emu·mol<sup>-1</sup> = 4 $\pi \times 10^{-6}$  m<sup>3</sup>·mol<sup>-1</sup>): (a)  $\chi(T)$  vs. T in FC mode and ZFC mode; (b)  $\chi^{-1}(T)$ 

vs. T in FC mode.

磁化率行为又逐渐向 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 过渡. 值得注意 的是, x = 0.4样品的磁化率与x = 0.2样品的 磁化率类似, 但图 2 中x = 0.4时的电阻率数据 却并没有出现明显的金属-绝缘体转变. 我们认 为, 这主要是由于x = 0.4样品处于磁性绝缘相 (Cd<sub>1.8</sub>Pb<sub>0.2</sub>Ru<sub>2</sub>O<sub>7</sub>)和顺磁金属相 (Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>)之 间的过渡区域, 存在两种电子相的共存和竞争. 由 于电阻率体现的是高导电的顺磁金属相, 而磁化 率体现的则是磁性绝缘相, 这造成x = 0.4的样品 在图 2 的电阻率曲线中没有出现明显的金属-绝缘 体转变, 而在图 3 却出现类似x = 0.2的磁化率反 常. 总之, Pb<sup>2+</sup>掺杂对 Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的磁化率也造成 非单调的变化, 即少量掺杂首先增强 Ru<sup>5+</sup>的局域 磁矩和磁性关联, 当掺杂量超过 20% 后又逐渐向泡 利顺磁的 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 过渡. 这与电阻率的变化规律 一致,表明少量 Pb<sup>2+</sup> 掺杂造成的绝缘基态与局域 磁矩的增强密切相关.

图4给出了 $Cd_{2-x}Pb_{x}Ru_{2}O_{7}$ 系列样品的热 电势S(T)随温度的变化. 从 图 **4** 可 以 看 出: Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的热电势在整个温区为负值,说明电 输运性质由电子型载流子主导;  $|S(T)| 在 T_N 和 T_s$  $(T_s 是指 Cd_2 Ru_2 O_7 的磁化率出现突然下降时的温$ 度,约为40 K)附近没有出现明显的反常,但是在 200 K 附近呈现出一个较大峰值, 达到100 µV/K, 在如此高温出现的热电势增强不应该归因于声子 拖拽效应, 而应该归因于特殊的能带结构. 由于热 电势与费米面态密度对能量一阶导数成正比,因 此较大的热电势数值表明Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>具有相对较 窄的能带. 随着  $Pb^{2+}$  含量逐渐增加至 x = 0.4, 热 电势的绝对值逐渐减小,但在整个温区仍为负值, 且热电势鼓包温度逐渐向低温移动并变得不再明 显. 当x > 0.4时, 热电势变号, 在整个温区均为 正值,表明主要载流子变为空穴;而且热电势随温 度升高而增加, 表现出典型的金属行为, 且热电势 的绝对值很小, 室温时热电势 < 20 µV/K, 表明能 带宽度相比Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>有较大展宽,这主要归因于 Pb<sup>2+</sup>-6s<sup>2</sup>/6p轨道电子的影响.



图 4  $Cd_{2-x}Pb_{x}Ru_{2}O_{7}$  (0  $\leq x \leq 2$ ) 系列样品的热电势 S(T) 随温度的变化

Fig. 4. Temperature dependence of thermopower S(T)for the series of  $Cd_{2-x}Pb_{x}Ru_{2}O_{7}$   $(0 \leq x \leq 2)$ .

根据 Mott 热电势公式

$$S = \frac{\pi^2}{3} \frac{k^2 T}{e} \left[ \frac{\partial \ln \sigma(E)}{\partial E} \right]_{E_{\rm F}}$$

(其中S为热电势, k为玻尔兹曼常数, T为温度, e为电子电荷, E为能量,  $E_F$ 为费米能,  $\sigma(E)$ 为电

导率), 金属材料中S的符号取决于费米能附近的 主导载流子是位于费米能之上(空穴, S为正)还是 费米能之下(电子, S为负)<sup>[17,18]</sup>.对于Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>, 费米能附近的态密度主要来源于Ru<sup>5+</sup>-4d<sup>3</sup>电子, 实验中观察到Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的S在整个温区都是负 值, 表明主导载流子为费米能之下的电子; 而  $Pb_2Ru_2O_7$ 中费米能附近的态密度除了 $Ru^{5+}-4d^3$ 电子外,还有Pb<sup>2+</sup>-6s<sup>2</sup>/6p电子,实验中观察到  $Pb_2Ru_2O_7$ 在整个温区都是正值的S,意味Ru<sup>5+</sup>-4d3与Pb2+-6s2/6p电子杂化改变了费米能附近的 能带填充, 使得主导载流子变为费米能之上的空 穴.因此,从 $Cd_2Ru_2O_7$ 到 $Pb_2Ru_2O_7$ 热电势S的 变号应归因于Pb<sup>2+</sup>-6s<sup>2</sup>/6p轨道电子的引入改变 了费米能附近的电子能带结构,使得占主导的载 流子从电子型转变为空穴型. 掺杂 Pb2+ 除了造成 Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的费米面重构,费米面附近态密度也随 x增加而增加,与图2中x > 0.2的电阻率变化规律 一致.

### 4 讨 论

本文通过对 $Cd_{2-x}Pb_xRu_2O_7$ 系列烧绿石样 品的物性表征,发现 $Cd^{2+}$ 位掺杂少量 $Pb^{2+}$ 能将  $Cd_2Ru_2O_7$ 的反铁磁金属基态转变为绝缘体,与施 加约1GPa静水压或者掺杂少量 $Ca^{2+}$ 的效果非常 类似,如图5所示,这进一步证明了其反铁磁金属 态因接近巡游-局域的过渡区域而变得非常不稳定. 图5给出了 $Cd_{2-x}Pb_xRu_2O_7$ (x = 0, 0.2, 2.0)和其 他相关烧绿石氧化物的电阻率数据,通过对比讨 论,我们试图在巡游-局域电子过渡的框架下理解  $Cd_2Ru_2O_7$ 的反常电子性质.

 $A_2 Ru_2 O_7$  (A = Ca, Cd, Hg)是目前报道的三 个 Ru<sup>5+</sup> 烧绿石氧化物,由于高价态 Ru<sup>5+</sup> 需要高氧 压才能获得,文献中研究的不多.如本文引言中提 及,它们表现出不同的电输运性质,其中 Ca<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 的电阻率随温度降低缓慢升高,但不符合热激活 模型,这主要归因于烧绿石晶格内禀自旋阻挫效 应,使其表现出具有自旋无序的金属体系的典型特 征<sup>[7]</sup>; Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>的电阻率数值在整个温区变化不 大,在形成长程反铁磁序时进入金属态<sup>[10]</sup>,顺磁区 的行为类似 Ca<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>; 而 Hg<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>在形成长程 反铁磁序的同时发生金属-绝缘体转变<sup>[11,12]</sup>.之前 的研究表明,对于这些等结构、等价态的烧绿石氧 化物, A<sup>2+</sup>离子的共价性是造成其迥异物性的关键, 即其共价性越强,与周围O-2p轨道电子的杂化越 强,相应地削弱了Ru-4d与O-2p轨道电子的杂化, 进而减弱(增强)了Ru<sup>5+</sup>-4d<sup>3</sup>电子的巡游(局域)属 性<sup>[6]</sup>.因此,随着A<sup>2+</sup>离子共价性的逐渐增强(从 小到大依次为Ca,Cd,Hg),A<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>体系的局域 属性逐渐增强,逐渐从金属过渡到绝缘基态.这也 表明,该体系中Ru<sup>5+</sup>-4d<sup>3</sup>电子态非常接近巡游-局 域的过渡区域,通过改变A<sup>2+</sup>离子的共价性就可以 实现巡游到局域的连续调控.

对于处于中间状态的 Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>, 施加较小的 静水压 (1—2 GPa) 可以缩短 Cd-O 间距, 增强其轨 道杂化, 有效增强 Ru<sup>5+</sup>-4d<sup>3</sup> 电子的局域属性, 造 成金属-绝缘体转变; 而在 Cd 位掺杂少量 Ca<sup>2+</sup>则 不可避免地引入晶格无序, 引起能带变窄并增强 电荷局域化, 这也可能是造成金属-绝缘体转变 的主要原因. 虽然 Pb<sup>2+</sup>-6s<sup>2</sup>/6p 电子的贡献使得 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>具有金属基态, 但是少量掺杂会起到 与 Ca<sup>2+</sup>掺杂类似的效果, 即晶格无序首先增强了 Ru<sup>5+</sup>-4d<sup>3</sup> 电子的局域属性, 与图 3 中磁化率的结果 一致, 最终导致了出现金属-绝缘体转变, 如图5 所



图 5  $Cd_2Ru_2O_7$ 及其相关烧绿石氧化物的电阻率随温 度的变化,其中  $Hg_2Ru_2O_7$ 和  $Cd_2Os_2O_7$ 的电阻率数据 分别来自文献 [11,19]

Fig. 5. Temperature dependence of resistivity of  $Cd_2Ru_2O_7$  compared with similar compounds. The resistivity data of  $Hg_2Ru_2O_7$  and  $Cd_2Os_2O_7$  are taken from Ref. [11,19] respectively.

示.随着掺杂量的增加, Pb<sup>2+</sup>-6s<sup>2</sup>/6p造成的能带展 宽效应占主导, 使其又逐渐趋近于 Pb<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> 的顺 磁金属行为.

另外,值得注意的是,对Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>施加物理 压力或者化学掺杂导致出现的金属-绝缘体转变, 与具有相同电子数的5d化合物Cd<sub>2</sub>Os<sub>2</sub>O<sub>7</sub>在225 K 表现的金属-绝缘体转变类似<sup>[19]</sup>,如图5所示.虽 然5d轨道具有较强的空间扩展性,但是其自旋-轨 道耦合效应也大幅度增加,通过能带重构而有效降 低能带的宽度,从而增强局域属性,这在5d-铱氧化 物体系中(如Sr<sub>2</sub>IrO<sub>4</sub>)已得到证实<sup>[20]</sup>.

#### 5 结 论

采用高压高温方法合成了一系列具有烧绿石 结构的 $Cd_{2-x}Pb_{x}Ru_{2}O_{7}$  (0  $\leq x \leq 2$ )化合物,并 对其晶体结构、电阻率、磁化率和热电势等物性进 行了系统表征,发现Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>在反铁磁有序温度 以下出现的金属态非常不稳定. 当10%的Cd2+被 Pb<sup>2+</sup> 替代后, Cd<sub>1.8</sub>Pb<sub>0.2</sub>Ru<sub>2</sub>O<sub>7</sub>在62 K出现了一 个类似金属-绝缘体转变的电阻上升现象,同时局 域磁矩也增强. 随着 Pb<sup>2+</sup> 含量的进一步增多, 体 系的电阻率又逐渐降低,逐渐转变为金属行为.通 过与类似的烧绿石Ru<sup>5+</sup>氧化物进行对比,我们提 出 $Cd_2Ru_2O_7$ 中的 $Ru^{5+}-4d^3$ 电子态恰好处于巡游 到局域过渡的区域, 少量 Pb<sup>2+</sup> 掺杂造成的晶格无 序增强了电子的局域性,使得形成反铁磁序的同时 伴随出现了金属-绝缘体转变. 这表明具有烧绿石 结构的Ru5+氧化物是研究巡游-局域电子转变的 理想材料体系.

#### 参考文献

- Goodenough J B 2001 Localized to Itinerant Electronic Transition in Perovskite Oxides, In Structure and Bonding (Vol. 98) (Berlin: Springer)
- [2] Bednorz J G, Muller K A 1986 Z. Phys. B 64 189
- [3] Imada M, Fujimori A, Tokura Y 1998 *Rev. Mod. Phys.* 70 1039
- [4] Morosan E, Natelson D, Nevidomskyy A H, Si Q 2012 Adv. Mater. 24 4896
- [5] Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186
- [6] Miyazaki M, Kadono R, Satoh K H, Hiraishi M, Takeshita S, Koda A, Yamamoto A, Takagi H 2010 Phys. Rev. B 82 094413
- [7] Munenaka T, Sato H 2006 J. Phys. Soc. Jpn. 75 103801
- [8] Taniguchi T, Munenaka T, Sato H 2009 J. Phys.: Conf. Ser. 145 012017
- [9] Gardner J S, Gingras M J P, Greedan J E 2010 Rev. Mod. Phys. 82 53
- [10] Wang R, Sleight A W 1998 Mater. Res. Bull. 33 1005
- [11] Yamamoto A, Sharma P A, Okamoto Y, Nakao A, Katori H A, Niitaka S, Hashizume D, Takagi H 2007 J. Phys. Soc. Jpn. **76** 043703
- [12] Klein W, Kremer R K, Jansen M 2007 J. Mater. Chem. 17 1356
- [13] Duijin J V, Ruiz-Bustos R, Daoud-Aladine A 2012 *Phys. Rev. B* 86 214111
- [14] Tachibana M, Kohama Y, Shimoyama T, Harada A, Taniyama T, Itoh M, Kawaji H, Atake T 2006 *Phys. Rev. B* 73 193107
- [15] Shannon R D 1976 Acta Cryst. A 32 751
- [16] Mott N F 1969 Phil. Mag. 19 835
- [17] Mott N F 1967 Adv. Phys. 16 49
- [18] Fritzsche H 1971 Solid State Comm. 9 1813
- [19] Mandrus D, Thompson J R, Gaal R, Forro L, Bryan J C, Chakoumakos B C, Woods L M, Sales B C, Fishman R S, Keppens V 2001 Phys. Rev. B 63 195104
- [20] Kim B J, Jin H, Moon S J, Kim J Y, Park B G, Leem C S, Yu J, Noh T W, Kim C, Oh S J, Park J H, Durairaj V, Cao G, Rotenberg E 2008 *Phys. Rev. Lett.* **101** 076402

# Effect of Pb doping on metallic state of cubic pyrochlore $Cd_2Ru_2O_7^*$

Jiao Yuan-Yuan<sup>1)2)</sup> Sun Jian-Ping<sup>1)2)</sup> Prashant Shahi<sup>1)2)</sup> Liu Zhe-Hong<sup>1)2)</sup> Wang Bo-Sen<sup>1)2)</sup> Long You-Wen<sup>1)2)</sup> Cheng Jin-Guang<sup>1)2)†</sup>

 (Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

2) (School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
(Received 22 February 2018; revised manuscript received 11 April 2018)

#### Abstract

Many exotic phenomena in strongly correlated electron systems, such as unconventional superconductivity, metalinsulator transition, and quantum criticality, take place in the intermediate regime between localized and itinerant electronic state. To understand the electronic behaviors near the localized-to-itinerant crossover remains a challenging problem in condensed matter physics. The  $Ru^{5+}$  cubic pyrochlores  $A_2Ru_2O_7$  (A = Cd, Cd, Hg) constitute such a system that the Ru-4d electrons acquire characters of both itinerancy and localization. In addition, the magnetic  $Ru^{5+}$ ions that are situated on the vertices of corner-shared tetrahedral lattice are expected to experience strong geometrical frustration given an antiferromagnetic (AF) arrangement. In this work, we investigate the cubic pyrochlore  $Cd_2Ru_2O_7$ , which develops a peculiar metallic state below the AF transition. We synthesize a series of Pb-doped  $Cd_{2-x}Pb_xRu_2O_7$  $(0 \le x \le 2)$  polycrystalline samples under high-pressure condition, and study the effects of Pb doping on their crystal structure and physical properties. Although the  $Pb_2Ru_2O_7$  pyrochlore is a Pauli paramagnetic metal, we find that the substitution of 10%  $Pb^{2+}$  for  $Cd^{2+}$  in  $Cd_{1.8}Pb_{0.2}Ru_2O_7$  converts the metallic state of  $Cd_2Ru_2O_7$  into an insulating ground state, in a manner similar to the consequence of exerting hydrostatic pressure or substituting  $10\% \text{ Ca}^{2+}$  for  $\text{Cd}^{2+}$ ions as we found recently. We propose that the electronic state of  $Cd_2Ru_2O_7$  be located at the itinerancy to localization crossover, and the introduction of chemical disorder via  $Pb^{2+}$  substitution may enhance the localized character and induce the metal-to-insulator transition. Our results further demonstrate that the cubic  $\mathrm{Ru}^{5+}$  pyrochlore oxides offer an important paradigm for studying the exotic physics of correlated electrons on the border of (de)localization in the presence of strong geometrical frustration.

**Keywords:** Cd<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub> pyrochlore, metal-insulator transition, antiferromagnetic order **PACS:** 74.70.Pq, 71.27.+a, 72.15.-v **DOI:** 10.7498/aps.67.20180343

<sup>\*</sup> Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305700), the National Basic Research Program of China (Grant No. 2014CB921500), the National Natural Science Foundation of China (Grant No. 11574377), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences, China (Grant No. QYZDB-SSW-SLH013).

<sup>†</sup> Corresponding author. E-mail: jgcheng@iphy.ac.cn