物理学报 Acta Physica Sinica

外力驱动作用下高分子链在表面吸附性质的计算机模拟

李洪 艾倩雯 汪鹏君 高和蓓 崔毅 罗孟波

Computer simulation of adsorption properties of polymer on surface under external driving force

Li Hong Ai Qian-Wen Wang Peng-Jun Gao He-Bei Cui Yi Luo Meng-Bo

引用信息 Citation: Acta Physica Sinica, 67, 168201 (2018) DOI: 10.7498/aps.67.20180468 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180468 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I16

您可能感兴趣的其他文章 Articles you may be interested in

元胞方法与蒙特卡洛方法相结合的薄膜生长过程模拟

Cellular method combined with Monte Carlo method to simulate the thin film growth processes 物理学报.2015, 64(3): 038201 http://dx.doi.org/10.7498/aps.64.038201

结合实际刻蚀数据的离子刻蚀产额优化建模方法

An optimization method for ion etching yield modeling combined with factual etching data 物理学报.2014, 63(24): 248201 http://dx.doi.org/10.7498/aps.63.248201

基于刻蚀速率匹配的离子刻蚀产额优化建模方法

An optimization method for ion etching yield modeling based on etching velocity matching 物理学报.2014, 63(4): 048201 http://dx.doi.org/10.7498/aps.63.048201

基于压缩表示的离子刻蚀仿真三维表面演化方法

A 3D profile evolution method of ion etching simulation based on compression representation 物理学报.2013, 62(20): 208201 http://dx.doi.org/10.7498/aps.62.208201

基于三维元胞模型的刻蚀工艺表面演化方法

A three-dimensional surface evolution algorithm based on cellular model for etching process 物理学报.2013, 62(10): 108201 http://dx.doi.org/10.7498/aps.62.108201

外力驱动作用下高分子链在表面吸附性质的 计算机模拟^{*}

李洪¹) 艾倩雯¹) 汪鹏君^{1)†} 高和蓓^{2)‡} 崔毅¹) 罗孟波^{3)††}

1) (温州大学数理与电子信息工程学院,温州 325035)

2) (温州职业技术学院信息系, 温州 325035)

3) (浙江大学物理系, 杭州 310027)

(2018年3月17日收到;2018年4月14日收到修改稿)

采用退火法模拟研究受外力 F 驱动的高分子链在吸引表面的吸附特性.通过高分子链的平均表面接触数 $\langle M \rangle$ 与温度 T 之间的关系计算临界吸附温度 T_c,并发现 T_c随着 F 的增加而减小;进而通过高分子链的均方 回转半径分析外力驱动作用对高分子链构象的影响,并从回转半径极小值或者垂直外力方向的 y 和 z 分量的 变化交叉校验临界吸附点 T_c.模拟计算了处于吸附状态的高分子链随着外力 F 的增加是否会发生吸附状态 到脱附状态的相变以及发生相变所需施加的外力是否由温度所决定.模拟结果表明:两种不同温度下高分子 链的吸附性质和构象性质受外力驱动作用而产生不同现象,在温度区间 T^{*}_c < T < T_c时会发生脱附现象,而 在 T < T^{*}_c 时不会发生脱附现象.

关键词: 高分子链, 吸附, 协同运动算法, 蒙特卡罗方法 PACS: 82.20.Wt, 82.35.Lr, 87.10.Rt

1引言

近年来,随着高分子在化学工业和生物领域的 应用^[1,2]日益增加,研究控制高分子性质的物理机 制对高分子的应用具有重要的意义^[3].从自然界 中的天然橡胶、蛋白质到工业应用的胶体、色谱层 析法等都与高分子的吸附现象相关,高分子链在 吸引表面上吸附特性的研究受到人们的广泛关-注^[4-12].以往对高分子链在具有吸引作用界面上 的研究,主要集中在高分子链在表面上的临界吸附 温度和构象在吸附过程中的变化^[9-13].高分子链 与表面之间相互作用强度是影响高分子吸附的主 要因素,如果表面存在强相互吸引作用,那么高分 子链在表面的吸附量增加,高分子链趋于在表面附 近形成较薄的吸附层;而当高分子链与表面相互吸 引作用较弱时,表面上的高分子链伸展,在溶液中 形成分子刷^[14].在高分子溶液中增加外力驱动作 用将影响高分子的吸附及吸附态的构象^[15].高分 子链的尾端或中间某一个单体受到外力作用,其构 象将受外力大小和方向的影响^[16–18].因此,高分 子链在具有吸引作用的表面附近受外力驱动作用 下的吸附性质研究具有重要的意义和应用前景.

DOI: 10.7498/aps.67.20180468

伴随高分子物理实验研究的发展,高分子的 理论计算与模拟也发展成为高分子学科的一种重 要研究手段^[19-21].粗粒化分子动力学可以模拟 研究高分子链的构象性质^[22]和生物大分子的能量 及结构^[23].外力对高分子链构象的影响也可以采

^{*} 国家自然科学基金(批准号: 11775161, 11474222)、浙江省自然科学基金(批准号: LY17A040007)和浙江省教育厅项目(批准号: Y201738867)资助的课题.

[†]通信作者. E-mail: wangpengjun@wzu.edu.cn

[‡]通信作者. E-mail: bogolyx@163.com

^{††}通信作者. E-mail: luomengbo@zju.edu.cn

^{© 2018} 中国物理学会 Chinese Physical Society

用模拟方法研究^[16-18]. 高分子链由于分子热运动 而具有各种不断变化的构象,并且在某个时间的 构象是完全随机的,构象数量非常大,然而蒙特卡 罗方法可以直接模拟高分子链的随机性问题. 单 个高分子链的构象统计也是一个复杂的计算问题, Metropolis 的重要性抽样方法可以有效地模拟计 算高分子链的性质^[24-27].本文采用键长涨落模型 和协同运动算法模拟在吸引表面附近的高分子链 受到恒定的外力场驱动作用,研究了外力驱动作用 对高分子链吸附性质的影响以及通过构象形变来 交叉校验临界吸附点.

2 模拟模型

高分子链模型采用三维的简立方格模型,其中 链长为N的高分子链由N个单体组成,高分子链 中相邻的单体通过键长可涨落的键相连,其键长取 值为1, $\sqrt{2}$, $\sqrt{3}$.高分子链的两端均为自由即非接 枝的高分子链,高分子链被放置在两个平行表面之 间,表面间距 $D > N^v$,其中v = 0.588为Flory指 数.因此,在Z = 0和Z = D处分别放置一个均质 且不可穿透的表面,在Z = 0处的表面对高分子链 单体具有吸引作用,而在Z = D处的表面对高分子 链不存在吸引作用,目的是使高分子链不会远离具 有吸引作用的表面,在模拟中取D = 100.高分子 链在X和Y方向将满足周期性边界条件.在两个 表面间施加一个平行于X轴正方向的均匀外力场, 在整个模拟过程中高分子链上的每个单体一直受 到该恒定的外力场驱动作用,当构象发生变化时, 力的方向始终保持不变.单体与单体之间的相互关系如下:1)所有单体均满足自回避的条件,即两个单体不能占据同一个格点;2)键与键之间不允许交叉;3)非键相邻单体之间仅考虑体积排斥作用.

模 拟 过 程 如 下: 首 先 采 用 Rosenbluth-Rosenbluth链生长方式^[28]随机地生成一条链长 为N的高分子链,在高分子链的生成过程中,每个 单体有26个可选择的矢量方向;然后,让高分子链 做随机的布朗运动,在整条高分子链中随机选择 一个单体进行运动,单体在运动时有6个矢量方向 $\{(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 0)\}$ 1), (0, 0, -1) }, 并通过键长涨落算法^[26,27]和协同 运动算法^[29-31]产生新的构象. 当选定的单体在尝 试运动后有三种可能的情况,如图1所示:1)单体 k尝试运动后,前后两端的键都超出键长范围,如 图1(a)和图1(b)所示,尝试运动失败,保留原始位 置; 2) 单体 i 尝试运动后, 两端的键仍然满足键长 范围,如图1(a)所示的单体i按箭头方向运动后如 图1(c)所示,这种情况下采用键长涨落算法产生新 的构象; 3) 单体 i 尝试运动后, 一端的键仍然在允许 的键长范围内,但另一端的键超出了键长范围,如 图1(d)所示,单体i按箭头方向运动,此时按协同 运动算法,超出键长范围这端的近邻单体依次向前 一单体位置运动, 直到遇到可以满足键长允许条件 的单体 j 为止, 从而产生新的构象. 运用 Metropolis重要性抽样方法来确定新构象的接受概率 P,即 $P = \min\{1, \exp(-\Delta E/K_{\rm B}T)\}$ (K_B为玻尔兹曼常 数, ΔE 为新旧构象产生的能量差). 其能量变化从

图 1 高分子链中单体尝试运动的示意图 (a) 尝试运动前的状态; (b) 单体 k 尝试往右运动, 相邻两键均断开, 尝试运动失败; (c) 单体 i 尝试向下运动, 满足键长涨落条件; (d) 单体 i 尝试向左运动, 然而单体 i 到 j 之间的所有单体进行协同运动 Fig. 1. Schematic diagram of the monomer in polymer attempt to move: (a) The state of polymer before movement; (b) the monomer k tries to move right; then two bonds between monomer k and its adjacent monomers are disconnected so that the trying movement is failure; (c) the monomer i tries to move downward, two bonds both meet the bond fluctuation conditions; (d) the monomer i tries to move left, however, all the monomers from i to jtry to move cooperatively.

吸附能和外力驱动能两个方面来考虑: 1)单体 与下表面之间存在相互吸引作用,其作用强度为 $\varepsilon = -1$,高分子链每次运动前后接触能变化记为 $\Delta E_{\rm s} = \varepsilon \Delta M$,其中 ΔM 为运动前后高分子链在表 面接触数的变化量; 2)单体均受到沿x轴正方向 的外力F驱动作用,高分子链每次运动受外力驱 动产生的能量变化记为 $\Delta E_{\rm F} = \sum_{k} \Delta x_k F$,其中 Δx_k 为协同运动团簇中的每个单体 $k \propto X$ 方向上 发生的位移; 3)每次运动前后产生的能量变化为 $\Delta E = \Delta E_{\rm s} + \Delta E_{\rm F}$.

在模拟过程中,高分子链中的单体不断地进行 布朗运动,我们把蒙特卡罗步(MCS)作为一个时 间计量单位,在每一个蒙特卡罗步中高分子链的所 有单体试图平均运动一次.在每个温度下,高分子 链都将经历时间 $\tau = 2.5 \times N^{2.13}$ MCS^[9]来达到一 个平衡状态,在后续的100 τ MCS记录高分子构象 样本.对于链长为N的高分子链,均产生1000个 独立构象用来对结构求平均,以确保研究结果的准 确性.

3 结果与讨论

3.1 无外力驱动作用时高分子链的吸 附特性

高分子链随着温度降低会产生从脱附状态到 吸附状态的转变,该相变点称为临界吸附点,在此 温度称为临界吸附温度*T*_c.高分子链的吸附特性 可以通过不同温度下平均表面接触数〈*M*〉来表示. 图 2 描述了高分子链在不同温度的平均表面接触 数〈*M*〉与链长*N*的关系.我们可以通过分析在不 同温度下高分子链的〈*M*〉来估计无限长高分子链 的临界吸附点,即采用有限尺寸标度方法来计算高 分子链的临界吸附温度*T*_c,其标度关系可以表示 为^[10,32,33]

$$\langle M \rangle = N^{\phi}(a_0 + a_1 t N^{1/\delta} + O((t N^{1/\delta})^2)), \quad (1)$$

(1) 式中 $t = (T - T_c)/T_c$ 标度温度, ϕ 为交叉指数和 1/ δ 为另一个临界指数. (1) 式清晰地表达了 $\langle M \rangle$ 的值在不同温度下有着不同的变化行为. 当温度T从 $T > T_c$ 到 $T < T_c$ 变化时, 变量 $tN^{1/\delta}$ 的符号会 发生改变. 当 $T = T_c$ 时, 平均表面接触数 $\langle M \rangle$ 与链 长N之间存在一个幂律关系:

$$\langle M \rangle = a_0 N^{\phi}. \tag{2}$$

在标度理论中,临界吸附温度 T_c 和交叉指数 ϕ 可以描述高分子链的吸附特性^[9].它们可以从 平均表面接触数 $\langle M \rangle$ 与链长N的指数关系计算得 到.为更精确地计算临界吸附温度 T_c ,在 T_c 附近其 他温度的平均表面接触数 $\langle M \rangle$ 可以通过模拟数据 的二次插值计算来获取.通过以上方法,我们计算 得到了在外力F = 0时高分子链的临界吸附温度 $T_c = 1.95$ 和指数 $\phi = 1$.其临界吸附温度大于未采 用协同运动算法所得到的 $T_c = 1.65^{[9]}$,两者差异 的原因是高分子模型中采用不同的运动方式.

图 2 在临界吸附温度附近 $\langle M \rangle$ -N的双对数关系 其中 $\langle M \rangle$ 为平均表面接触数; N为高分子链的链长, N = 40—400; 外力F = 0; 临界吸附温度T_c为1.95; 交叉指数 ϕ 为1

Fig. 2. The double logarithmic plot of $\langle M \rangle$ -N near the critical adsorption temperature, where $\langle M \rangle$ is the average number of surface contacts and N is the chain length. The polymer chain is changed from N = 40 to 400. The critical adsorption temperature $T_{\rm c}$ is 1.95 and the cross-index ϕ is 1.

3.2 外力驱动作用下高分子链的吸附特性

图 3 展示了高分子链的平均表面接触数 $\langle M \rangle$ 与链长 N 的双对数关系,其中外力 F = 0.3,温度 为 $T = 3.0, 2.0, 1.6, 1.2, 1.0 \oplus 0.5$.从图中可观察 到受外力驱动作用下高分子链的平均表面接触数 $\langle M \rangle$ 与链长 N 之间都呈线性关系,且不同温度下的 曲线几乎平行.由此可知,采用有限尺寸标度方法 不能计算高分子链在外力驱动作用下的临界吸附 温度 T_c ,即不同温度下高分子链在 $\langle M \rangle$ 与 N 的关 系中具有相同的标度指数.因此,下面主要以链长 N = 200 的较长高分子链为研究对象.

链长为N = 200的高分子链平均表面接触数 $\langle M \rangle$ 与温度T的关系如图4所示,其中外力F = 0, 0.1, 0.3, 0.5, 1.0和10.0. 高温时,高分子链平均表 面接触数 $\langle M \rangle \rightarrow 0$. 随温度 T 的降低, $\langle M \rangle$ 发生伪 相变, 且其伪相变温度随着外力 F 的增大而减小. 当温度 T $\rightarrow 0$ 时, 高分子链几乎全部被吸附到了表 面上, 即 $\langle M \rangle \rightarrow N$.

图 3 在不同温度下高分子链的平均表面接触数 $\langle M \rangle$ 与 链长 N 的关系, 其中外力 F = 0.3, 链长 N = 40—400 Fig. 3. The relationship between the average number of surface contacts $\langle M \rangle$ and the chain length N at different temperatures T, where the external force is F = 0.3, and the chain length is from N = 40 to 400.

图 4 平均表面接触数 $\langle M \rangle$ 与温度 T 的关系 Fig. 4. The relationship between the average number of surface contacts $\langle M \rangle$ and the temperature T.

在 $\langle M \rangle$ -T的关系中,我们对高分子链的表面 接触数的中间数据进行线性拟合,以其延长线与横 轴的交叉点来粗略估计在外力F驱动作用下的临 界吸附温度 T_c .我们得到 T_c 与F的关系,如图5所 示,可见 T_c 随着F的增大而减小,但是当 $F > F^*$ 时临界吸附温度 T_c 不再变化,即 $T_c^* = 0.41$,其 中 $F^* \approx 2(目测估计值)$.由外力F和温度T构造 了高分子链从脱附状态 (desorbed state, DS)到吸 附状态 (adsorbed state, AS)的伪相图,如图5所 示,其插图的三种构象分别为 (a)吸附态 F = 0.1, T = 1.0, (b) 脱附态 F = 10, T = 1.0 和 (c) 吸附态 F = 10, T = 0.2.

图5 高分子链的温度 T 与外力 F 的伪相图 其中链长 N = 200, DS 为脱附态和 AS 为吸附态; 插图的三种构象 分别为 (a) F = 0.1, T = 1.0, (b) F = 10, T = 1.0 和 (c) F = 10, T = 0.2

Fig. 5. The pseudo-phase diagram of the polymer chain between the desorbed state (DS) and the adsorbed state (AS) for the temperature T and the external force F, in which the chain length is N = 200. Three conformations of the insets are (a) F = 0.1, T = 1.0, (b) F = 10, T = 1.0 and (c) F = 10, T = 0.2.

3.3 外力驱动对高分子链构象的影响

高分子链在表面的吸附会伴随着其构象的变 化,均方回转半径 〈*R*²_G〉可以描述高分子链的构象, 其计算公式为

$$\langle R_{\rm G}^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{r}_i - \boldsymbol{r}_{\rm cm})^2, \qquad (3)$$

其中, N为高分子链的链长, r_i为高分子链中第*i* 个单体的位置矢量, r_{cm}为高分子的质心位置矢量, 其计算公式为

$$\boldsymbol{r}_{\rm cm} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{r}_{\rm i}.$$
 (4)

为了研究吸引表面附近的高分子链构象受 到外力驱动的影响,我们模拟了高分子链的均 方回转半径 $\langle R_G^2 \rangle Q X, Y, Z 方向的分量 \langle R_G^2 \rangle_X,$ $\langle R_G^2 \rangle_Y, \langle R_G^2 \rangle_Z 与外力F的关系,如图6所示,其中$ $温度T = 1. 当外力F较小时,高分子链的<math>\langle R_G^2 \rangle$ 及其分量随F的增大而保持不变,即此时的外力F 不足以使高分子链构象发生变化. 当外力F进一 步增大时 $\langle R_G^2 \rangle$ 的X和Y分量出现了分叉,随着外 力F 的增加 $\langle R_G^2 \rangle_X$ 逐渐增大,垂直外力的Y方向 $\langle R_{G}^{2} \rangle_{Y}$ 变小,而且回转半径 $\langle R_{G}^{2} \rangle$ 随外力F的增加 而减小,即外力驱动作用使高分子链构象发生形 变.直到 $F = F_{c}$ 时, $\langle R_{G}^{2} \rangle$ 达到极小值,此时 $\langle R_{G}^{2} \rangle_{Y}$ 减小到极小值而 $\langle R_{G}^{2} \rangle_{Z}$ 增大到极大值,而且它们 的值相等后随外力F的增加都几乎不再变化,此时 在垂直外力方向的Y和Z分量相等,说明没有受到 表面的限制即高分子链处于脱附状态.当外力增大 到一定值后,高分子链的 $\langle R_{G}^{2} \rangle$ 及其三个分量随F 的增大而几乎不再变化.因此,高分子链的临界吸 附点也可以从高分子链的 $\langle R_{G}^{2} \rangle$ 极小值,或Y和Z 分量的变化 (即高分子链构象形变)来粗略估计.

为了从高分子链构象角度进一步说明高分子 链在表面吸附受外力的影响,我们分别计算了均方 回转半径在Y,Z方向上的分量 $\langle R_G^2 \rangle_Y$ 和 $\langle R_G^2 \rangle_Z$ 与 温度T 的关系,如图7所示.从图7可以观察到,高 温时高分子链 $\langle R_G^2 \rangle$ 这两个分量的值相等,然后在 $T = T_c$ 出现分叉, $\langle R_G^2 \rangle_Y$ 随温度T 的减小而增大, $\langle R_G^2 \rangle_Z$ 随温度T 的减小而减小.其原因是在临界吸 附温度以下高分子链受到表面吸引作用而靠近表面,又因为体积排斥作用使高分子链沿表面发生伸展. $\langle R_G^2 \rangle_Y \langle R_G^2 \rangle_Z$ 分叉点的温度值随着外力F的增加而减小,且与其临界吸附温度T_c相一致.

图 6 高分子链均方回转半径 $\langle R_{\rm G}^2 \rangle$ 以及 X, Y, Z 方向分量与外力 F 的关系

Fig. 6. The mean square radius of gyration $\langle R_{\rm G}^2 \rangle$ and its components at the different external force F.

图 7 均方回转半径在 Y, Z 方向上的分量 $\langle R_{\rm G}^2 \rangle_Y$ 和 $\langle R_{\rm G}^2 \rangle_Z$ 与温度 T 的关系,其中链长 N = 200, 外力 F = 0, 0.5, 1.0 和 10 Fig. 7. The components of mean square radius of gyration in the Y, Z direction $\langle R_{\rm G}^2 \rangle_Y$ and $\langle R_{\rm G}^2 \rangle_Z$ at different temperature T, where the chain length is N = 200 and the external forces are F = 0, 0.5, 1.0 and 10.

高分子链在表面的吸附性质与温度相关,我们 根据图5的伪相图,选择两个温度T = 1.2 (> T_c^*) 和0.2 (< T_c^*)来说明高分子链吸附和构象受外力 F驱动的不同作用.高分子链的平均表面接触数 (M)和均方回转半径在Z方向上的分 (R_G^2)_Z与外 力F的关系如图8所示.当T = 1.2时, (M) 随外 力*F*的增大而减小,而且其 $\langle M \rangle$ 值逐渐趋于0,即 高分子链发生了由吸附状态向脱附状态的转变;当 T = 0.2时, $\langle M \rangle$ 随外力*F*的增大而减小,但 $\langle M \rangle$ 仍然接近*N*,即高分子链中虽存在部分单体脱附 但整条链仍处于吸附状态. 当*F* = 0 时,*T* = 1.2 和0.2 时 $\langle R_G^2 \rangle_Z \rightarrow 0$,高分子链处于接近表面的 吸附状态.而随着 F 的逐渐增大,温度 T = 1.2 时 $\langle R_G^2 \rangle_Z$ 单调递增直到 F > 0.4 后保持不变,此 时 $\langle R_G^2 \rangle_Z$ 明显大于0,其中 $F_c = 0.4$ 与图5中的相 应值一致;而温度 T = 0.2 时即使外力 F > 2 后 $\langle R_G^2 \rangle_Z$ 仍然接近于0,其值明显小于温度 T = 1.2 时的 $\langle R_G^2 \rangle_Z$,说明高分子链仍然在吸引表面附近. 因此,在温度 T = 1.2 时,当外力 F 足够大时,使高 分子链发生从吸附状态到脱附状态的相变,而在温 度 T = 0.2 时随外力增加没有发生脱附相变.在两 个不同温度 T > T_c^* 和 T < T_c^* ,高分子链吸附性质 和构象性质受外力驱动作用的不同影响,其性质与 图 4 的伪相图相一致.

图 8 (a) 高分子链平均表面接触数 〈M〉 和 (b) 均方回转半径 在 Z 方向上的分量与外力 F 的关系

Fig. 8. (a) The average number of surface contact $\langle M \rangle$ and (b) the component of the mean square radius of gyration in the Z direction at different external force F.

4 结 论

本文采用键长涨落模型和协同运动算法模拟 在吸引表面附近并受到平行表面的外力驱动作用 的高分子链的热力学性质,研究了高分子链在不同 大小的外力作用下的吸附特性.模拟发现高分子链 的临界吸附温度 T_c 随外力F的增大而减小,据此 构建了链长N = 200的高分子链的脱附状态和吸 附状态相对于温度T和外力F的伪相图.我们从高 分子链的构象角度交叉校验了高分子链的临界吸 附点,发现从高分子链的 $\langle R_G^2 \rangle$ 的极小值与从其Y和Z分量的变化估计的临界吸附点相一致.最后讨 论了温度 $T > T_c^*$ 和 $T < T_c^*$ 两种情况的高分子链 吸附性质和构象性质受外力驱动作用的不同现象, 当 $T_c^* < T < T_c$ 时,处于吸附态的高分子链随着外 力F驱动作用的增加发生脱附,然而当 $T < T_c^*$ 时, 高分子链不会受外力 F 驱动作用发生脱附现象, 这 与高分子链吸附和脱附的伪相图性质相一致.

参考文献

- [1] Wackerlig J, Schirhagl R 2016 Anal. Chem. 88 250
- [2] Wackerlig J, Lieberzeit P A 2015 Sens. Actuator B: Chem. 207 144
- [3] Ma Y Q, Zhang Z X, Hu Z J, Cheng K, Jia Y X 2016 Sci. Techn. Innov. Herald. 13 186 (in Chinese) [马余强, 张泽新, 胡志军, 贾玉玺 2016 科技创新导报 13 186]
- [4] Kantor Y, Kardar M 2017 Phys. Rev. E 96 022148
- [5] Tong H P, Zhang L X 2012 Acta Phys. Sin. 61 058701
 (in Chinese) [仝焕平, 章林溪 2012 物理学报 61 058701]
- [6] Napolitano S, Sferrazza M 2017 Adv. Colloid Interface Sci. 247 172
- [7] Perezdeeulate N G, Sferrazza M, Cangialosi D, Napolitano S 2017 ACS Macro. Lett. 6 354
- [8] Chen S H, Lü Q, Guo J C, Wang Z K, Sun S Q, Hu S Q
 2017 Acta Polym. Sin. 4 716 (in Chinese) [陈生辉, 吕强,
 郭继成, 王志坤, 孙霜青, 胡松青 2017 高分子学报 4 716]
- [9] Li H, Qian C J, Wang C, Luo M B 2013 *Phys. Rev. E* 87 012602
- [10] Eisenriegler E, Kremer K, Binder K 1982 J. Chem. Phys.
 77 6296
- [11] Milchev A 2011 J. Phys.: Condens. Matter 23 103101
- [12] Li H, Qian C J, Luo M B 2012 J. Appl. Polym. Sci. 124 282
- [13] Plascak J A, Phl M, Bachmann M 2017 *Phys. Rev. E* 95 050501
- [14] Qi S, Klushin L I, Skvortsov A M, Schmid F 2016 Macromolecules 49 9665
- [15] Liu L J, Chen W D, Chen J Z, An L J 2014 Chin. Chem. Lett. 25 670
- [16] Manca F, Giordano S, Palla P L, Cleri F, Colombo L 2012 J. Chem. Phys. 137 244907
- [17] Li J, Hu W B 2015 Polym. Int. 64 49
- [18] Wang Y, Zhang L X 2008 Acta Phys. Sin. 57 3281 (in Chinese) [王禹, 章林溪 2008 物理学报 57 3281]
- [19] Wu C X, Yan D D, Xing X J, Hou M Y 2016 Acta Phys. Sin. 65 186102 (in Chinese) [吴晨旭, 严大东, 邢向军, 厚 美瑛 2016 物理学报 65 186102]
- [20] Yan D D, Zhang X H 2016 Acta Phys. Sin. 65 188201
 (in Chinese) [严大东, 张兴华 2016 物理学报 65 188201]
- [21] Jiang Y, Chen Z Y 2016 Acta Phys. Sin. 65 178201 (in Chinese) [蒋滢, 陈征宇 2016 物理学报 65 178201]
- [22] Jiang Z, Dou W, Sun T, Shen Y, Cao D 2015 J. Polym. Res. 22 236
- [23] Jiang Z T, Dou W H, Shen Y, Sun T T, Xun P 2015 Chin. Phys. B 24 379
- [24] Luo M B, Zhang S, Wu F, Sun L Z 2017 Front Phys. 12 128301
- [25] Zhou Z C, Wang Y T 2017 Chin. Phys. B 26 038701
- [26] Li H, Gong B, Qian C J, Luo M B 2015 Soft Matter 11 3222
- [27] Li H, Qian C J, Luo M B 2016 J. Chem. Phys. 144 164901

- [28] Rosenbluth M N, Rosenbluth A W 1955 J. Chem. Phys.
 23 356
- [29] Qin Y, Liu H L, Hu Y 2001 J. Fluor. Chem. 14 417 (in Chinese) [秦原, 刘洪来, 胡英 2001 功能高分子学报 14 417]
- [30] Qin Y, Liu H L, Hu Y 2003 Mol. Simul. 29 649
- [31] Gauger A, Weyersberg A, Pakula T 1993 Macromol. Theory Simul. 2 531
- [32] Luo M B 2008 J. Chem. Phys. 128 044912
- [33] Paul W, Binder K, Heermann D W, Kremer K 1991 J. Phys. B: At. Mol. Opt. Phys. 1 37

Computer simulation of adsorption properties of polymer on surface under external driving force*

Li Hong¹) Ai Qian-Wen¹) Wang Peng-Jun^{1†} Gao He-Bei^{2)‡} Cui Yi¹) Luo Meng-Bo^{3)††}

1) (College of Mathematics, Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China)

2) (Department of Information, Wenzhou Vocational and Technical College, Wenzhou 325035, China)

3) (Department of Physics, Zhejiang University, Hangzhou 310027, China)

(Received 17 March 2018; revised manuscript received 14 April 2018)

Abstract

Monte Carlo simulation is performed to study the adsorption properties of polymers on an attractive surface. Annealing method is adopted to simulate the adsorption characteristics and conformational changes of polymer chains driven by an external driving force F. In simulations using cooperative motion algorithm, the ensembles of monomers located at lattice sites are connected by non-breakable bonds. When the external force is F = 0, the finite-size scale method can be used to determine the critical adsorption temperature $(T_{\rm c})$ of the polymer chain on the attractive surface, but when the external force is F > 0, the dependence of the average number of surface contacts $\langle M \rangle$ on the chain length N is unrelated to temperature T. Therefore, T_c cannot be obtained by the finite-size scale method. However, the pseudo-critical adsorption temperature $T_{\rm c}$ can be estimated by a function of the average number of surface contacts $\langle M \rangle$ and the temperature T for the chain length N = 200. And then T_c decreases with external force F increasing. The phase diagram is obtained for the polymer chain between the desorbed state and the adsorbed state under temperature T and external driving force F. Furthermore, the influence of the external driving force on the conformation of the polymer chain is analyzed by the mean square radius of gyration of polymer chains. The critical adsorption point $T_{\rm c}$ can be checked roughly by the minimum location of the mean square radius of gyration or by the variation of its components in the Y and Z direction perpendicular to the external force. With the increase of the external force F for adsorbed polymer, the temperature T can determine whether polymer is changed from the adsorption state to the desorption state and where the force is located at the transformation. There are two different cases, that is, the polymer can be desorbed at the temperature $T_c^* < T < T_c$ and the polymer cannot be desorbed at $T < T_c^*$. In this paper, we discuss these two cases for the adsorption of polymer on the attractive surface: weak and strong adsorption. In the first case, the adsorption is strongly influenced by the external driving force. By contrast, in the strong adsorption, the adsorption is weakly influenced by the external force. Our results unravel the dependence of adsorption of polymer on external driving force, which is also consistent with the phase diagram of adsorption and desorption of polymer chains.

Keywords: polymer chain, adsorption, cooperative motion algorithm, Monte Carlo methodPACS: 82.20.Wt, 82.35.Lr, 87.10.RtDOI: 10.7498/aps.67.20180468

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11775161, 11474222), Zhejiang Provincial Natural Science Foundation, China (Grant No. LY17A040007), and Zhejiang Provincial Education Department, China (Grant No. Y201738867).

 $[\]dagger$ Corresponding author. E-mail: wangpengjun@wzu.edu.cn

[‡] Corresponding author. E-mail: bogolyx@163.com

 $[\]dagger\dagger$ Corresponding author. E-mail:
 luomengbo@zju.edu.cn