物理学报 Acta Physica Sinica

丛聚的含气泡水对线性声传播的影响

范雨喆 陈宝伟 李海森 徐超

Linear-wave propagation in liquids containing bubbly clusters

Fan Yu-Zhe Chen Bao-Wei Li Hai-Sen Xu Chao

引用信息 Citation: Acta Physica Sinica, 67, 174301 (2018) DOI: 10.7498/aps.67.20180728 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180728 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I17

您可能感兴趣的其他文章 Articles you may be interested in

部分浸没圆柱壳声固耦合计算的半解析法研究

Semi-analytical research on acoustic-structure coupling calculation of partially submerged cylindrical shell 物理学报.2018, 67(8): 084302 http://dx.doi.org/10.7498/aps.67.20172681

陆架斜坡海域上坡波导环境中声能量急剧下降现象及其定量分析

Investigation and quantitative analysis on the acoustic energy tobogganing in the upslope waveguide of continental slope area

物理学报.2017, 66(19): 194301 http://dx.doi.org/10.7498/aps.66.194301

气泡体积分数对沙质沉积物低频声学特性的影响

Effect of gas bubble volume fraction on low-frequency acoustic characteristic of sandy sediment 物理学报.2017, 66(19): 194302 http://dx.doi.org/10.7498/aps.66.194302

一种基于长基线交汇的超短基线定位系统精度评价方法

A precision evaluation method of USBL positioning systems based on LBL triangulation 物理学报.2015, 64(9): 094301 http://dx.doi.org/10.7498/aps.64.094301

一种基于简正波模态频散的远距离宽带海底参数反演方法

A far distance wideband geoacoustic parameter inversion method based on a modal dispersion curve 物理学报.2015, 64(17): 174302 http://dx.doi.org/10.7498/aps.64.174302

丛聚的含气泡水对线性声传播的影响^{*}

范雨喆¹⁾²⁾³⁾ 陈宝伟^{1)2)3)†} 李海森¹⁾²⁾³⁾ 徐超¹⁾²⁾³⁾

1)(哈尔滨工程大学,水声技术重点实验室,哈尔滨 150001)

2) (海洋信息获取与安全工信部重点实验室 (哈尔滨工程大学), 工业和信息化部, 哈尔滨 150001)

3) (哈尔滨工程大学水声工程学院,哈尔滨 150001)

(2018年4月18日收到; 2018年5月18日收到修改稿)

含气泡水内气泡的空间分布会对线性声传播产生影响,导致实验结论与理论预测存在较大偏差.为解决 这一问题,将准晶体近似引入到自治方法中,导出了考虑空间分布时多分散含气泡水的等效声波波数.考虑到 含气泡水内,气泡间存在小范围的聚集趋势(简称丛聚现象),在此基础上引入Neyman-Scott点过程描述了含 气泡水内气泡的丛聚现象.分析发现,丛聚时,声速、声衰减的峰值将受到抑制,并向低频偏移,且抑制和频偏 现象会随丛聚加剧而变强;随频率远离峰值段,丛聚对声传播的影响逐渐减弱.此外,考虑到空间分布的统计 信息提取对相关研究的精确与否起到重要作用,引入了一种比例无偏估计,通过该方法获得了仿真环境下丛 聚含气泡水模型的相速度及衰减系数,该建模及统计方法也可为相关实验工作提供理论基础.

关键词: 声传播, 含气泡水, 丛聚 PACS: 43.30.+m, 43.30.Pc, 43.20.Fn

DOI: 10.7498/aps.67.20180728

1引言

含气泡水是重要的自然及工业现象,常见于舰 船螺旋桨空化、水下爆炸和生物医学应用等领域 中^[1-3].关于含气泡水中的线性声传播问题已有大 量研究,主要基于两种方法.其一是通过集平均^[4] 或体积平均^[5]建立起描述含气泡水内的声传播的 基本方程,在结合气泡动力学方程^[6]后,对整体做 线性化近似.当然,这些线性声传播理论由于忽略 了气泡间的相互作用,会在含气泡水浓度较高时产 生较大误差.通过考虑气泡与含气泡水中的平均量 相互作用,可以初步解决这一问题^[7-10].另一种方 法则是先对气泡动力学方程做线性化近似,在此基 础上将含气泡水中的声传播问题看作多体多次散 射问题^[11,12].同样,在含气泡水气泡体积分数较高 时,需引入气泡间的再辐射对理论进行修正^[13-16], 这种方法也被称为多泡散射法 (multiple-scattering approach, MST)^[17]. 在不考虑气泡间相互作用时, 上述两种方法在线性声传播框架内的结论是一致 的. 此外,也可以寻求该问题的数值求解办法,但 是其过高的计算量阻碍了精确仿真环境的建立^[18].

然而,这些研究的一个共同的重要假设是:气 泡在空间均匀分布且相互间统计独立.这导致含 气泡水中声传播理论大多忽略了含气泡水内气泡 的空间分布对声传播的影响.事实上,含气泡水 中气泡在空间上分布并均匀是十分严苛的条件, 即使在实验室环境中也很难达到.现有的含气泡 水线性声传播实验中,相速度和衰减系数的峰值 往往低于理论预测值,且存在低频偏移^[19,20].通 过实验观测^[21],多分散的含气泡介质内气泡间可 能存在小范围的聚集趋势(在后文统一称作丛聚 现象),这为合理解释预测和测量结论间的偏差提 供了研究方向.本文基于MST框架,将准晶体近 似(quasi-crystalline assumption, QCA)引入自洽

^{*} 国家自然科学基金(批准号: 41576102, 41506115)资助的课题.

[†]通信作者. E-mail: cbcwin@163.com

^{© 2018} 中国物理学会 Chinese Physical Society

方法(self-consistent approach, SCA)^[21,22],推导 出了考虑空间分布时多分散介质中的等效声波波 数形式,并在此基础上引入Neyman-Scott 点过程 (Neyman-Scott point process, NSP)描述了含气泡 水内气泡小范围的丛聚现象^[23],给出了丛聚气泡 水内等效声波波数.考虑到空间分布的统计信息提 取对相关研究的精确与否起到重要作用,本文引入 了一种比例无偏估计,通过该方法获得了仿真环境 下丛聚含气泡水模型的相速度及衰减系数,该建模 及统计方法也可作为相关实验工作的理论基础.

2 气泡水中声传播的自洽方法

2.1 气泡的小幅度振动

考虑气泡在声场作用下的动力学方程,假设其 在振动过程中始终保持球形,并忽略气泡与水间的 质量交换,气泡的径向振动可由 Prosperetti 修正的 Keller-Miksis 方程^[6]表示为

$$a\ddot{a}\left(1-\frac{\dot{a}}{c_{0}}\right)+\frac{3\dot{a}^{2}}{2}\left(1-\frac{\dot{a}}{3c_{0}}\right)$$
$$=\left(1+\frac{\dot{a}}{c_{0}}\right)\frac{p_{\mathrm{in}}-p_{\infty}}{\rho_{\mathrm{l}}}+\frac{a}{c_{0}}\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{p_{\mathrm{in}}-p_{\infty}}{\rho_{\mathrm{l}}}\right),\ (1)$$

其中 p_{in} 为

$$p_{\rm in} = \left(p_0 + \frac{2\sigma}{a_0} - p_{\rm v}\right) \left(\frac{a_0}{R}\right)^{3\gamma} + p_{\rm v} - \frac{2\sigma}{a} - \frac{4\mu\dot{a}}{a}, \qquad (2)$$

其中 p_0 为环境大气压, p_v 是泡内蒸汽压, σ 是液体 表面张力, μ 是液体的黏滞系数, c_0 为声波在液体 中的传播速度, ρ_1 是液体密度, γ 是泡内气体的多方 指数, a_0 是气泡初始半径, a = a(t)为气泡任意时 刻的半径, p_∞ 为声场和环境压力. (1)式在低 Mach 数下, 能准确地模拟气泡在声场中振动的动力学 过程. 对(1)式做一阶微扰处理, 此时稳态的气泡 随声场做同频率周期振动, 假设 $a(t) = a_0(1+X)$, $p_\infty = p_0(1 - \varepsilon e^{-j\omega t}) 和 p_{in} = p_{in,equ}(1 - \Phi X)$, 可 得气泡的线性动力学方程^[24]

$$\ddot{X} + 2\beta \dot{X} + \omega_0^2 X = \alpha \varepsilon \,\mathrm{e}^{-\mathrm{j}\omega t},\tag{3}$$

此处

$$2\beta = \frac{\omega^2 a_0}{c_0} + \frac{4\mu}{\rho a_0^2} + \frac{p_{\text{in,equ}}}{\rho \omega a_0^2} \Im \Phi,$$

$$\omega_0^2 = \frac{p_{\rm in,equ}}{\rho a_0^2} \left(\text{Re}\Phi - \frac{2\sigma}{a_0 p_{\rm in,equ}} \right),$$
$$\alpha = \frac{p_0}{\rho a_0^2} \left(1 - i\frac{\omega a_0}{c_0} \right),$$

其中 $p_{in,equ} = p_0 + 2\sigma/a_0$,在多方过程假设下, Re{ Φ } = 3 γ .为建立气泡振动与MST 理论的 联系,必须求解单个气泡的散射声场.在以 ω 为 角频率的声场中,对 r_i 处的气泡,将其散射声场 写作 $p_s(r) = f_s p_{inc}(r_i) G(r - r_i) \exp(-i\omega t)$,其中 $G(r - r_i) = \exp(ik|r - r_i|) / |r - r_i|$ 是三维空间 的格林函数^[25], $p_{inc}(r_i) 为 r_i$ 位置处的入射声场, $p_s(r)$ 为点气泡在r处气泡的散射声场, f_s 为气泡 的声散射幅度.对脉动气泡,根据Eular方程,有

$$\nabla p_{\rm s}|_{r=a} = -\rho_{\rm l}\ddot{a},\tag{4}$$

表示了气泡散射声场和气泡径向振动的关系.考虑到气泡的径向运动可以表示为 $a(t) = a_0 [1 + X(t)]$,且其随声场做稳态的同频率周期振动,于是有 $\omega^2 X = -\ddot{X}$,将其代入(3)式并结合(4)式^[24],又考虑到在点源假设下 $ka_0 \ll 1$,可以求解单个气泡的声散射幅度 f_s 为

$$f_{\rm s} = \frac{a_0}{\left[\left(\frac{\omega_0}{\omega}\right)^2 - 1\right] - \frac{2\mathrm{i}\beta}{\omega}}.$$
 (5)

2.2 自洽方法

当声波在含气泡水中传播时,每个气泡都会对 声波进行再辐射,而其辐射的声波又会被其他气泡 吸收和再次辐射.如图1所示,采用SCA时,忽略 时间因子 exp(-iωt),将气泡的声散射幅度重新写

Fig. 1. Acoustic propagation in bubbly water.

作 $f_s(a_i)$, 其 中 a_i 为 气 泡 i 的 初 始 半 径, 其 相应的散射声场也重新写为 $p_{s}^{i}(\boldsymbol{r},a_{i}) =$ $f_{s}(a_{i})p_{inc}(\mathbf{r}_{i})G(\mathbf{r}-\mathbf{r}_{i})$. 考虑到等效波数并非 入射角度的函数,为简化问题,假设含气泡水内声 波沿z轴传播,可将其在r_i处的声压简化为

$$p(r_i) = P \exp(i\kappa z_i), \qquad (6)$$

其中 κ 为含气泡水内等效波数, P 为相应的声压幅 值. 由于研究对象为多分散介质, 气泡半径a_i也 同样作为随机变量引入,各个散射体的散射幅度 $f_{s}(a_{i})$ 都变为随机变量的函数.

任取一个气泡 j 作为参考点, 其空间位置变量 为 r_i , 气泡半径为 a_i , 二者都为随机变量(图1). 参考点与 r_i 处大小为 a_i 的气泡i的相对距离为 $r_{ij} = |r_j - r_i|$. 在参考点处的声压可以获得如 下方程

$$p_{j,\text{in}} = p_{\text{ex}}(\mathbf{r}_j) + \sum_{i \neq j} f_{\text{s}}(a_i) p_{i,\text{in}} \frac{\mathrm{e}^{\mathrm{i}kr_{ij}}}{r_{ij}},$$
 (7)

式中 $p_{i,in}$ 为气泡i受到的激励声压, $p_{ex}(r_j) =$ $\varepsilon p_0 e^{jkz_j}$ 为背景声场. 对含有 N 个气泡的气泡水 而言, $p_{i,in}$ 为2N个随机变量 r_i 和 a_i 的函数. 对参 考点气泡,在(7)式两边同时求取条件期望,可得

$$\langle p_{j,\mathrm{in}} \rangle_{j} = p_{\mathrm{ex}}\left(\boldsymbol{r}_{j}\right) + \int_{\varsigma^{N-1}} \sum_{i \neq j} f_{\mathrm{s}}\left(a_{i}\right) p_{i,in} \frac{\mathrm{e}^{\mathrm{i}kr_{ij}}}{r_{ij}} \\ \times f\left(\varsigma^{N-1} \middle| \boldsymbol{r}_{j}, a_{j}\right) \mathrm{d}\varsigma^{N-1},$$
(8)

其中 $\langle P \rangle_i$ 表示气泡 j 的条件期望, $\varsigma^{N-1} = \{ r_1, \cdots, r_{N-1} \}$ $\boldsymbol{r}_{i\neq j}, \cdots, \boldsymbol{r}_N, a_1, \cdots, a_{i\neq j}, \cdots, a_N$, $f(\varsigma^{N-1} | \boldsymbol{r}_i, a_j)$ 是在参考气泡空间位置和气泡大小一定时,其余 N-1个气泡的空间位置和大小的条件概率密 度,其可以进一步写作气泡j一定时气泡k的 条件概率密度与气泡j, k一定时其余N - 2个 气泡的条件概率密度的乘积 $f(\varsigma^{N-1}|\mathbf{r}_i, \mathbf{a}_i) =$ $f(\varsigma^{N-2}|\mathbf{r}_k, a_k, \mathbf{r}_j, a_j)f(\mathbf{r}_k, a_k|\mathbf{r}_j, a_j).$ 将其代入 (8)式,并假设含气泡水在空间上是统计均质的(简 称均质), 各个气泡的统计特征无明显差异, 在此基 础上(8)式化简为

$$\times \frac{\mathrm{e}^{\mathrm{i}kr_{kj}}}{r_{kj}} f(\boldsymbol{r}_k, a_k | \boldsymbol{r}_j, a_j) \,\mathrm{d}\boldsymbol{r}_k \,\mathrm{d}a_k, \quad (9)$$

其中 $\langle p_{k,in} \rangle_{ik}$ 表示对气泡j,k取条件期望.对(9)式 进行求解,首先给出随机变量的条件概率密度函 数. 相对参考点 r_i ,大小为 a_k 的气泡k位于 d r_k 的 概率为[22,23]

$$f(\mathbf{r}_{k}; a_{k} | \mathbf{r}_{j}; a_{j}) = \frac{g([\mathbf{r}_{k}; a_{k}], [\mathbf{r}_{j}; a_{j}]) m(\mathbf{r}_{k}) n(a_{k})}{N-1}, \quad (10)$$

其中 $g([\mathbf{r}_k; a_k], [\mathbf{r}_j; a_j])$ 表示气泡k和j在空间上的 相互影响,对均质气泡群时, $g([\mathbf{r}_k; a_k], [\mathbf{r}_i; a_i]) =$ $g(|\mathbf{r}_k - \mathbf{r}_j|)$,空间影响退化为径向函数且与具体位 置无关,称作径向关联函数(pair-correlation function, PCF), (10) 式中气泡间的相互影响仅通过 PCF表示; $m(\mathbf{r}_k)$ 为气泡群的气泡数量密度函数, 在均质时退化为常数 m_0 ; $n(a_k)$ 是气泡孔径的概 率密度函数(这里将m0和n(ak)这两个函数区分 开表示,更方便表述含气泡水的空间特性).因此, (9) 式简化为

$$\langle p_{j,\mathrm{in}} \rangle_{j} = p_{\mathrm{ex}} \left(\boldsymbol{r}_{j} \right) + \int_{r_{k}} \int_{a_{k}} f_{\mathrm{s}} \left(a_{k} \right) \left\langle p_{j,\mathrm{in}} \right\rangle_{jk} \frac{\mathrm{e}^{\mathrm{i}kr_{jk}}}{r_{jk}} \\ \times g \left(r_{jk} \right) mn \left(a_{k} \right) \mathrm{d}r_{k} \mathrm{d}a_{k}.$$
 (11)

此时,在(11)式中引入QCA^[26], $\langle P \rangle_{ik} = \langle P \rangle_i$,再 进一步考虑气泡与含气泡水中的平均量相互作 用 [7-10], 将 $\langle p_{j,in} \rangle_i = P \exp(i\kappa z_j)$ 代入 (11) 式, 并 去掉角标 k 以做化简, (11) 式变换为

$$P \exp(i\kappa z_j)$$

$$= \varepsilon p_0 e^{jkz_j} + \int_{r_k} \int_a f_s(a) P \exp(i\kappa z) \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}_j|}}{|\boldsymbol{r}-\boldsymbol{r}_j|}$$

$$\times [g(\boldsymbol{r}) - 1 + 1] mn(a) d\boldsymbol{r} da.$$
(12)

对 (12) 式 中 的 $\int_{r} \exp(i\kappa z) \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}_{j}|}}{|\boldsymbol{r}-\boldsymbol{r}_{j}|} \mathrm{d}\boldsymbol{r}$ 项 积 分 ^[27], (12) 式化简为仅含 $e^{i\kappa z_j}$ 和 e^{ikz_j} 项的等式. 在此基 和e^{jkz}i的系数为0以保证等式成 内等效波数为

$$=k^{2} + \frac{4\pi \int_{a} f_{s}(a) mn(a) da}{1 + 4\pi \int_{a} f_{s}(a) mn(a) da \int_{0}^{\infty} \frac{\sin(\kappa r)}{\kappa} e^{ikr} [1 - g(r)] dr}.$$
(13)

2.3 丛聚时含气泡水对声传播的影响

对丛聚的含气泡水,引入NSP对这一现象进行描述^[23].采用这一方法,避免了由于气泡间的复杂受力^[28]导致的含气泡水空间结构研究上的困难^[29],直接给出了不同情况下含气泡水的统计特征,用统计特征建立起了含气泡水中声传播与空间分布的联系,在简化问题的基础上给出了更具一般性的结论.气泡数量密度为*m*的含气泡水中分布着*i*_{NSP}个小范围的丛聚子气泡群,我们假设这些丛聚的成因无明显差异并在短时间内无明显变化,统计上认为这些丛聚子气泡群内空间分布相同,并在空间上整体服从Poisson分布,各自的数量密度为*m*₀.对任意的从聚子气泡群而言,其内部仍服从Poisson分布,在空间上的一次实现中含有*N*_c(*i*_{NSP})个气泡.将NSP的一次实现写作

$$N(\boldsymbol{r}) = \sum_{i_{\rm NSP}} \sum_{j_{\rm NSP}=1}^{N_{\rm c}(i_{\rm NSP})} \delta(\boldsymbol{r} - \boldsymbol{r}_{i_{\rm NSP}} - \boldsymbol{r}_{j_{\rm NSP}}), \quad (14)$$

其中丛聚子气泡群 $n_c = \langle N_c \rangle, m_0 = \langle i_{NSP} \rangle, 且$ $m = m_0 n_c$.本文直接给出其空间分布特征如下 (数学证明可参考文献[23]),考虑到引入了QCA, 因此只需要考虑二阶统计量, PCF为

$$g(r) = 1 + f_{\rm d} (r) / (4\pi r^2 m_0),$$
 (15)

这里

$$= \begin{cases} \frac{3}{2} \frac{r^2}{R^6} \left(R - \frac{r}{2} \right)^2 \left(2R + \frac{r}{2} \right), & 0 < r < 2R, \\ 0, & r \ge 2R, \end{cases}$$

其中, R为气泡聚集范围的半径. 将(15)式代入 (13)式中,就得到了丛聚的含气泡水内的等效波数

3 数值模拟

3.1 相速度和声衰减的变化分析

在(16)式中,含气泡水中气泡空间分布的相关 参数被引入到了等效波数中,在本文的数值模拟 中,我们始终保持含气泡水的体积分数为5×10⁻⁴. 选取边长为2.6×10⁻³ m的观测窗,在此基础上改变*n*_c,观察气泡空间分布对含气泡水的影响,其一次实现的*x-y*面侧视图如图2所示,其中,含气泡水空间分布的仿真方法在3.2节中说明. 含气泡水的气泡的尺寸分布服从log-normal分布,其孔径的概率密度函数为

$$n(a) = \frac{1}{\sqrt{2\pi\sigma_a a}} \exp\left(-\frac{\ln^2\left(a/a_{\mu}\right)}{2\sigma_a^2}\right),\qquad(17)$$

其中设气泡的孔径分布函数中 $a_{\mu} = 8 \mu m$, $\sigma_a = 0.4$, 丛聚半径为 $20a_{\mu}$. 此时, 注意到含气 泡水小范围内的孔隙率已远大于 5×10^{-4} , 那么气 泡间的相互作用会对声传播产生影响, 为解决这一 因素的影响, 进一步通过修正 (5) 式, 考虑与背景声 场的相互作用下的单个气泡的声散射能力^[15]

$$f_{\rm s}(a_i) = \frac{a_i}{[(\omega_0/\omega)^2 - 1] - 2i\beta_m/\omega},$$
 (18)

 $\ddagger \pm 2\beta_m \!=\! \omega \kappa_{\{n_{\rm c},R\}} a_0 \!+\! 4\mu/\rho a_0^2 \!+\! p_{\rm in,equ} \Im \varPhi/\rho \omega a_0^2.$

由图2可以看出,当nc较小时,直观上较难区 分出含气泡水是否产生了丛聚现象,因此,在现有 的实验研究中,其气泡群是否存在丛聚,是无法从 直观上判断的^[19-21];随着nc增长,丛聚现象逐渐 明显.nc=30时,从一次实现上直观观测的结果而 言,其更类似于空化产生的气泡群形成的空间球状 结构,如文献[30]中图2.13中的测量结果所示.此 外,观察文献[31]中图117的空化结构,如果空间网 状结构中的细丝不明显存在,图2(d)也可尝试用 于描述网状空化气泡群的空间结构.因此,本文的 理论研究也适用于空化气泡群结构特征的研究.在 此基础上,分析丛聚含气泡水对声速变化及声衰减 的影响,如图3所示.

可见, 丛聚现象对含气泡水内声传播的影响, 主要集中在声衰减及相速度的峰值附近, 对比无 丛聚含气泡水可知(气泡体积分数较小且无丛聚 时, 本文的理论模型退化为Commander 和Prosperetti^[5]的结论), 即使在 n_c = 1时, 其也对含气泡 水的声衰减有明显抑制作用, 通过对比实验结果, 由图 3 可以看出, (16) 式可以从空间信息上对现有 实验结论中的偏差进行解释, 即相速度和衰减系数 的峰值往往低于理论预测值且存在低频偏移是由 于空间不均匀导致的. 此外, 随 n_c 增加, 声衰减及 相速度在峰值附近受到的抑制逐渐加剧, 随频率远 离峰值段, 丛聚现象对含气泡水中声传播的影响逐 渐变弱.

图 2 不同气泡数量密度下丛聚含气泡水的一次实现的侧视图 (a) 无丛聚; (b) $n_c = 1$; (c) $n_c = 3$; (d) $n_c = 30$ Fig. 2. Realization of clustered bubbly water with different sub-bubble number density: (a) No cluster; (b) $n_c = 1$; (b) $n_c = 3$; (b) $n_c = 30$.

3.2 数值建模方法及统计分析

基于前文的结论,能否在实验中对空间信息进 行有效提取,对含气泡水内声衰减及相速度的理论 预测与测量结论是否拟合起到决定性作用.考虑到 现有含气泡水实验研究缺乏相应的统计手段,本文 引入了一种比例无偏估计以对后续实验研究进行 指导.事实上,比例无偏估计既可以对(16)式中的 丛聚参数测量^[32],也可以对统计量自身进行直接 测量^[21],本节引入后一种方法,因为其更具有普遍 性,在此基础上,对统计结论与理论预测的误差进 行观察. 考虑到统计全部含气泡水内各个气泡的空间 位置是不现实的,我们在仿真环境中也只采取其样 本(后文统一称为观测窗W)进行分析.在仿真环 境中,为保证考虑到W外的丛聚气泡群对W的影 响,首先在扩展观测窗W ⊕ b(0, R)中建立丛聚子 气泡群,一次实现的丛聚个数服从Poisson分布;其 次,建立各个丛聚子气泡群中的气泡,每个子气泡 群的气泡总数服从期望为n_c的Poisson分布;最后 按log-normal分布产生各个气泡的半径,就可以获 得含气泡水的样本空间W,如图2所示,选取边长 2.6 mm的正方形观测窗,以保证观测窗内样本气 泡充足(期望值约为2000个).

为在仿真环境中建立图2所示含气泡水对声 传播的影响,须对其空间信息进行提取.根据(16) 式的需求,首先对其气泡数量密度进行估计,其标 准估计为

$$\hat{m} = N(W)/V(W), \tag{19}$$

其中 N(W) 是观测窗内含气泡总数, V(W) 为观测 窗体积. 该标准估计是无偏的. 在此基础上, 对含 气泡水的 PCF 进行统计分析, 本文不加证明地引 入比例无偏的 PCF 估计方法 (具体证明过程可参 考文献 [21]):

$$\hat{g}(r) = \frac{\hat{Q}(r)}{\hat{m}_{\rm re}(r)^2}.$$
(20)

该方法通过对气泡数量密度估计进行修正保证了 统计的比率无偏性(\hat{m}_{re} 只用于估计 $\hat{g}(r)$).其中

$$\hat{Q}(r) = \frac{1}{4\pi r^2 \bar{\gamma}_{\mathrm{W}}(r)} \sum_{r_i, r_j \in N; r_i \neq r_j} k\left(\boldsymbol{r} - |\boldsymbol{r}_i - \boldsymbol{r}_j|\right),$$

 $\bar{\gamma}_{W}(r)$ 为标准化常数,表示观测窗平移 r后和其平移前的重叠体积; k为核函数估计,为保证均方误差 (mean square error, MSE)

$$\sigma_g(r) = \sqrt{\frac{g(r) \int_{-h}^{h} k^2(z) \,\mathrm{d}z}{4\pi r^2 \bar{\gamma}_W(r)}} \tag{21}$$

最小,将核函数表示为

$$k(r) = \begin{cases} \frac{1}{2h}, & |r| \leq h, \\ 0, & \text{else,} \end{cases}$$

其中h为经验参数,为保证估计结果平滑且有效信息捕捉准确,本文选取 $h = 10^{-5}$.此外,将修正的 气泡数量密度写作

$$\hat{m}_{\mathrm{re}}\left(r\right) = \sum_{r_i \in N} \frac{V_2\left(W \cap \partial b\left(r_i, r\right)\right)}{4\pi r^2 \bar{\gamma}_{\mathrm{W}}\left(r\right)},$$

其中 $V_2(W \cap \partial b(\mathbf{r}_i, r))$ 表示中心位于 \mathbf{r}_i 半径为r的 球体在观测窗内的表面积.根据(18)式及(19)式 对图 2 (c)进行估计,可得其PCF如图 4 所示.

图4中红色误差棒为PCF理论值±1 MSE,将 统计结果代入(13)式得到丛聚含气泡水中声速及 声衰减随频率的变化,如图5所示.

图 4 PCF 统计结果及误差分析

图 5 声衰减及相速度随频率变化的数值结果及误差分析 (a) 声衰减; (b) 相速度

Fig. 5. Numerical results of attenuation and phase speed versus frequency comparing with theoretical value: (a) Attenuation; (b) phase speed.

174301-6

以理论值求得的 κ²_{nc,R} 做对比分析, 可见当 丛聚产生时, 忽略空间信息会导致对声衰减及相速 度的预测出现较大误差, 而考虑空间信息时预测值 与理论值符合良好. 如果要进一步缩小考虑空间信 息时仍存在的微小误差, 可以通过适当扩大样本, 或对观测窗进行多次采样、估计取平均值来达到 目的.

4 结 论

含气泡水中的气泡很难保证均匀分布.在实验室 的含气泡水中的气泡很难保证均匀分布.在实验室 环境下,含气泡介质内气泡间也常存在小范围的聚 集趋势,而现有描述水下气泡群对声传播影响的理 论往往基于空间均匀分布假设.因此,当含气泡水 存在聚集时,现有理论描述声波在含气泡水中的传 播时存在较大误差.为分析非均匀分布的含气泡液 体对声波线性传播的影响,我们将QCA引入自洽 方法中,推导出了考虑空间分布时多分散介质中的 等效声波波数,在此基础上引入NSP描述了含气 泡水内气泡的丛聚现象.分析发现,即使直观上无 法观测到的丛聚现象,也会对含气泡水内声传播产 生较大干扰,因此含气泡水的空间信息不可忽视.

通过本文给出的数值仿真方法,可观测到丛聚 的含气泡水对声衰减及相速度的准确预测影响较 大,忽略空间信息会过高估计声衰减及相速度的峰 值,因此,在进行相应的实验研究中必须对空间信 息进行有效提取,而本文的建模及比例无偏估计方 法可作为相关实验工作的理论基础.

参考文献

- Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p214 (in Chinese) [陈伟中 2014 声空化物 理 (北京: 科学出版社) 第 214 页]
- [2] Li H, Li S, Chen B, Xu C, Zhu J, Du W 2014 Oceans'14 MTS/IEEE St. John's, Canada, September 14–19, 2014 p1
- [3] Fan Y Z, Li H S, Xu C, Chen B W, Du W D 2017 Acta Phys. Sin. 66 014305 (in Chinese) [范雨喆, 李海森, 徐超, 陈宝伟, 杜伟东 2017 物理学报 66 014305]

- [4] Zhang Z D, Prosperetti A 1994 Phys. Fluids 6 2956
- [5] Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732
- [6] Prosperetti A, A Lezzi 1986 J. Fluid. Mech. 168 457
- [7] Wang Y, Lin S Y, Zhang X L 2013 Acta Phys. Sin. 62 064304 (in Chinese) [王勇, 林书玉, 张小丽 2013 物理学报 62 064304]
- [8] Ando K, Colonius T, Brennen C E 2011 Int. J. Multiphase Flow 37 596
- [9] Fuster D, Conoir J M, Colonius T 2014 Phys. Rev. E 90 063010
- [10] An Y 2012 Phys. Rev. E 85 016305
- [11] Foldy L L 1945 Phys. Rev. 67 107
- [12] Qian Z W 2012 Acoustic Propagation in the Complex Medium and its Application (Beijing: Science Press) p46 (in Chinese) [钱祖文 2012 颗粒介质中的声传播及其应用 (北京:科学出版社) 第46页]
- [13] Ye Z, Ding L 1995 J. Acoust. Soc. Am. 98 1629
- [14] Henyey F S 1999 J. Acoust. Soc. Am. 105 2149
- [15] Kargl S G 2002 J. Acoust. Soc. Am. 111 168
- [16] Chen J, Zhu Z 2006 Ultrasonics 44 e115
- [17] Seo J, Lel S, Tryggvason G 2010 Phys. Fluids 22 063302
- [18] Chen J S, Zhu Z M 2005 Acta Acoustic **30** 386 (in Chinese) [陈九生, 朱哲民 2005 声学学报 **30** 386]
- [19] Wilson P S, Roy R A, Carey W M 2005 J. Acoust. Soc. Am. 117 1895
- [20] Leroy V, Strybulevych A, Page J H, Scanlon M G 2008 J. Acoust. Soc. Am. **123** 1931
- [21] Leroy V, Strybulevych A, Page J H, Scanlon M 2011
 Phys. Rev. E 83 046605
- [22] Waterman P C, Truell, R 1960 J. Math. Phys. 2 512
- [23] Illian J, Penttinen A, Stoyan H, Stoyan D 2008 Statistical Analysis and Modelling of Spatial Point Patterns (Chichester: Jon Wiley and Sons) p374
- [24] Prosperetti A 1984 Ultrasonics **22** 69
- [25] Liang B, Cheng J 2007 Phys. Rev. E 75 016605
- [26] Lax M 1952 Rev. Mod. Phys. 23 287
- [27] Linton C M, Martin P A 2006 SIAM J. Appl. Math. 66 1649
- [28] Xi X, Cegla F, Mettin R, Holsteyns F, Lippert A 2012 J. Acoust. Soc. Am. 132 37
- [29] Parlitz U, Mettin R, Luther S, Akhatov I, Voss M, Lauterborn W 1999 Phil. Trans. R. Soc. Lond. A 357 313
- [30] Luther S 2000 Ph. D. Dissertation (Sachsen: Georg-August-University of Göttingen)
- [31] Lauterborn W, Kurz T 2010 Rep. Prog. Phys. 73 106501
- [32] Tanaka U, Ogata Y, Stoyan D 2008 Biom. J. 50 43

Linear-wave propagation in liquids containing bubbly clusters^{*}

Fan Yu-Zhe¹⁾²⁾³⁾ Chen Bao-Wei^{1)2)3)†} Li Hai-Sen¹⁾²⁾³⁾ Xu Chao¹⁾²⁾³⁾

1) (Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China)

2) (Key Laboratory of Marine Information Acquisition and Security (Harbin Engineering University), Ministry of Industry and Information Technology, Harbin 150001, China)

3) (College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China)

(Received 18 April 2018; revised manuscript received 18 May 2018)

Abstract

Acoustic wave propagation in polydisperse bubbly liquids is relevant to diverse applications, such as ship propellers, underwater explosions, and biomedical applications. The simulation of bubbly liquids can date back to Foldy who presented a general theory. In the linear regime, two frequently used models for bubbly liquids are based on the continuum theory and on the multiple scattering theory. Under the homogenization-based assumption, models based on the volume-averaged equations or on the ensemble-averaged equations are designed to find the solutions of a given twophase flow. The effective wave number is derived through the linearization of these equations. A second approach to the problem of linear wave propagation utilizes the multiple scattering theory. Bubbles are treated as point-like scatterers, and the total field at any location can be predicted by multiple scattering of scatterers. However, in most of experimental researches, the comparison between the approaches and the experimental results is not satisfactory for frequencies near the peak of phase speed and attenuation. In fact, the discrepancies between measurements and approaches are irregular, and the explanations of these discrepancies need further studying. We indicate that such a discrepancy should be attributed to an implicit assumption in these approaches: the bubbles are spatially uniform distribution and statistically independent of each other. In contrast, the complex bubble structures can be observed in many practical bubbly liquids which have important consequences for the acoustic wave propagation. In this paper, our intent is to model the effect of small bubble cluster on linear-wave propagation in bubbly liquids using the self-consistent method. The quasi-crystal approximation is applied to the self-consistent method, and the effective wave number is derived. According to the experimental results, the small clusters of bubbles often exist in bubbly liquids. Therefore, a three-dimensional random model, the Neyman–Scott point process, is proposed to simulate bubbly liquid with the cluster structure. Using this method, we study the influence of such a phenomenon on acoustic dispersion and attenuation relation. A formula for effective wavenumber in clustered bubbly liquid is derived. Compared with the results from the equation of Commander and Prosperetti [J. Acoust. Soc. Am. 85 732 (1989)], our results show that the clustering can suppress peaks in the attenuation and the phase velocity, each of which is a function of frequency. Further, we provide a numerical method. A clustered bubbly liquid is simulated with strict mathematical method and the statistical information is obtained through ratio-unbiased statistical approach. Using such a method, we quantificationally analyze the influence of estimated value on predictions.

Keywords: acoustic propagation, bubbly water, cluster

PACS: 43.30.+m, 43.30.Pc, 43.20.Fn

DOI: 10.7498/aps.67.20180728

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 41576102, 41506115).

[†] Corresponding author. E-mail: cbcwin@163.com