物理学报 Acta Physica Sinica

Institute of Physics, CAS

铁硒基超导研究新进展: 高质量 (Li, Fe)OHFeSe 单晶薄膜

董晓莉 袁洁 黄裕龙 冯中沛 倪顺利 田金朋 周放 金魁 赵忠贤

New progress on FeSe-based superconductors: high-quality and high-critical-parameter (Li, Fe)OHFeSe thin film

Dong Xiao-Li Yuan Jie Huang Yu-Long Feng Zhong-Pei Ni Shun-Li Tian Jin-Peng Zhou Fang Jin Kui Zhao Zhong-Xian

引用信息 Citation: Acta Physica Sinica, 67, 127403 (2018) DOI: 10.7498/aps.67.20180770 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180770 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I12

您可能感兴趣的其他文章 Articles you may be interested in

SrTiO₃(001) 衬底上多层 FeSe 薄膜的分子束外延生长

Molecular beam epitaxy growth of multilayer FeSe thin film on $SrTiO_3$ (001) 物理学报.2016, 65(12): 127401 http://dx.doi.org/10.7498/aps.65.127401

硼膜制备工艺、微观结构及其在硼化镁超导约瑟夫森结中的应用

Preparation, microstructure of B film and its applications in MgB₂ superconducting Josephson junction 物理学报.2016,65(1):017401 http://dx.doi.org/10.7498/aps.65.017401

浅析电子型掺杂铜氧化物超导体的退火过程

A brief analysis of annealing process for electron-doped cuprate superconductors 物理学报.2015, 64(21): 217402 http://dx.doi.org/10.7498/aps.64.217402

混合物理化学气相沉积法制备 MgB2 单晶纳米晶片的研究

Study on single crystal MgB₂ nanosheets grown by hybrid physical-chemical vapor deposition 物理学报.2014, 63(23): 237401 http://dx.doi.org/10.7498/aps.63.237401

MgO(111)衬底 MgB2 超薄膜的制备和性质研究

Properties of MgB₂ ultra-thin films fabricated on MgO(111) substrate by hybrid physical-chemical vapor deposition

物理学报.2013, 62(12): 127401 http://dx.doi.org/10.7498/aps.62.127401

铁硒基超导研究新进展: 高质量(Li,Fe)OHFeSe单晶薄膜*

董晓莉^{1)2)†} 袁洁¹⁾²⁾ 黄裕龙¹⁾²⁾ 冯中沛¹⁾²⁾ 倪顺利¹⁾²⁾ 田金朋¹⁾²⁾ 周放¹⁾²⁾ 金魁^{1)2)‡} 赵忠贤^{1)2)††}

1)(中国科学院物理研究所,北京凝聚态物理国家研究中心,超导国家重点实验室,北京 100190)
2)(中国科学院大学真空物理实验室,北京 100049)
(2018年4月22日收到;2018年5月4日收到修改稿)

单晶薄膜形态的高温超导材料对于相关基础科学研究和应用开发都极为重要.多带的铁基高温超导体往 往呈现丰富的物理现象,并具有较高的超导临界参数.特别是近年发现的插层(Li,Fe)OHFeSe超导体,无论 对高温超导机理还是应用研究而言,都日益受到重视,已成为铁基家族中重要的典型材料.但是,该化合物含 有OH键,加热易分解.因此,现有的常规高温成膜技术均不适用于生长该薄膜材料.为解决这一生长难题, 我们最近发明了基体辅助水热外延生长法,实现了超导薄膜制备技术上的突破.本文简要介绍用此软化学成 膜技术首次成功制备出(Li,Fe)OHFeSe单晶薄膜.该薄膜材料具有优良的结晶质量和较高的超导临界参数, 特别是其高的临界电流密度和上临界场对应用开发有实际价值.因此,(Li,Fe)OHFeSe超导单晶薄膜的成功 合成,为机理研究和应用开发分别提供了重要的实验载体和备选材料.另外,该薄膜技术也有望应用于其他 功能材料的探索与合成,尤其是对常规手段难以获取的材料更具重大价值.

关键词:超导薄膜,临界磁场,临界电流密度 PACS: 74.78.-w, 74.25.Op, 74.25.Sv

铁基超导体是继铜氧化物超导体之后被发现 的又一类重要的高温超导材料.作为多带超导体 系,铁基材料呈现出更为丰富的电子相互作用和量 子态现象.因此,关于铁基非常规超导物理机理的 研究受到国内外的高度关注^[1-5].与铜氧化物超导 体相比,铁基超导材料同样呈现高的超导临界参数 (包括临界温度*T*_c、上临界磁场*H*_{c2}、临界电流密度 *J*_c),特别是具有极高的临界电流密度和上临界磁 场、易于加工且原料价格相对低廉等特点.因此,它 在应用上具有很大潜力^[6,7].已有实验显示,铁基 **DOI:** 10.7498/aps.67.20180770

超导体有望用于制作新一代超强磁体. 铁基超导 家族包含 FeSe 基和 FeAs 基两大体系. 我们最近的 研究表明, 它们与高温超导相关的电子基态是相似 的, 因而这两大铁基体系应具有共同的高温超导起 源^[8]. 所以, 基于 FeSe 基材料的研究对铁基超导家 族具有普适意义.

所有 FeSe 基超导材料具有一个共同的层状 结构单元,即共棱的 FeSe₄ 四面体层,这也是 FeSe 基材料的超导基元层.最简单的二元 FeSe 超导 体 ^[9] (FeSe-11, $T_{\rm c} \sim 9$ K)的晶体结构,是由 FeSe₄

^{*} 国家重点研发计划(批准号: 2017YFA0303000)、国家自然科学基金(批准号: 11574370)、中国科学院前沿科学重点研究计划(批准号: QYZDY-SSW-SLH001, QYZDY-SSW-SLH008)和中国科学院战略性先导科技专项(B类)(批准号: XDB07020100)资助的 课题.

[†]通信作者. E-mail: dong@iphy.ac.cn

[‡]通信作者. E-mail: kuijin@iphy.ac.cn

^{††}通信作者. E-mail: zhxzhao@iphy.ac.cn

^{© 2018} 中国物理学会 Chinese Physical Society

四面体层堆垛而成的. FeSe₄四面体层间键合较 弱,故易于插入碱金属或其他离子及团簇. 所 形成的插层FeSe基超导体往往具有更高超导转 变温度,如 A_y Fe_{2-x}Se₂ (FeSe-122, $T_c \sim 30$ K, A为碱金属)^[10,11].此外,通过高压或载流子注 入,也可以使二元FeSe 的超导临界温度提高到 $T_c \sim 40$ K^[12-14].铁基家族中迄今最高的 T_c 出现 在FeSe单层膜材料中,其超导能隙打开温度高达 65 K以上^[15-19].但是,FeSe单层膜对制备工艺 要求高,且存在强界面效应、空气中的化学不稳 定性等不利因素,这不仅妨碍了应用多种非原位 (*ex-situ*)探测手段对其内禀物理的深入研究,也限 制了其应用前景.

2014年,中国科学技术大学陈仙辉课题组^[20] 发现了高温超导体 Li_{0.8}Fe_{0.2}OHFeSe ($T_c \sim 42$ K), 这为FeSe基超导研究带来了转机. 原因在于,先 前的 $K_x Fe_{2-u} Se_2$ 等FeSe-122材料中,超导相往往 与反铁磁绝缘相(K₂Fe₄Se₅, 245相)共生, 这对 观测超导相本征物性造成了很大干扰. 而插 层超导体(Li, Fe)OHFeSe (FeSe-11111)不仅Tc更 高,并且在化学和结构上呈单相,不存在上述 245 反铁磁绝缘相所致的实验观测困扰.因此, (Li, Fe)OHFeSe为研究FeSe基高温超导态和奇异 正常态的本征物性提供了一个"干净的"实验载 体. 2015年我们首先报道了基于(Li, Fe)OHFeSe粉 末样品的物性相图^[8].之后,通过开发新颖的离 子交换技术^[21],首次成功制备出高质量大尺寸的 (Li_{0.84}Fe_{0.16})OHFe_{0.98}Se超导单晶 (T_c = 42 K). 对 该单晶的电子输运和精细磁性研究结果表明,其超 导电子配对很可能起源于强二维反铁磁自旋涨落. 这项工作引发了一系列后续的重要实验研究,包括 扫描隧道显微镜^[22]、角分辨光电子能谱^[23,24]、µ子

自旋旋转 (muon-spin rotation) ^[25]、中子 ^[26-28]、强 磁场 ^[29] 及高压物理 ^[30] 实验研究,并取得了重要进 展.其中包括,发现 (Li,Fe)OHFeSe 的费米面拓扑 结构与 FeSe 单层膜相似、体系存在自旋涨落、高压 下出现 $T_c > 50$ K的超导 II 相等.然而,进一步的 深入机理研究和应用探索,都需要优质的单晶薄膜 材料.为此,我们及时将研制 (Li,Fe)OHFeSe 薄膜 材料列入工作计划.

然而,研制(Li,Fe)OHFeSe薄膜首先在合成技 术上就遇到了很大挑战.这是因为(Li,Fe)OHFeSe 超导体含有OH键,加热易分解.所以,现有的 常规高温成膜手段,如磁控溅射、脉冲激光沉 积、分子束外延、溶胶凝胶等,均不适用于生长 (Li,Fe)OHFeSe薄膜.为解决这一薄膜生长难题, 基于我们近年探索软化学(soft chemistry)手段合 成新材料的成功经验,我们发明了基体辅助水热 外延生长法.这是一项新颖的软化学薄膜制备技 术.其要点是,以K₂Fe₄Se₅单晶作为母体,以低晶 格失配度的单晶(如LaAlO₃(LAO))作为衬底,辅 以合适的水热条件(尤其是合成温度远低于常规成 膜技术),实现薄膜生长.经过大量实验尝试,我们 首次成功制备出高质量(Li,Fe)OHFeSe超导单晶 薄膜^[31].

图 1 是 (Li, Fe)OHFeSe 薄膜 (LAO 为衬底)的 X 射线衍射结构表征. 图 1 (a) 是 θ-2θ 扫描,除 LaAlO₃ 衬底的 Bragg 反射峰外,仅见 (Li, Fe)OH-FeSe 相的 (00*l*) 衍射峰,表明其具有单一的结晶取 向.图 1 (b) 是该薄膜的摇摆曲线,半高宽为0.22°, 是迄今铁基超导单晶与薄膜报道中的最佳数据,表 明其结晶质量优良.图1 (c) 是该薄膜 (101) 面的 φ 扫描结果,展现的四重对称表明其很好的外延性.

图 1 (Li, Fe)OHFeSe 薄膜 (以 LAO 为衬底) 的 X 射线结构表征 ^[31]

Fig. 1. X-ray diffraction characterizations of the (Li, Fe)OHFeSe film on LAO substrate^[31].

所生长的(Li, Fe)OHFeSe单晶膜不仅具有良好的结晶质量,还表现出优良的超导电性. 图2展示的是其超导临界参数. 图2(a)为电阻率-温度关系曲线,零电阻温度高达42.4 K,优于单晶样品. 图2(b)为*ab*面和*c*方向临界磁场的温度依赖关系. 通过Werthamer-Helfand-Hohenberg(WHH)

模型拟合,推算得到零温下的上临界磁场分别是 79.5 T (c方向)和443 T (ab面).这样高的上临界 磁场在铁基超导体中并不多见.图2(c)为临界电 流密度-温度关系曲线.20 K时,临界电流密度已 超过0.5 MA/cm²,表明其强载流能力.这些高的 超导临界参数对实际应用有重要价值.

图 2 (Li, Fe)OHFeSe 单晶薄膜呈现高超导临界参数^[31]

Fig. 2. The (Li, Fe)OHFeSe thin film exhibits high superconducting critical parameters of T_c , H_{c2} , and J_c ^[31].

我们发明了一种水热外延的软化学薄膜制备技术,并用这项技术首次成功生长出高质量 (Li,Fe)OHFeSe高温超导外延单晶薄膜.所获得的 (Li,Fe)OHFeSe薄膜展现出高的超导临界参数.因此,(Li,Fe)OHFeSe超导薄膜的成功制备,一方面 为铁硒基高温超导机理研究提供了重要实验对象, 另一方面也为高温超导在高性能电子器件及大型 科研装置上的应用探索提供了重要的备选材料.而 且,这项薄膜技术也有望应用于其他功能材料的探 索与合成,尤其是对常规手段难以获得的材料而 言,更具重大价值.

感谢南京大学超导电子学研究所李军副教授和王华兵 教授在电输运测量方面的合作;感谢清华大学张广铭教授 在理论方面的有益讨论.

参考文献

- [1] Johnston D C 2010 Adv. Phys. 59 803
- [2] Paglione J, Greene R L 2010 Nat. Phys. 6 645
- [3] Stewart G R 2011 Rev. Mod. Phys. 83 1589
- [4] Dagotto E 2013 Rev. Mod. Phys. 85 849
- [5] Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 Nat. Sci. Rev. 1 371
- [6] Putti M, Pallecchi I, Bellingeri E, Cimberle M R, Tropeano M, Ferdeghini C, Palenzona A, Tarantini C,

Yamamoto A, Jiang J, Jaroszynski J, Kametani F, Abraimov D, Polyanskii A, Weiss J D, Hellstrom E E, Gurevich A, Larbalestier D C, Jin R, Sales B C, Sefat A S, McGuire M A, Mandrus D, Cheng P, Jia Y, Wen H H, Lee S, Eom C B 2010 *Supercond. Sci. Technol.* **23** 034003

- Hosono H, Tanabe K, Takayama-Muromachi E, Kageyama H, Yamanaka S, Kumakura H, Nohara M, Hiramatsu H, Fujitsu S 2015 Sci. Technol. Adv. Mater. 16 033503
- [8] Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66
- [9] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
- [10] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520R
- [11] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 Europhys. Lett. 94 27009
- [12] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630
- [13] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146
- [14] Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 *Phys. Rev. Lett.* **116** 077002
- [15] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C

L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 *Chin. Phys. Lett.* **29** 037402

- [16] Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nat. Commun. 3 931
- [17] Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634
- [18] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 *Nature* 515 245
- [19] Shi X, Han Z Q, Peng X L, Richard P, Qian T, Wu X X, Qiu M W, Wang S C, Hu J P, Sun Y J, Ding H 2017 Nat. Commun. 8 14988
- [20] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325
- [21] Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F, Zhao Z 2015 *Phys. Rev. B* **92** 064515
- [22] Du Z, Yang X, Lin H, Fang D, Du G, Xing J, Yang H, Zhu X, Wen H H 2016 Nat. Commun. 7 10565
- [23] Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X

F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 *Phys. Rev. B* **92** 060504

- [24] Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608
- [25] Khasanov R, Zhou H, Amato A, Guguchia Z, Morenzoni E, Dong X, Zhang G, Zhao Z 2016 Phys. Rev. B 93 224512
- [26] Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J, Rodriguez E E 2016 J. Mater. Chem. C 4 3934
- [27] Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504
- [28] Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A, Zhao J 2017 Nat. Commun. 8 123
- [29] Wang Z, Yuan J, Wosnitza J, Zhou H, Huang Y, Jin K, Zhou F, Dong X, Zhao Z 2017 J. Phys.: Condens. Matter 29 025701
- [30] Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380
- [31] Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X, Zhao Z 2017 Chin. Phys. Lett. 34 077404

New progress on FeSe-based superconductors: high-quality and high-critical-parameter (Li, Fe)OHFeSe thin film*

Dong Xiao-Li^{1)2)†} Yuan Jie¹⁾²⁾ Huang Yu-Long¹⁾²⁾ Feng Zhong-Pei¹⁾²⁾ Ni Shun-Li¹⁾²⁾ Tian Jin-Peng¹⁾²⁾ Zhou Fang¹⁾²⁾ Jin Kui^{1)2)‡} Zhao Zhong-Xian^{1)2)††}

 (National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

2) (Key Laboratory for Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 22 April 2018; revised manuscript received 4 May 2018)

Abstract

High-quality superconducting thin films play an important role in the application and basic research of high- $T_{\rm c}$ superconductivity. In these aspects, iron-based superconductors feature the merits of rich physical phenomena and high superconducting critical parameters (including the transition temperature T_c , the upper critical field H_{c2} and the critical current density J_c). The recently discovered high- T_c (Li, Fe)OHFeSe superconductor proves to be an important material for the studies of the mechanism and application of unconventional high- T_c superconductivity. However, due to the hydroxyl ion inherent in the compound, none of the conventional high-temperature synthesis methods is applicable for (Li, Fe)OHFeSe materials in bulk and thin film forms. Recently, by developing a hydrothermal ion-exchange technique, we have synthesized for the first time big and high-quality single crystals of (Li, Fe)OHFeSe (2015 Phys. Rev. B 92 064515). Here in this paper, we brief our most recent progress on growing a high-quality single-crystalline superconducting film of (Li, Fe)OHFeSe (2017 Chin. Phys. Lett. 34 077404). The film has been prepared on a LaAlO₃ substrate by a hydrothermal epitaxial method. The high crystalline quality of the film is verified by X-ray diffraction (XRD). The XRD measurements show a single (001) orientation with a small crystal mosaic of 0.22° in terms of the full width at half maximum of the rocking curve, as well as an excellent in-plane orientation revealed by the φ -scan of (101) plane. Its bulk superconducting transition temperature $T_{\rm c}$ of 42.4 K is determined by both zero electrical resistance and diamagnetism measurements. Based on systematic magnetoresistance measurements, the upper critical field H_{c2} is estimated to be 79.5 T and 443 T for the magnetic field perpendicular and parallel to the *ab* plane, respectively. Moreover, a large critical current density J_c of a value over 0.5 MA/cm² is achieved at ~20 K. Such a (Li, Fe)OHFeSe film therefore is not only important for the fundamental research for understanding the high- T_c mechanism, but also promising for the applications in high-performance electronic devices and large scientific facilities such as superconducting accelerator.

Keywords: superconducting films, critical fields, critical currents

PACS: 74.78.-w, 74.25.Op, 74.25.Sv

DOI: 10.7498/aps.67.20180770

^{*} Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303000), the National Natural Science Foundation of China (Grant No. 11574370), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001, QYZDY-SSW-SLH008), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).

[†] Corresponding author. E-mail: dong@iphy.ac.cn

[‡] Corresponding author. E-mail: kuijin@iphy.ac.cn

^{††} Corresponding author. E-mail: zhxzhao@iphy.ac.cn